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Abstract:  

In  this  paper,  we  study  linear  differential  equations  of  first  order  whose  coefficients  are  

square  matrices. The combinatorial method for computing the matrix powers and exponential is 

adopted.  New formulas rep- resenting auxiliary results are obtained.  This allows us to prove 

properties of a large class of linear matrix differential equations of first order. 
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1. INTRODUCTION 

Linear system. A linear system is a system of differential equations of the form 

𝑥1
′ = 𝑎11𝑥1 + ⋯+ 𝑎1𝑛𝑥𝑛 + 𝑓1, 

𝑥2
′ = 𝑎21𝑥1 + ⋯+ 𝑎2𝑛𝑥𝑛 + 𝑓2, 

                          (1)           ⋮                 ⋮ ⋯  ⋮                ⋮ 

𝑥𝑚
′ = 𝑎𝑚1𝑥1 + ⋯+ 𝑎𝑚𝑛𝑥𝑛 + 𝑓𝑚, 

where = 𝑑/𝑑𝑡 . Given are the functions 𝑎𝑖𝑗(𝑡) and 𝑓𝑗(𝑡) on some interval 𝑎 < 𝑡 < 𝑏. The unknowns are the functions 

𝑥1(𝑡), … 𝑥𝑛(𝑡). The system is called homogeneous if all 𝑓𝑗 = 0, otherwise it is called non-homogeneous. 

Matrix Notation for Systems. A non -  homogeneous system of linear equations (1) is written as the equivalent vector-

matrix system 

𝑥′ = 𝐴(𝑡)𝑥 + 𝑓(𝑡) 

where 

𝑥 = (

𝑥1

⋮
𝑥𝑛

) , 𝑓 = (
𝑓1
⋮
𝑓𝑛

) , 𝐴 = (

𝑎11 … 𝑎1𝑛

⋮ … ⋮
𝑎𝑚1 … 𝑎𝑚𝑛

) 

 

2. BASIC FIRST ORDER SYSTEM METHODS 

Solving 𝟐 × 𝟐 Systems:  It is shown here that any constant linear system 

𝑢′ = 𝐴𝑢, 𝐴 = (
𝑎 𝑏
𝑐 𝑑

) can be solved by one of the following elementary methods. 

(a) The integrating factor method for 𝑦′ = 𝑝(𝑥)𝑦 + 𝑞(𝑥). 

(b) The second order constant coefficient recipe. 

 

Triangular : 𝐴. Let’s assume 𝑏 = 0, so that 𝐴 is lower triangular. The upper triangular case is handled similarly. Then 

𝑢′ = 𝐴𝑢 has the scalar form  

𝑢1
′ = 𝑎𝑢1, 

𝑢2
′ = 𝑐𝑢1 + 𝑑𝑢2 

The first differential equation is solved by the growth/decay recipe: 

𝑢1(𝑡) = 𝑢0𝑒
𝑎𝑡 
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Then substitute the answer just found into the second differential equation to give 

𝑢2
′ = 𝑑𝑢2 + 𝑐𝑢0𝑒

𝑎𝑡 

This is a linear first order equation of the form 𝑦′ = 𝑝(𝑥)𝑦 + 𝑞(𝑥), to be solved by the integrating factor method. 

Therefore, a triangular system can always be solved by the first order integrating factor method. 

An illustration: Let us solve 𝑢′ = 𝐴𝑢 for the triangular matrix 

𝐴 = (
1 0
2 1

) 

The first equation 𝑢1
′ = 𝑢1 has solution 𝑢1 = 𝑐1𝑒

𝑡. The second equation becomes  

𝑢2
′ = 2𝑐1𝑒

𝑡 + 𝑢2, 

which is a first order linear differential equation with solution 𝑢2 = (2𝑐1𝑡 + 𝑐2)𝑒
𝑡. The general solution of 𝑢′ = 𝐴𝑢 in 

scalar form is  

𝑢1 = 𝑐1𝑒
𝑡, 𝑢2 = 2𝑐1𝑡𝑒

𝑡 + 𝑐2𝑒
𝑡 

The vector form of the general solution is  

𝑢(𝑡) = 𝑐1 ( 𝑒𝑡

2𝑡𝑒𝑡) + 𝑐2 (
0
 𝑒𝑡) 

The vector basis is the set  

𝐵 = {( 𝑒𝑡

2𝑡𝑒𝑡) , (
0
 𝑒𝑡)} 

Non-Triangular 𝐴. In order that 𝐴 be non-triangular, both 𝑏 ≠ 0 and 𝑐 ≠ 0 must be satisfied. The scalar form of the 

system 𝑢′ = 𝐴𝑢 is 

𝑢1
′ = 𝑎𝑢1 + 𝑏𝑢2, 

𝑢2
′ = 𝑐𝑢1 + 𝑑𝑢2 

Theorem: 2.1 (Solving Non-Triangular 𝒖′ = 𝑨𝒖) 

Solutions 𝑢1, 𝑢2 of 𝑢′ = 𝐴𝑢 are linear comninations of the list of atoms obtained from the roots 𝑟 of the 

quadratic equation 

𝑑𝑒𝑡 (𝐴 − 𝑟𝐼) = 0 

Proof: 

The method: differentiate the first equation, then use the equations to eliminate 𝑢2, 𝑢2
′ . The result us a second 

order differential equation for 𝑢1. The same differential equation is satisfied also for 𝑢2. The details: 

𝑢1
′′ = 𝑎𝑢1

′ + 𝑏𝑢2
′      

Differentiate the first equation. 

