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1. INTRODUCTION 

The main goal of this topic is to define and give some of the important properties of complex analytic functions. A 

function 𝑓(𝑧) is analytic if it has a complex derivative 𝑓′(𝑧). In general, the rules for computing derivatives will be 

familiar to you from single variable calculus. However, a much richer set of conclusions can be drawn about a complex 

analytic function than is generally true about real differentiable functions. 

1.1 The derivative: preliminaries 

In calculus we defined the derivative as a limit. In complex analysis we will do the same. 

𝑓′(𝑧) = lim
∆𝑧→0

∆𝑓

∆𝑧
= lim

∆𝑧→0

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
 

Before giving the derivative our full attention we are going to have to spend some time exploring and understanding 

limits. To motivate this well first look at two simple examples one positive and one negative. 

Example : 1.1 

Find the derivative of 𝑓(𝑧) = 𝑧2. 

answer: 

We compute using the definition of the derivative as a limit. 

lim
∆𝑧→0

(𝑧 + ∆𝑧)2 − 𝑧2

∆𝑧
= lim

∆𝑧→0

𝑧2 + 2𝑧∆𝑧 + (∆𝑧)2 − 𝑧2

∆𝑧
 

= lim
∆𝑧→0

 2𝑧 + ∆𝑧 = 2𝑧 

That was a positive example. Here’s a negative one which shows that we need to a careful understanding of limits. 

Example: 1.2 

Let 𝑓(𝑧) = 𝑧̅. Show that the limit for 𝑓′(0) does not converge. 

Answer: 

Let’s try to compute 𝑓′(0) using a limit: 

𝑓′(0) = lim
∆𝑧→0

𝑓(∆𝑧) − 𝑓(0)

∆𝑧
= lim

∆𝑧→0

 ∆𝑧̅̅ ̅

∆𝑧
=

∆𝑥 − 𝑖∆𝑦

∆𝑥 + 𝑖∆𝑦
 

Here we used ∆𝑧 = ∆𝑥 + ∆𝑦 

Now, ∆𝑧 → 0 means both ∆𝑥 and ∆𝑦 have to go to 0. There are lots of ways to do this. For example, if we let ∆𝑧 go to 0 

along the 𝑥-axis then, ∆𝑦 = 0 while ∆𝑥 goes to 0. In this case, we would have𝑓′(0) = lim
∆𝑥→0

∆𝑥

∆𝑦
= 1.  On the other hand, 

if we let ∆𝑧 go to 0 along the positive 𝑦-axis then 

𝑓′(0) = lim
∆𝑦→0

−𝑖∆𝑦

𝑖∆𝑦
= −1 

The limit don’t agree! The problem is that the limit depends on how ∆𝑧 apporaches 0. If we came from other directions 

we’d get other values. There’s nothing to do, but agree that the limit does not exist. 

We’ll there is something we can do: explore and understand limits. Let’s do that now. 
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1.2 Open disks, open deleted disks, open regions 

Definition: 1.3 

 The open disk of radius 𝑟 around 𝑧0 is the set of points 𝑧 with |𝑧 − 𝑧0| < 𝑟, i.e., all points within distance 𝑟 of 

𝑧0. The open deleted disk of radius 𝑟 around 𝑧0 is the set of points 𝑧 with 0 < |𝑧 − 𝑧0| < 𝑟. That is, we remove the 

center 𝑧0 from the open disk. 

 

 

 

 

 

Left: an open disk around 𝑧0;  right: a deleted open disk around 𝑧0 

A deleted disk is also called a punctured disk. 

Definition: 1.4 

An open region in the complex plane is a set 𝐴 with the property that every point in 𝐴 can be surrounded by an 

open disk that lies entirely in 𝐴. We will often drop the word open and simply call 𝐴 a region. In the figure below, the 

set 𝐴 on the left is an open region because for every point in 𝐴 we can draw a little circle around the point that is 

completely in 𝐴. (The dashed boundary line indicates that the boundary of 𝐴 is not part of 𝐴). In contrast, the set 𝐵 is 

not an open region. Notice the point 𝑧 shown is on the boundary, so every disk around 𝑧 contains points outside 𝐵. 

 

 

   

 

Left: an open region 𝐴;   right: 𝐵 is not an open region 

Definition: 1.4 

If 𝑓(𝑧) is defined on a deleted disk around 𝑧0 then we say  lim
𝑧→𝑧0

𝑓(𝑧) = 𝑤0 

if 𝑓(𝑧) goes to 𝑤0 no matter what direction 𝑧 approaches 𝑧0.  The figure below shows several sequences of points that 

approach 𝑧0. If lim
𝑧→𝑧0

𝑓(𝑧) = 𝑤0 then 𝑓(𝑧) must go to 𝑤0 along each of these sequences. 

 

 

 

 

 

 

Sequences going to 𝑧0 are mapped to sequences going to 𝑤0. 

Definition: 1.6 

 Many functions have obvious limits. For example  

lim
𝑧→2

𝑧2 = 4  and  lim
𝑧→2

(𝑧2 + 2)/(𝑧3 + 1) = 6/9 

Here is an example where the limit doestn’t exist because different sequences give different limits. 

Example: 1.7 

(No limit) Show that lim
𝑧→0

𝑧

�̅�
= lim

𝑧→0

𝑥+𝑖𝑦

𝑥−𝑖𝑦
 doest not exist 

Answer: 

 On the real axis we have 
𝑧

�̅�
=

𝑥

𝑥
= 1, so the limit as 𝑧 → 0 along the real axis is 1.  

On the imaginary axis we have 
𝑧

�̅�
=

𝑖𝑦

−𝑖𝑦
= −1, so the limit as 𝑧 → 0 along the imaginary axis is −1. Since the two limits 

do not agree the limit as 𝑧 → 0 does not exist. 

1.5 Properties of limits 

We have the usual properties of limits. Suppose  

lim
𝑧→𝑧0

𝑓(𝑧) = 𝑤1  and   lim
𝑧→𝑧0

𝑔(𝑧) = 𝑤2 
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Then 

 lim
𝑧→𝑧0

𝑓(𝑧) + 𝑔(𝑧) = 𝑤1 + 𝑤2 

 lim
𝑧→𝑧0

𝑓(𝑧) 𝑔(𝑧) = 𝑤1. 𝑤2 

 If 𝑤2 ≠ 0 then lim
𝑧→𝑧0

𝑓(𝑧) \𝑔(𝑧) = 𝑤1\𝑤2 

 If ℎ(𝑧) is continuous and defined on a neighborhood of 𝑤1 then lim
𝑧→𝑧0

ℎ(𝑓(𝑧)) = ℎ(𝑤1) 

(Note: we will give the official definition of continuity in the next section) 

We won’t give a proof of these properties. As a challenge, you can try to supply it using the formal definition of limits 

given in the appendix. 

We can restate the definition of limit in terms of functions of (𝑥, 𝑦) 

Write 𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). Then 

lim
𝑧→𝑧0

𝑓(𝑧) = 𝑤0 iff {
lim

𝑃→𝑃0

𝑢(𝑥, 𝑦) = 𝑢0

lim
𝑃→𝑃0

𝑣(𝑥, 𝑦) = 𝑣0
 

Where 𝑃 = (𝑥, 𝑦), 𝑃0 = (𝑥0, 𝑦0), 𝑤0 = 𝑢0 + 𝑖𝑣0. 

1.6  Continuous functions 

Definition: 1.8 

If the function 𝑓(𝑧) is defined on an open disk around 𝑧0 and lim
𝑧→𝑧0

𝑓(𝑧) = 𝑓(𝑧0) then we say 𝑓 is continuous at 

𝑧0. 

If 𝑓 is defined on an open region 𝐴 then the phrase ‘𝑓 is continuous on 𝐴’ means that 𝑓 is continuous at every 

point in 𝐴. 

As usual, we can rephrase this in terms of functions of (𝑥, 𝑦). 

Example: 1.9 

(i) A polynomial 𝑃(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛𝑧𝑛 is continuous on the entire plane. Reason: it is clear 

that each power (𝑥 + 𝑖𝑦)𝑘 is continuous as a function of (𝑥, 𝑦). 

(ii) The exponential function is continuous on the entire plane. Reason: 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥 cos(𝑦) + 𝑖𝑒𝑥 sin(𝑦). 

So the both the real and imaginary parts are clearly continuous as a function of (𝑥, 𝑦). 

 

1.7 Properties of continuous functions 

Since continuity is defined in terms of limits, we have the following properties of continuous functions. 

Suppose 𝑓(𝑧) and 𝑔(𝑧) are continuous on a region 𝐴. Then 

 𝑓(𝑧) + 𝑔(𝑧) is continuous on 𝐴. 

 𝑓(𝑧)𝑔(𝑧) is continuous on 𝐴. 

 𝑓(𝑧)\𝑔(𝑧) is continuous on 𝐴 except (possibly) at points where 𝑔(𝑧) = 0. 

 If ℎ is continuous on 𝑓(𝐴) then ℎ(𝑓(𝑥)) is continuous on 𝐴. 

Using these properties we can claim continuity for each of the following functions: 

 𝑒𝑥2
 

 cos(𝑧) = (𝑒𝑖𝑧 + 𝑒−𝑖𝑧)/2 

 If 𝑃(𝑧) and 𝑄(𝑧) are polynomials then 𝑃(𝑧)/𝑄(𝑧) is continuous except at roots of 𝑄(𝑧). 

1.8 The point at infinity 

By definition the extended complex plane = 𝐶 ∪ {∞}. That is, we have one point at infinity to be thought of in a 

submitting sense  described as follows. 

A sequence of points {𝑥𝑛} goes to infinity if |𝑧𝑛| goes to infinity. This “point a infinity” is approached in any direction 

we go. All of the sequences shown in the figure below are growing, so they all go to the (same) “point at infinity”. 
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Various sequences all going to infinity 

 

If we draw a large circle around 0 in the plane, then we call the region outside this circle a neighborhood of infinity. 

 

 

 

 

 

 

 

 

The shaded region outside of radius 𝑅 is a neighborhood of infinity. 

 

2. CAUCHY  RIEMANN EQUATION 

 The Cauchy-Riemann equations are our first consequences of the fact that the limit defining 𝑓(𝑧) must be the 

same no matter which direction you approach 𝑧 from. The Cauchy-Riemann equations will be one of the most important 

tools in our toolbox. 

2.1 Partial derivatives as limits 

Before getting to the Cauchy-Riemann equations we remind you about partial derivatives. If 𝑢(𝑥, 𝑦) is a function of two 

variables then the partial derivatives of 𝑢 are defined as  

𝜕𝑢

𝜕𝑥
(𝑥, 𝑦) = lim

∆𝑥→0

𝑢(𝑥 + ∆𝑥, 𝑦) − 𝑢(𝑥, 𝑦)

∆𝑥
 

i.e., the derivative of 𝑢 holding 𝑦 constant. 

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦) = lim

∆𝑦→0

𝑢(𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦)

∆𝑦
 

i.e., the derivative of 𝑢 holding 𝑥 constant. 

 

2.2 The Cauchy-Riemann equations 

The Cauchy-Riemann equations use the partial derivatives of 𝑢 and 𝑣 to do two things: first, check if 𝑓 has a 

complex derivative and second, how to compute that derivative. 

 We start by stating the equations as a theorem. 

Theorem: 2.1 

(Cauchy-Riemann equations) If 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is differentiable then  

𝑓′(𝑧) =
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
− 𝑖

𝜕𝑢

𝜕𝑦
 

In particular,      
𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 and 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

This last set of partial differential equations is what is usually meant by the Cauchy-Riemann equations. 

Here is the short form of the Cauchy-Riemann equations:  𝑢𝑥 = 𝑣𝑦 , 𝑢𝑦 = −𝑣𝑥  

Proof: 

Let’s suppose that 𝑓(𝑧) is differentiable in some region 𝐴 and 

𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 
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We’ll compute 𝑓′(𝑧) by approaching 𝑧 first from the horizontal direction and then from the vertical direction. We’ll use 

the formula 

𝑓′(𝑧) = lim
∆𝑧→0

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
 

Where ∆𝑧 = ∆𝑥 + 𝑖∆𝑦.  Horizontal direction : ∆𝑦 = 0, ∆𝑧 = ∆𝑥 

𝑓′(𝑧) = lim
∆𝑧→0

𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧)

∆𝑧
 

           = lim
∆𝑥→0

𝑓(𝑥+∆𝑥+𝑖𝑦)−𝑓(𝑥+𝑖𝑦)

∆𝑥
      = lim

∆𝑥→0

(𝑢(𝑥+∆𝑥,𝑦)+𝑖𝑣(𝑥+∆𝑥,𝑦))−(𝑢(𝑥,𝑦)+𝑖𝑣(𝑥,𝑦))

∆𝑥
 

         = lim
∆𝑥→0

𝑢(𝑥+∆𝑥,𝑦)−𝑢(𝑥,𝑦)

∆𝑥
+ 𝑖

𝑣(𝑥+∆𝑥,𝑦)−𝑣(𝑥,𝑦)

∆𝑥
     =

𝜕𝑢

𝜕𝑥
(𝑥, 𝑦) + 𝑖

𝜕𝑣

𝜕𝑥
(𝑥, 𝑦) 

Vertical direction: ∆𝑥 = 0, ∆𝑧 = 𝑖∆𝑦 (We’ll do this one a little faster) 

𝑓′(𝑧) = lim
∆𝑧→0

𝑓(𝑧+∆𝑧)−𝑓(𝑧)

∆𝑧
   = lim

∆𝑦→0

(𝑢(𝑥,𝑦+∆𝑦)+𝑖𝑣(𝑥,𝑦+∆𝑦))−(𝑢(𝑥,𝑦)+𝑖𝑣(𝑥,𝑦))

𝑖∆𝑦
    = lim

∆𝑦→0

𝑢(𝑥,𝑦+∆𝑦)−𝑢(𝑥,𝑦)

𝑖∆𝑦
+ 𝑖

𝑣(𝑥,𝑦−∆𝑦)−𝑣(𝑥,𝑦)

𝑖∆𝑦
  

  =
1

𝑖

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦) +

𝜕𝑣

𝜕𝑦
(𝑥, 𝑦)          =

𝜕𝑢

𝜕𝑦
(𝑥, 𝑦) − 𝑖

𝜕𝑣

𝜕𝑦
(𝑥, 𝑦) 

We have found two different represented of 𝑓′(𝑧) in terms of the partials of 𝑢 and 𝑣.if put them together we have the 

Cauchy-Riemann equations: 

𝑓′(𝑧) =
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
− 𝑖

𝜕𝑢

𝜕𝑦
⟹

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
, and −

𝜕𝑢

𝜕𝑦
=

𝜕𝑣

𝜕𝑥
, QED 

It turns out that the converse is true and will be very useful to us. 