      = 𝑎𝑢1
′ + 𝑏𝑐𝑢1 + 𝑏𝑑𝑢2  Use equation 𝑢2

′ = 𝑐𝑢1 + 𝑑𝑢2. 

      = 𝑎𝑢1
′ + 𝑏𝑐𝑢1 + 𝑑(𝑢1

′ − 𝑎𝑢1) Use equation 𝑢1
′ = 𝑎𝑢1 + 𝑏𝑢2. 

      = (𝑎 + 𝑑)𝑢1
′ + (𝑏𝑐 − 𝑎𝑑)𝑢1 Second order equation for 𝑢1 found 

The characteristic equation of 𝑢1
′′ − (𝑎 + 𝑑)𝑢1

′ + (𝑎𝑑 − 𝑏𝑐)𝑢1 = 0 is 

𝑟2 − (𝑎 + 𝑑)𝑟 + (𝑏𝑐 − 𝑎𝑑) = 0 

Finally, we show the expansion of det(𝐴 − 𝑟𝐼) is the same characteristic polynomial: 

det(𝐴 − 𝑟𝐼) = |
𝑎 − 𝑟 𝑏

𝑐 𝑑 − 𝑟
| 

                                 = (𝑎 − 𝑟)(𝑑 − 𝑟) − 𝑏𝑐 

                                          = 𝑟2 − (𝑎 + 𝑑)𝑟 + 𝑎𝑑 − 𝑏𝑐 

The proof is complete. 

The reader can verify that the differential equation for 𝑢1 or 𝑢2 is exactly 
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𝑢′′ − 𝑡𝑟𝑎𝑐𝑒 (𝐴)𝑢′ + det(𝐴)𝑢 = 0 

Finding 𝑢1. Apply the second order recipe to solve for 𝑢1. This involves writing a list 𝐿 of atoms corresponding to the 

two roots of the characteristic equation 𝑟2 − (𝑎 + 𝑑)𝑟 + 𝑎𝑑 − 𝑏𝑐 = 0, followed by expressing 𝑢1 as a linear 

combination of the two atoms. 

Finding 𝑢2. Isolate 𝑢2 in the first differential equation by division: 

𝑢2 =
1

𝑏
(𝑢1

′ − 𝑎𝑢1) 

The two formulas for 𝑢1, 𝑢2 represent the general solution of the system 𝑢′ = 𝐴𝑢, when 𝐴 is 2 × 2. 

An illustration. Let’s solve 𝑢′ = 𝐴𝑢 when 

𝐴 = (
1 2
2 1

) 

The equation det(𝐴 − 𝑟𝐼) = 0 is (1 − 𝑟)2 − 4 = 0 with roots 𝑟 = −1 and 𝑟 = 3. The atom list is 𝐿 = {𝑒−𝑡, 𝑒3𝑡}. Then 

the linear combination of atoms is 𝑢1 = 𝑐1𝑒
−𝑡 + 𝑐2𝑒

3𝑡. The first equation 𝑢1
′ = 𝑢1 + 2𝑢2 implies 𝑢2 =

1

2
(𝑢1

′ − 𝑢1). 

The general solution of 𝑢′ = 𝐴𝑢 is then  

𝑢1 = 𝑐1𝑒
−𝑡 + 𝑐2𝑒

3𝑡, 𝑢2 = −𝑐1𝑒
−𝑡 + 𝑐2𝑒

3𝑡 

In vector form, the general solution is 

𝑢 = 𝑐1 ( 𝑒−𝑡

−𝑒−𝑡) + 𝑐2 (𝑒
3𝑡

𝑒3𝑡) 

 

 Triangular Methods: 2.2 

 

Diagonal 𝑛 × 𝑛 matrix 𝐴 = 𝑑𝑖𝑎𝑔(𝑎1, … , 𝑎𝑛). Then the system 𝑥′ = 𝐴𝑥 is a set of uncoupled scalar 

growth/decay equations: 

𝑥1
′(𝑡) =  𝑎1𝑥1(𝑡),  𝑥2

′ (𝑡) =  𝑎2𝑥2(𝑡), … 𝑥𝑛
′ (𝑡) =  𝑎𝑛𝑥𝑛(𝑡) 