Theorem: 2.2 

Consider the function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) defined on a region 𝐴. If 𝑢 and 𝑣 satisfy the Cauchy-Riemann 

equations and have continuous partials then 𝑓(𝑧) is differentiable on 𝐴.The proof of this is a tricky exercise in analysis. 

It is somewhat beyond the scope of this class, so we will skip it. With a little effort you should be able to grasp it. 

Theorem: 2.3 

If 𝑓(𝑧) is differentiable on a disk and 𝑓′(𝑧) = 0 on the disk then 𝑓(𝑧) is constant. 

Proof: 

Since 𝑓 is differentiable and 𝑓′(𝑧) ≡ 0, the Cauchy-Riemann equations show that  

𝑢𝑥(𝑥, 𝑦) = 𝑢𝑦(𝑥, 𝑦) = 𝑣𝑥(𝑥, 𝑦) = 𝑣𝑦(𝑥, 𝑦) = 0 

We know from multivariable calculus that a function of (𝑥, 𝑦) with both partials identically zero is constant. Thus 𝑢 and 

𝑣 are constant, and therefore so is 𝑓. 

 

3. ANALYTIC FUNCTION OF COMPLEX ORDER DEFINED BY NEW  DIFFERENTIAL OPERATOR 

 Let 𝐻 be the class of function analytic in 𝑈: {𝑧: |𝑧| < 1} and let 𝐻[𝑎, 𝑛] be the subclasses of 𝐻 consisting of 

functions of the form 𝑓(𝑧) = 𝑎 + 𝑎𝑛𝑧𝑛 + 𝑎𝑛+1𝑧𝑛+1 + 𝑎𝑛+2𝑧𝑛+2 + ⋯. Let 𝐴 be the subclasses of 𝐻 consisting of 

functions of the form 𝑓(𝑧) = 𝑧 + 𝑎2𝑧2 + 𝑎3𝑧3 + ⋯ or 

𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑘𝑧𝑘

∞

𝑘=2

                                                                (1) 

Let 𝐴(𝑛) denote the class of functions 𝑓(𝑧) of the form 

𝑓(𝑧) = 𝑧 − ∑ 𝑎𝑘+1𝑧𝑘+1

∞

𝑘=𝑛

                                                          (2) 

𝑎𝑘+1 ≥ 0, 𝑛 ∈ {1,2,3, … … … … … . } 

Which are analytic in the open unit disk 𝑈 = {𝑧: |𝑧| < 1}. 

Next, we define (𝑛, 𝛿)-neighbourhood for the functions belonging to class 𝐴(𝑛) and also for identity function. 

Definition: 3.1 

((𝑛, 𝛿)-neighbourhood). By  following the earlier inverstigations by Goodman and Ruscheweyh, for and 𝑓(𝑧) ∈ 𝐴(𝑛) 

and 𝛿 ≥ 0, we define the (𝑛, 𝛿)-neighbourhood of 𝑓 by 

𝑁𝑛,𝛿(𝑓) = {𝑔 ∈ 𝐴(𝑛): 𝑔(𝑧) = 𝑧 − ∑ 𝑏𝑘+1𝑧𝑘+1

∞

𝑘=𝑛

 𝑎𝑛𝑑 ∑(𝑘 + 1)|𝑎𝑘+1 − 𝑏𝑘+1| ≤ 𝛿

∞

𝑘=𝑛

}                           (3) 
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In particular for the identity function 𝑒(𝑧) = 𝑧 we have 

𝑁𝑛,𝛿(𝑒) = {𝑔 ∈ 𝐴(𝑛): 𝑔(𝑧) = 𝑧 − ∑ 𝑏𝑘+1𝑧𝑘+1

∞

𝑘=𝑛

 𝑎𝑛𝑑 ∑(𝑘 + 1)|𝑏𝑘+1| ≤ 𝛿

∞

𝑘=𝑛

}                                          (4) 

We say that the function 𝑓(𝑧) ∈ 𝐴(𝑛) is said to be starlike functions of complex order 𝛾 or 𝑓(𝑧) ∈ 𝑆𝑛
∗(𝛾) if it satisfies 

the inequality 

ℜ (1 +
1

𝛾
(

𝑧(𝑓′(𝑧))

𝑓(𝑧)
− 1)) > 0, 𝑧 ∈ 𝑈, 𝛾 ∈ 𝐶\{0}                                 (5)     

Furthermore, a function 𝑓(𝑧) ∈ 𝐴(𝑛) is said to be convex functions of complex order 𝛾 on 𝑓(𝑍) ∈ 𝐶𝑛
∗(𝛾) it is satisfies 

the inequality 

ℜ (1 +
1

𝛾
(

𝑧(𝑓′′(𝑧))

𝑓′(𝑧)
)) > 0, 𝑧 ∈ 𝑈, 𝛾 ∈ 𝐶\{0}                                (6)     

The class 𝑆𝑛
∗(𝛾) and 𝐶𝑛

∗(𝛾) are essentially from the classes of starlike and convex functions of complex order, which 

were considered by Nasr and Aouf and Wiatrowsky respectively. Let 𝑆𝑛(𝛾, 𝜆, 𝛽) denote the subclass of 𝐴(𝑛) consisting 

of functions 𝑓(𝑧) which satisfy the following inequality: 

|
1

𝛾
(

𝜆𝑧3𝑓′′′(𝑧) + (1 + 2𝜆)𝑧2𝑓′′(𝑧) + 𝑧𝑓′(𝑧)

𝜆𝑧2𝑓′′(𝑧) + 𝑧𝑓′(𝑧)
− 1)| < 𝛽 

where 𝑧 ∈ 𝑈, 𝛾 ∈ 𝐶\{0}, 0 ≤ 𝜆 ≤ 1, 0 < 𝛽 ≤ 1. 

Let 𝑅𝑛(𝛾, 𝜆, 𝛽) denote the subclass of  𝐴(𝑛) consisting of functions 𝑓(𝑧) which satisfy the following inequality 

|
1

𝛾
( 𝜆𝑧2𝑓′′′(𝑧) + (1 + 2𝜆)𝑧𝑓′′(𝑧) + 𝑓′(𝑧) − 1)| < 𝛽 

where 𝑧 ∈ 𝑈, 𝛾 ∈ 𝐶\{0}, 0 ≤ 𝜆 ≤ 1, 0 < 𝛽 ≤ 1. 

The class 𝑆𝑛(𝛾, 𝜆, 𝛽) was studied by Kamali and Akbulut. Since 𝐴 is the class of functions 𝑓(𝑧) of the form 𝑓(𝑧) = 𝑧 +

∑ 𝑎𝑘𝑧𝑘∞
𝑘=2  which are analytic in the open unit disk 𝑈 = {𝑧: |𝑧| < 1}. 

For a function 𝑓 in 𝐴 we define the following differential operator: 

𝐷𝜆,𝑣,𝜚
0 (𝛼, 𝜔)𝑓(𝑧) = 𝑓(𝑧), 

𝐷𝜆,𝑣,𝜚
1 (𝛼, 𝜔)𝑓(𝑧) = (

𝑣 − (𝜚 + 𝜆)𝜔𝛼

𝑣
) 𝑓(𝑧) + (

(𝜚 + 𝜆)𝜔𝛼

𝑣
) 𝑧𝑓′(𝑧),               (7) 

𝐷𝜆,𝑣,𝜚
2 (𝛼, 𝜔)𝑓(𝑧) = 𝐷 (𝐷𝜆,𝑣,𝜚

1 (𝛼, 𝜔)𝑓(𝑧)), 

𝐷𝜆,𝑣,𝜚
𝑚 (𝛼, 𝜔)𝑓(𝑧) = 𝐷 (𝐷𝜆,𝑣,𝜚

𝑚−1(𝛼, 𝜔)𝑓(𝑧)). 

If 𝑓 given by (1), then from (7) we define the following differential operator 

𝐷𝜆,𝑣,𝜚
𝑚 (𝛼, 𝜔)𝑓(𝑧) = 𝑧 + ∑ (

𝑣 + (𝑘 − 1)(𝜚 + 𝜆)𝜔𝛼

𝑣
)

𝑚∞

𝑘=2

𝑎𝑘𝑧𝑘                   (8) 

Where 𝑓(𝑧) ∈ 𝐴, 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, 𝑚 ∈ 𝑁0 

This operator generalizes certain differential operators such as: 

(1) 𝑣 = 1, 𝜚 = 0 we get 

𝐷𝜆,1,0
𝑚 (𝛼, 𝜔)𝑓(𝑧) = 𝑧 + ∑(1 + (𝑘 − 1)𝜆𝑤𝛼)𝑚

∞

𝑘=2

𝑎𝑘𝑧𝑘 

of Darus and Faisal 

(2) 𝛼 = 𝜔 = 𝑣 = 1, 𝜚 = 0 we get 

𝐷𝜆,1,0
𝑚 (1,1)𝑓(𝑧) = 𝑧 + ∑(1 + 𝜆(𝑘 − 1))𝑚

∞

𝑘=2

𝑎𝑘𝑧𝑘 

of A1-Oboudi 

(3) 𝛼 = 𝜔 = 𝑣 = 𝜆 = 1, 𝜚 = 0 we get 
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𝐷1,1,0
𝑚 (1,1)𝑓(𝑧) = 𝑧 + ∑(𝑘)𝑚

∞

𝑘=2

𝑎𝑘𝑧𝑘 

of Salagean. 

(4) 𝛼 = 𝜔 = 𝑣 = 1, 𝜆 = 2, 𝜚 = 0, we get 

𝐷2,1,0
𝑚 (1,1)𝑓(𝑧) = 𝑧 + ∑ (

𝑘 + 1

2
)

𝑚∞

𝑘=2

𝑎𝑘𝑧𝑘 

of Uralegaddi and Somanatha. 

By using the same process, we can write the following equalities for the function 𝑓(𝑧) belonging to the class 𝐴(𝑧), 

𝐷𝜆,𝑣,𝜚
0 (𝛼, 𝜔)𝑓(𝑧) = 𝑓(𝑧) 

𝐷𝜆,𝑣,𝜚
1 (𝛼, 𝜔)𝑓(𝑧) = (

𝑣 − (𝜚 + 𝜆)𝜔𝛼

𝑣
) 𝑓(𝑧) + (

(𝜚 + 𝜆)𝜔𝛼

𝑣
) 𝑧𝑓′(𝑧),               (9) 

𝐷𝜆,𝑣,𝜚
2 (𝛼, 𝜔)𝑓(𝑧) = 𝐷 (𝐷𝜆,𝑣,𝜚

1 (𝛼, 𝜔)𝑓(𝑧)), 

𝐷𝜆,𝑣,𝜚
℧ (𝛼, 𝜔)𝑓(𝑧) = 𝐷 (𝐷𝜆,𝑣,𝜚

℧−1(𝛼, 𝜔)𝑓(𝑧)). 

If 𝑓 given by (2), then from (9) we define the following differential operator 

𝐷𝜆,𝑣,𝜚
℧ (𝛼, 𝜔)𝑓(𝑧) = 𝑧 − ∑ (

𝑣 + 𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
)

℧∞

𝑘=𝑛

𝑎𝑘+1𝑧𝑘+1                   (10) 

where 𝑓 ∈ 𝐴(𝑛), 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0 

Finally, in the term of the generalized Salagean differential operator, let 𝑆𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧) denote the subclass of 

𝐴(𝑛) consisting of the functions 𝑓(𝑧) which satisfy the inequality 

|
1

𝛾
(

(𝜇)𝑧 (𝐷𝜆,𝑣,𝜚
℧+3(𝛼, 𝜔)𝑓(𝑧))

′
+ (1 − 𝜇)𝑧 (𝐷𝜆,𝑣,𝜚

℧+2(𝛼, 𝜔)𝑓(𝑧))
′

(𝜇)𝑧 (𝐷𝜆,𝑣,𝜚
℧+2(𝛼, 𝜔)𝑓(𝑧))

′
+ (1 − 𝜇)𝑧 (𝐷𝜆,𝑣,𝜚

℧+1(𝛼, 𝜔)𝑓(𝑧))
′ − 1)| < 𝛽         (11) 

where 𝑓 ∈ 𝐴(𝑛), 𝛾 ∈ 𝐶\{0}, 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼, 𝜇 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈. Also, let 𝑅𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧) denote the subclass 

of 𝐴(𝑛) consisting of the functions 𝑓(𝑧) which satisfy the inequality 

|
1

𝛾
(𝜇𝑧 (𝐷𝜆,𝑣,𝜚

℧+3(𝛼, 𝜔)𝑓(𝑧))
′

+ (1 − 𝜇)𝑧 (𝐷𝜆,𝑣,𝜚
℧+2(𝛼, 𝜔)𝑓(𝑧))

′
− 1)| < 𝛽         (12) 

where 𝑓 ∈ 𝐴(𝑛), 𝛾 ∈ 𝐶\{0}, 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼, 𝜇 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈. 

Our main work here is to investigate the (𝑛, 𝛿)- neighborhood of the above said classes i.e. 𝑆𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧) and 

𝑅𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧). Similar work has been seen for different subclasses done by other authors and of course many 

others. 

3.2 Inclusion relations involving (𝒏, 𝜹)- neighborhood 

Lemma: 3.2 

Let the function 𝑓(𝑧) ∈ 𝐴(𝑛) be defined by (2), then 𝑓(𝑧) is in the class 𝑆𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧, 𝜔) if and only if  

∑ (
𝑣 + 𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
)

℧+1∞

𝑘=𝑛

(
𝑣 + 𝜇𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
) × (𝑘 + 1) (

𝛽|𝛾|𝑣 + 𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
) 𝑎𝑘+1 ≤ 𝛽|𝛾|,                               (13) 

where 𝑓 ∈ 𝐴(𝑛), 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈. 

Proof: 

Let 𝑓(𝑧) ∈ 𝑆𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧), then from (11) we have 

|
1

𝛾
(

(𝜇)𝑧 (𝐷𝜆
℧+3(𝑣, 𝛼, 𝜔)𝑓(𝑧))

′
+ (1 − 𝜇)𝑧 (𝐷𝜆

℧+2(𝑣, 𝛼, 𝜔)𝑓(𝑧))
′

(𝜇)𝑧 (𝐷𝜆
℧+2(𝑣, 𝛼, 𝜔)𝑓(𝑧))

′
+ (1 − 𝜇)𝑧 (𝐷𝜆

℧+1(𝑣, 𝛼, 𝜔)𝑓(𝑧))
′ − 1)| < 𝛽, 

where 𝑓 ∈ 𝐴(𝑛), 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0 or 

ℜ (
(𝜇)𝑧 (𝐷𝜆

℧+3(𝑣, 𝛼, 𝜔)𝑓(𝑧))
′

+ (1 − 𝜇)𝑧 (𝐷𝜆
℧+2(𝑣, 𝛼, 𝜔)𝑓(𝑧))

′

(𝜇)𝑧 (𝐷𝜆
℧+2(𝑣, 𝛼, 𝜔)𝑓(𝑧))

′
+ (1 − 𝜇)𝑧 (𝐷𝜆

℧+1(𝑣, 𝛼, 𝜔)𝑓(𝑧))
′ − 1) > −𝛽|𝛾|, 
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where 𝑓 ∈ 𝐴(𝑛), 𝛾 ∈ 𝐶\{0}, 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈, after taking the limit when𝑧 → 1 and simplifying, we 

get 

∑ (
𝑣 + 𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
)

℧+1∞

𝑘=𝑛

(
𝑣 + 𝜇𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
) × (𝑘 + 1) (

𝛽|𝛾|𝑣 + 𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
) 𝑎𝑘+1 ≤ 𝛽|𝛾|, 

where 𝑓 ∈ 𝐴(𝑛), 𝛾 ∈ 𝐶\{0}, 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈. 

Conversely, by applying the hypothesis (13) and letting |𝑧| = 1 we get 

|
(𝜇)𝑧 (𝐷𝜆,𝑣,𝜚

℧+3(𝛼, 𝜔)𝑓(𝑧))
′

+ (1 − 𝜇)𝑧 (𝐷𝜆,𝑣,𝜚
℧+2(𝛼, 𝜔)𝑓(𝑧))

′

(𝜇)𝑧 (𝐷𝜆,𝑣,𝜚
℧+2(𝛼, 𝜔)𝑓(𝑧))

′
+ (1 − 𝜇)𝑧 (𝐷𝜆,𝑣,𝜚

℧+1(𝛼, 𝜔)𝑓(𝑧))
′ − 1| 

= |
− ∑ 𝑘(𝜚 + 𝜆)𝜔𝛼 (

𝑣+𝜇𝑘(𝜚+𝜆)𝜔𝛼

𝑣
) (𝑘 + 1) (

𝑣+𝑘(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1

𝑎𝑘+1𝑧𝑘+1∞
𝑘=𝑛

𝑧 − ∑ (
𝑣+𝜇𝑘(𝜚+𝜆)𝜔𝛼

𝑣
) (𝑘 + 1) (

𝑣+𝑘(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
𝑎𝑘+1𝑧𝑘+1∞

𝑘=𝑛

| 

≤ |
𝛽|𝛾| [1 − ∑ (

𝑣+𝜇𝑘(𝜚+𝜆)𝜔𝛼

𝑣
) (𝑘 + 1) (

𝑣+𝑘(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1

𝑎𝑘+1
∞
𝑘=𝑛 ]

1 − ∑ (
𝑣+𝜇𝑘(𝜚+𝜆)𝜔𝛼

𝑣
) (𝑘 + 1) (

𝑣+𝑘(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
𝑎𝑘+1𝑧𝑘+1∞

𝑘=𝑛

| = 𝛽|𝛾| 

where 𝑓 ∈ 𝐴(𝑛), 𝛾 ∈ 𝐶\{0}, 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈. 

This implies that 𝑓(𝑧) ∈ 𝑆𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧, 𝜔). 

Lemma: 3.3 

Let the function 𝑓(𝑧) ∈ 𝐴(𝑛) be defined by (2), then 𝑓(𝑧) is in the class 𝑅𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧, 𝜔) if and only if 

∑ (
𝑣 + 𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
)

℧+2∞

𝑘=𝑛

(
2𝑣 + 𝜇𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
) (𝑘 + 1)𝑎𝑘+1 ≤ 𝛽|𝛾|          (14) 

where 𝑓 ∈ 𝐴(𝑛), 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈. 

Proof: 

Same as Lemma 3.2 

Theorem: 3.5 

Let 𝑓(𝑧) ∈ 𝐴(𝑛), then 𝑆𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧) ⊂ 𝑁𝑛,𝛿(𝑒) if 

𝛿 =
𝛽|𝛾|

(
𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
(

𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (𝑛 + 1) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

                     (15) 

where  𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈 

Proof: 

Let 𝑓(𝑧) ∈ 𝑆𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧), then from (13) we get 

∑ (
𝑣 + 𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
)

℧+1∞

𝑘=𝑛

(
𝑣 + 𝜇𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
) × (𝑘 + 1) (

𝛽|𝛾|𝑣 + 𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
) 𝑎𝑘+1 ≤ 𝛽|𝛾|, 

where 𝑓 ∈ 𝐴(𝑛), 𝛾 ∈ 𝐶\{0}, 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈 or 

(
𝑣 + 𝑛(𝜚 + 𝜆)𝜔𝛼

𝑣
)

℧+1

(
𝑣 + 𝜇𝑛(𝜚 + 𝜆)𝜔𝛼

𝑣
) (𝑛 + 1) × (

𝛽|𝛾|𝑣 + 𝑛(𝜚 + 𝜆)𝜔𝛼

𝑣
) ∑|𝑎𝑘+1|

∞

𝑘=𝑛

≤ 𝛽|𝛾| 

where 𝑓 ∈ 𝐴(𝑛), 𝛾 ∈ 𝐶\{0}, 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈. This implies that 

∑|𝑎𝑘+1|

∞

𝑘=𝑛

≤
𝛽|𝛾|

(
𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
(

𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (𝑛 + 1) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

        (16) 

where 𝑓 ∈ 𝐴(𝑛), 𝛾 ∈ 𝐶\{0}, 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈. By using (13) we have  

∑ (
𝑣 + 𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
)

℧+1∞

𝑘=𝑛

(
𝑣 + 𝜇𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
) × (𝑘 + 1) (

𝛽|𝛾|𝑣 + 1 − 1 + 𝑘(𝜚 + 𝜆)𝜔𝛼

𝑣
) 𝑎𝑘+1 ≤ 𝛽|𝛾|, 

where 𝑓 ∈ 𝐴(𝑛), 𝛾 ∈ 𝐶\{0}, 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, therefore 
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(
𝑣 + 𝑛(𝜚 + 𝜆)𝜔𝛼

𝑣
)

℧+1

(
𝑣 + 𝜇𝑛(𝜚 + 𝜆)𝜔𝛼

𝑣
) (

𝑣 + 𝑛(𝜚 + 𝜆)𝜔𝛼

𝑣
) ∑ 𝑎𝑘+1

∞

𝑘=𝑛

 

≤ 𝛽|𝛾| + (1 − 𝛽|𝛾|) (
𝑣 + 𝑛(𝜚 + 𝜆)𝜔𝛼

𝑣
)

℧+1

(
𝑣 + 𝜇𝑛(𝜚 + 𝜆)𝜔𝛼

𝑣
) (𝑛 + 1) ∑ 𝑎𝑘+1

∞

𝑘=𝑛

 

≤ 𝛽|𝛾| + (1 − 𝛽|𝛾|) (
𝑣 + 𝑛(𝜚 + 𝜆)𝜔𝛼

𝑣
)

℧+1

(
𝑣 + 𝜇𝑛(𝜚 + 𝜆)𝜔𝛼

𝑣
) (𝑛 + 1)

×
𝛽|𝛾|

(
𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
(

𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (𝑛 + 1) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

 

    ≤
𝛽|𝛾| (

𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

(
𝑣𝛽|𝛾|+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

 

where 𝑓 ∈ 𝐴(𝑛), 𝑣 ≠ 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈. Hence 

∑(𝑘 + 1)𝑎𝑘+1

∞

𝑘=𝑛

≤
𝛽|𝛾|

(
𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
(

𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

= 𝛿. 

Hence by using (1), we conclude that 𝑓(𝑧) ∈ 𝑁𝑛,𝛿(𝑒), this implies that 

𝑆𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧) ∈ 𝑁𝑛,𝛿(𝑒) 

Using the same technique of the proof of the Theorem 3.5, we proved the following theorem. 

Theorem: 3.6 

Let 𝑓(𝑧) ∈ 𝐴(𝑛), then 𝑅𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧) ⊂ 𝑁𝑛,𝛿(𝑒) if 

𝛿 =
𝛽|𝛾|

(
𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
(

2𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) 

                                   (17) 

where 𝑓 ∈ 𝐴(𝑛), 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈. 

Proof: 

The proof for this theorem similar to that given above and we omit it. 

 

3.3 Neighbourhood properties of 𝑺𝒏,𝝁
𝑻 (𝜸, 𝜶, 𝜷, 𝝀, 𝒗, 𝝔, ℧) and 𝑹𝒏,𝝁

𝑻 (𝜸, 𝜶, 𝜷, 𝝀, 𝒗, 𝝔, ℧) 

Theorem: 3.7 

Let 𝑔(𝑧) ∈ 𝑆𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧) and 

𝒯 = 1 −
𝛿 (

𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1

(
𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

(
𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
(

𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) − 𝛽|𝛾|

              (19) 

where 𝑓 ∈ 𝐴(𝑛), 𝑣 > 0, 𝜚, 𝜔, 𝜆, 𝛼 ≥ 0, ℧ ∈ 𝑁0, 𝑧 ∈ 𝑈, then 

𝑁𝑛,𝛿(𝑔) ⊂ 𝑆𝑛,𝜇
𝒯 (𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧). 

Proof: 

Let 𝑓 ∈ 𝑁𝑛,𝛿(𝑔), then from (3) we can write that 

∑(𝑘 + 1)|𝑎𝑘+1 − 𝑏𝑘+1|

∞

𝑘=𝑛

≤ 𝛿 

This implies that 

∑|𝑎𝑘+1 − 𝑏𝑘+1|

∞

𝑘=𝑛

≤
𝛿

𝑛 + 1
 

Since it is given that 𝑔(𝑧) ∈ 𝑆𝑛,𝜇(𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧), so from (13) we can write that 

∑ 𝑏𝑘+1

∞

𝑘=𝑛

≤
𝛽|𝛾|

(
𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
(

𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (𝑛 + 1) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)
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Now  

|
𝑓(𝑧)

𝑔(𝑧)
− 1| <

∑ |𝑎𝑘+1 − 𝑏𝑘+1|∞
𝑘=𝑛

1 − ∑ 𝑏𝑘+1
∞
𝑘=𝑛

 

≤
𝛿

𝑛 + 1
.

(
𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1

(
𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (𝑛 + 1) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

(
𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
(

𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (𝑛 + 1) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) − 𝛽|𝛾|

 

=
𝛿 (

𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1

(
𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

(
𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
)

℧+1
(

𝑣+𝜇𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) (

𝛽|𝛾|𝑣+𝑛(𝜚+𝜆)𝜔𝛼

𝑣
) − 𝛽|𝛾|

 

= 1 − 𝒯. 

This implies that 𝑓 ∈ 𝑆𝑛,𝜇
𝒯 (𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧), therefore 

𝑁𝑛,𝛿(𝑔) ⊂ 𝑆𝑛,𝜇
𝒯 (𝛾, 𝛼, 𝛽, 𝜆, 𝑣, 𝜚, ℧) 

 

4. A NEW DIFFERENTIAL OPERATOR OF ANALYTIC FUNCTIONS INVOLVING  

           BINOMIAL SERIES 

 Let ℋ be the class of functions analytic in 𝒰 ≔ {𝑧: |𝑧| < 1} and ℋ(𝑎, 𝑛) be the subclass of ℋ consisting of 

functions of the form 𝑓(𝑧) = 𝑎 + 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + ⋯. Let 𝒜 be the subclass of ℋ consisting of functions of the 

form 

𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑛𝑧𝑛

∞

𝑛=2

                                                  (1)   

Let 𝑝, ℎ ∈ ℋ and let 𝜙(𝑟, 𝑠, 𝑡; 𝑧): ℂ3 × 𝒰 → ℂ. If 𝑝 and 𝜙(𝑝(𝑧), 𝑧𝑝′(𝑧), 𝑧2𝑝′′′(𝑧): 𝑧) are univalent if 𝑝 satisfies 

the second order superordination 

ℎ(𝑧) ≺ 𝜙(𝑝(𝑧), 𝑧𝑝′(𝑧), 𝑧2𝑝′′(𝑧): 𝑧)                                          (2)    

then 𝑝 is a solution of the differential superordination(2). (If 𝑓 is subordinate to 𝐹, then 𝐹 is superordinate to 𝑓.) An 

analytic function 𝑞 is called a subordinate if 𝑞 ≺ 𝑝 for all 𝑝 satisfying (2). A univalent subordinant �̃� that satisfies 𝑞 ≺ �̃� 

for all subordinants 𝑞 of (2) is said to be the best subordinant. Miller and Mocanu obtained conditions on ℎ, 𝑞 and 𝜙 for 

which the following implication holds: 

ℎ(𝑧) ≺ 𝜙(𝑝(𝑧), 𝑧𝑝′(𝑧), 𝑧2𝑝′′(𝑧): 𝑧) ⟹ 𝑞(𝑧) ≺ 𝑝(𝑧) 

Using the results of Miller and Mocanu, Bulboaca considered certain classes of first order differential 

superordinations as well as superordination-preserving integral operators. Shanmugan et al. obtained sufficient 

conditions for a normalized analytic function 𝑓(𝑧) to satisfy 

𝑞1(𝑧) ≺
𝑓(𝑧)

𝑧𝑓′(𝑧)
≺ 𝑞2(𝑧)  and 𝑞1(𝑧) ≺

𝑧2𝑓′(𝑧)

{𝑓′(𝑧)}2
≺ 𝑞2(𝑧) 

when 𝑞1 and 𝑞2 are given univalent functions in 𝒰 with 𝑞1(0) = 1 and 𝑞2(0) = 1 . 

For a function 𝑓 in 𝒜, and making use of the binomial series 

(1 − 𝜆)2 = ∑ (
𝑚
𝑗 )

𝑚

𝑗=0

(−1)𝑗𝜆𝑗 (𝑚 ∈ ℕ = {1,2, … }, 𝑗 ∈ ℕ0 = ℕ ∪ {0}) 

we now define the differential operator 𝐷𝑚,𝜆
𝜍

𝑓(𝑧) as follows: 

𝐷0𝑓(𝑧) = 𝑓(𝑧)                                                                            (3) 

𝐷𝑚,𝜆
1 𝑓(𝑧) = (1 − 𝜆)𝑚𝑓(𝑧) + (1 − (1 − 𝜆)𝑚)𝑧𝑓′(𝑧)            (4) 

= 𝐷𝑚,𝜆𝑓(𝑧), 𝜆 > 0; 𝑚 ∈ ℕ,                                       (5) 

𝐷𝑚,𝜆
𝜍

𝑓(𝑧) = 𝐷𝑚,𝜆(𝐷𝜍−1𝑓(𝑧))   (𝜍 ∈ ℕ)                                    (6) 

If 𝑓 is given by (1), then from (5) and (6) we see that  

𝐷𝑚,𝜆
𝜍

𝑓(𝑧) = 𝑧 + ∑ (1 + (𝑛 − 1) ∑ (
𝑚
𝑗 )

𝑚

𝑗=1

(−1)𝑗+1𝜆𝑗)

𝜍

𝑎𝑛𝑧𝑛

∞

𝑛=2

, 𝜍 ∈ ℕ0      (7) 

Using the relation (7), it easily verified that  
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𝐶𝑗
𝑚(𝜆) (𝐷𝑚,𝜆

𝜍
𝑓(𝑧))

′
= 𝐷𝑚,𝜆

𝜍+1
𝑓(𝑧) − (1 − 𝐶𝑗

𝑚(𝜆)) 𝐷𝑚,𝜆
𝜍

𝑓(𝑧)                 (8) 

where 𝐶𝑗
𝑚(𝜆) ≔ ∑ (

𝑚
𝑗 )𝑚

𝑗=1 (−1)𝑗+1𝜆𝑗 

We observe that for 𝑚 = 1. We obtain the differential operator 𝐷1,𝜆
𝜍

 defined by A1-Oboundi and for 𝑚 = 𝜆 =

1, we get Salagean differential operator 𝐷𝜍.  The main object of the present paper is to apply a method based on the 

differential subordination in order to derive several subordination results involving the operator 𝐷𝑚,𝜆
𝜍

. Furthermore, we 

obtained the previous results of Srivastava and Lashin as special cases of some of the results presented here. 

Definition: 4.1 

 Denote by 𝑄, the set of all functions 𝑓(𝑧) that are analytic and injective on �̅� − 𝐸(𝑓), where 

𝐸(𝑓) = {𝜂 ∈ 𝜕𝒰: lim
𝑧→𝜂

𝑓(𝑧) = ∞},                             (9) 

and are such that 𝑓′(𝜂) ≠ 0𝑓𝑜𝑟 𝜂 ∈ 𝜕𝒰 − 𝐸(𝑓). 

 

 

Lemma: 4.2 

Let the functions 𝑝(𝑧) and 𝑞(𝑧) be analytic 𝒰 and suppose that 𝑞(𝑧) ≠ 0 (𝑧 ∈ 𝒰) is also univalent I n 𝒰 and 

that 

𝑧𝑞′(𝑧)

𝑞(𝑧)
 𝑖𝑠 𝑠𝑡𝑎𝑟𝑙𝑖𝑘𝑒 𝑢𝑛𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑖𝑛 𝒰                                           (10) 

If 𝑞(𝑧) satisfies 

ℜ (1 +
𝑐1

𝛽
𝑞(𝑧) +

2𝑐2

𝛽
(𝑞(𝑧))2 + ⋯ +

𝑛𝑐𝑛

𝛽
(𝑞(𝑧))𝑛 −

𝑧𝑞′(𝑧)

𝑞(𝑧)
+

𝑧𝑞′′(𝑧)

𝑞′(𝑧)
) > 0   (11) 

(𝑧 ∈ 𝒰; 𝑐0, 𝑐1, 𝑐2, … . . , 𝑐𝑛, 𝛽 ∈ ℂ;  𝛽 ≠ 0) 

And 

𝑐0 + 𝑐1𝑝(𝑧) + 𝑐2(𝑝(𝑧))
2

+ ⋯ + 𝑐𝑛(𝑝(𝑧))
𝑛

+ 𝛽
𝑧𝑝′(𝑧)

𝑝(𝑧)
 

≺ 𝑐0 + 𝑐1𝑞(𝑧) + 𝑐2(𝑞(𝑧))
2

+ ⋯ + 𝑐𝑛(𝑞(𝑧))
𝑛

+ 𝛽
𝑧𝑞′(𝑧)

𝑞(𝑧)
 

(𝑧 ∈ 𝒰; 𝑐0, 𝑐1, 𝑐2, … . . , 𝑐𝑛, 𝛽 ∈ ℂ;  𝛽 ≠ 0) 

Then 𝑝(𝑧) ≺ 𝑞(𝑧) (𝑧 ∈ 𝒰) and 𝑞 is the best dominant. 

Proof: 

𝜃(𝜔) ≔ 𝑐0 + 𝑐1𝜔 + 𝑐2𝜔2 + ⋯ + 𝑐𝑛𝜔𝑛 and 𝜙(𝜔) ≔
𝛽

𝜔
 

Then, we observe that 𝜃(𝑤) is analytic in ℂ, 𝜙(𝜔) is analytic in ℂ∗ = ℂ\{0} and that 𝜙(𝜔) ≠ 0(𝜔 ∈ ℂ∗) 

Also, by letting 

𝑄(𝑧) = 𝑧𝑞′(𝑧)𝜙(𝑞(𝑧)) =  𝛽
𝑧𝑞′(𝑧)

𝑞(𝑧)
 

and  

ℎ(𝑧) = 𝜃(𝑞(𝑧)) + 𝑄(𝑧) 

= 𝑐0 + 𝑐1𝑞(𝑧) + 𝑐2(𝑞(𝑧))
2

+ ⋯ + 𝑐𝑛(𝑞(𝑧))
𝑛

+ 𝛽
𝑧𝑞′(𝑧)

𝑞(𝑧)
 

We find from (10) and (11), 𝑄(𝑧) is starlike univalent in 𝒰 and that 

ℜ (
𝑧ℎ′(𝑧)

𝑄(𝑧)
) 

= ℜ (1 +
𝑎1

𝛽
𝑞(𝑧) +

2𝑎2

𝛽
(𝑞(𝑧))2 + ⋯ +

𝑛𝑎𝑛

𝛽
(𝑞(𝑧))𝑛 −

𝑧𝑞′(𝑧)

𝑞(𝑧)
+

𝑧𝑞′′(𝑧)

𝑞′(𝑧)
) > 0 

(𝑧 ∈ 𝒰; 𝑐0, 𝑐1, 𝑐2, … . . , 𝑐𝑛, 𝛽 ∈ ℂ;  𝛽 ≠ 0) 

Our result now follows by an application of Lemma 4.1 

We first prove the following subordination theorem involving the operator 𝐷𝑚.𝑛
𝜍
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Theorem: 4.3 

Let the function 𝑞(𝑧) be analytic and univalent in 𝒰 such that 𝑞(𝑧) ≠ 0(𝑧 ∈ 𝒰). Suppose that 
𝑧𝑞′(𝑧)

𝑞(𝑧)
 is starlike univalent 

in 𝒰 and the inequality (11) holds true. Let 

Ω𝑗
𝑚(𝑐0, 𝑐1, 𝑐2, … . . , 𝑐𝑛, 𝛽, 𝜍, 𝜆, 𝑓)

≔ 𝑐0 + 𝑐1 (
𝐷𝑚.𝜆

𝜍
𝑓(𝑧)

𝑧
) + 𝑐2 (

𝐷𝑚.𝜆
𝜍

𝑓(𝑧)

𝑧
)

2

+ ⋯ + 𝑐𝑛 (
𝐷𝑚.𝜆

𝜍
𝑓(𝑧)

𝑧
)

𝑛

+
𝛽

𝐶𝑗
𝑚(𝜆)

(
𝐷𝑚.𝜆

𝜍+1
𝑓(𝑧)

𝐷𝑚.𝜆
𝜍

𝑓(𝑧)
− (1 − 𝐶𝑗

𝑚(𝜆))                                                                      (12) 

If 𝑞(𝑧) satisfies 

Ω𝑗
𝑚(𝑐0, 𝑐1, 𝑐2, … . . , 𝑐𝑛, 𝛽, 𝜍, 𝜆, 𝑓) ≺ 𝑐0 + 𝑐1𝑞(𝑧) + 𝑐2(𝑞(𝑧))

2
+ ⋯ + 𝑐𝑛(𝑞(𝑧))

𝑛
+ 𝛽

𝑧𝑞′(𝑧)

𝑞(𝑧)
        (13) 

(𝑧 ∈ 𝒰; 𝑐0, 𝑐1, 𝑐2, … . . , 𝑐𝑛, 𝛽 ∈ ℂ;  𝛽 ≠ 0) 

then  

𝐷𝑚.𝜆
𝜍

𝑓(𝑧)

𝑧
≺ 𝑞(𝑧)  (𝑧 ∈ 𝒰\{0}) 

and 𝑞 is the best dominant. 

Proof: 

Define the function 𝑝(𝑧) by 

𝑝(𝑧) ≔
𝐷𝑚.𝜆

𝜍
𝑓(𝑧)

𝑧
  (𝑧 ∈ 𝒰\{0}: 𝑓 ∈ 𝒜) 

Then a computation shows that  

𝑧𝑝′(𝑧)

𝑝(𝑧)
=

𝑧 (𝐷𝑚.𝜆
𝜍

𝑓(𝑧))
′

𝐷𝑚.𝜆
𝜍

𝑓(𝑧)
− 1 

By using the identity (8), we obtain 

𝑧𝑝′(𝑧)

𝑝(𝑧)
=

1

𝐶𝑗
𝑚(𝜆)

(
𝐷𝑚.𝜆

𝜍+1
𝑓(𝑧)

𝐷𝑚.𝜆
𝜍

𝑓(𝑧)
− (1 − 𝐶𝑗

𝑚(𝜆))) 

Which, in light the hypothesis (13), yields the following subordination  

𝑐0 + 𝑐1𝑝(𝑧) + 𝑐2(𝑝(𝑧))
2

+ ⋯ + 𝑐𝑛(𝑝(𝑧))
𝑛

+ 𝛽
𝑧𝑝′(𝑧)

𝑝(𝑧)
 

≺ 𝑐0 + 𝑐1𝑞(𝑧) + 𝑐2(𝑞(𝑧))
2

+ ⋯ + 𝑐𝑛(𝑞(𝑧))
𝑛

+ 𝛽
𝑧𝑞′(𝑧)

𝑞(𝑧)
 

and Theorem 4.2 follows by an application of Lemma4.1. 

  

Theorem 4.4 

Let 𝑞 be analytic and convex univalent in 𝒰 such that 𝑞(𝑧) ≠ 0 and 
𝑧𝑞′(𝑧)

𝑞(𝑧)
 is starlike univalent in 𝒰. Suppose also that 

ℜ (
𝑐1

𝛽
𝑞(𝑧) +

2𝑐2

𝛽
(𝑞(𝑧))

2
+ ⋯ +

𝑛𝑐𝑛

𝛽
(𝑞(𝑧))

𝑛
) > 0                                (14) 

(𝑧 ∈ 𝒰; 𝑐1, 𝑐2, … . . , 𝑐𝑛 , 𝛽 ∈ ℂ;  𝛽 ≠ 0) 

If 𝑓 ∈ 𝒜 

𝐷𝑚.𝜆
𝜍

𝑓(𝑧)

𝑧
∈ ℋ[𝑞(0), 1] ∩ 𝑄 

and Ω𝑗
𝑚(𝑐0, 𝑐1, 𝑐2, … . . , 𝑐𝑛, 𝛽, 𝜍, 𝜆, 𝑓) defined in (12) is univalent in 𝒰, then the following superordination: 

𝑐0 + 𝑐1𝑞(𝑧) + 𝑐2(𝑞(𝑧))
2

+ ⋯ + 𝑐𝑛(𝑞(𝑧))
𝑛

≺ Ω𝑗
𝑚(𝑐0, 𝑐1, 𝑐2, … . . , 𝑐𝑛, 𝛽, 𝜍, 𝜆, 𝑓) 

(𝑧 ∈ 𝒰; 𝑐1, 𝑐2, … . . , 𝑐𝑛 , 𝛽 ∈ ℂ;  𝛽 ≠ 0) 

Implies that 
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𝑞(𝑧) ≺
𝐷𝑚.𝜆

𝜍
𝑓(𝑧)

𝑧
 (𝑧 ∈ 𝒰\{0}) 

and 𝑞(𝑧) is the best subordinant. 

Proof: 

Let 𝑣(𝜔) = 𝑐0 + 𝑐1𝜔 + 𝑐2𝜔2 + ⋯ + 𝑐𝑛𝜔𝑛 and 𝜑(𝜔) ≔ 𝛽
𝜔′

𝜔
 

Then, we observe that 𝑣(𝜔) is analytic in ℂ, 𝜑(𝜔) is analytic in ℂ∗ = ℂ\{0} and that 𝜑(𝜔) ≠ 0(𝜔 ∈ ℂ∗).  

 Since 𝑞 is a convex univalent in 𝒰, it follows that 

ℜ (
𝑣′(𝑞(𝑧))

𝜑(𝑞(𝑧))
) = ℜ (

𝑐1

𝛽
𝑞(𝑧) +

2𝑐2

𝛽
(𝑞(𝑧))

2
+ ⋯ +

𝑛𝑐𝑛

𝛽
(𝑞(𝑧))

𝑛
) > 0 

(𝑧 ∈ 𝒰; 𝑐1, 𝑐2, … . . , 𝑐𝑛 , 𝛽 ∈ ℂ;  𝛽 ≠ 0). 

Theorem 4.4 follows as an application of Lemma 4.1. 
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