The solution of the system is given by the formulae 

𝑥1(𝑡) = 𝑐1𝑒
𝑎1𝑡 , 𝑥2(𝑡) = 𝑐2𝑒

𝑎2𝑡 , …  𝑥𝑛(𝑡) = 𝑐𝑛𝑒𝑎𝑛𝑡 

The numbers 𝑐1, …… , 𝑐𝑛 are arbitrary constants. Triangular 𝑛 × 𝑛 matrix 𝐴. If a linear system 𝑥′ = 𝐴𝑥 has a square 

triangular matrix 𝐴, then the system can be solved by first order scalar methods. To illustrate the ideas, consider the 3 ×
3 linear system 

𝑥′ = (
2 0 0
3 3 0
4 4 4

)𝑥 

The coefficient matrix 𝐴 is lower triangular. In scalar form, the system is given by the equations 

𝑥1
′(𝑡) =  2𝑥1(𝑡), 𝑥2

′ (𝑡) =  3𝑥1(𝑡) + 3𝑥2(𝑡),  𝑥3
′ (𝑡) =  4𝑥1(𝑡) + 4𝑥2(𝑡) + 4𝑥3(𝑡). 

 

A recursive method.  
 

The system is solved recursively by first order scalar methods only, starting with the first equation 𝑥1
′(𝑡) =

 2𝑥1(𝑡). This growth equation has general solution 𝑥1(𝑡) = 𝑐1𝑒
2𝑡. The second equation then becomes the first order 

linear equation 

𝑥2
′ (𝑡) =  3𝑥1(𝑡) + 3𝑥2(𝑡)            = 3𝑥2(𝑡) + 3𝑐1𝑒

2𝑡 

The integrating factor method applies to find the general solution 𝑥2(𝑡) = −3𝑐1𝑒
2𝑡 + 𝑐2𝑒

3𝑡. The third and last equation 

becomes the first order linear equation 

𝑥3
′ (𝑡) =  4𝑥1(𝑡) + 4𝑥2(𝑡) + 4𝑥3(𝑡)   = 4𝑥3(𝑡) + 4𝑐1𝑒

2𝑡 + 4(−3𝑐1𝑒
2𝑡 + 𝑐2𝑒

3𝑡) 

The integrating factor method is repeated to find the general solution 𝑥3(𝑡) = 4𝑐1𝑒
2𝑡 − 4𝑐2𝑒

3𝑡 + 𝑐3𝑒
4𝑡. 

In summary, the solution to the system is given by the formulae 

𝑥1(𝑡) = 𝑐1𝑒
2𝑡 ,𝑥2(𝑡) = −3𝑐1𝑒

2𝑡 + 𝑐2𝑒
3𝑡 𝑥3(𝑡) = 4𝑐1𝑒

2𝑡 − 4𝑐2𝑒
3𝑡 + 𝑐3𝑒

4𝑡 

 

Structure of solution.  
 

A system 𝑥′ = 𝐴𝑥 for 𝑛 × 𝑛 traingular 𝐴 has component solutions 𝑥1(𝑡),… . . 𝑥𝑛(𝑡) given as polynomials times 

exponentials. The exponential factor 𝑒𝑎11𝑡, … . . , 𝑒𝑎𝑛𝑛𝑡 are expressed in terms of the diagonal element 𝑎11, … . . , 𝑎𝑛𝑛 of 

the matrix 𝐴. Fewer than 𝑛 distinct exponential factors may appear, due to duplicate diagonal elements. These 
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duplications cause the polynomial factors to appear. The reader is invited to work out the solution to the system below, 

which has duplicate diagonal entries 𝑎11 = 𝑎22 = 𝑎33 = 2. 

𝑥1
′(𝑡) =  2𝑥1(𝑡),  𝑥2

′ (𝑡) =  3𝑥1(𝑡) + 2𝑥2(𝑡), 𝑥3
′ (𝑡) =  4𝑥1(𝑡) + 4𝑥2(𝑡) + 2𝑥3(𝑡). 

The solution, given below, has polynomial factors 𝑡 and 𝑡2, appearing because of the duplicate diagonal entries 2,2,2, 

and only one exponential factor 𝑒2𝑡 

𝑥1(𝑡) = 𝑐1𝑒
2𝑡 , 𝑥2(𝑡) = 3𝑐1𝑡𝑒

2𝑡 + 𝑐2𝑒
2𝑡,  𝑥3(𝑡) = 4𝑐1𝑡𝑒

2𝑡 + 6𝑐1𝑡
2𝑒2𝑡 + 4𝑐2𝑡𝑒

2𝑡 + 𝑐3𝑒
2𝑡 

3. STRUCTURE OF LINEAR SYSTEMS 

Theorem: 3.1 (Unique Zero Solution) 

Let 𝐴(𝑡) be an 𝑚 × 𝑛 matrix with entries continuous on 𝑎 < 𝑡 < 𝑏. Then the initial value problem 

𝑥′ = 𝐴(𝑡)𝑥, 𝑥(0) = 0 has unique solution 𝑥(𝑡) = 0 on 𝑎 < 𝑡 < 𝑏. 

Theorem: 3.2 (Existence-Uniqueness for Constant Linear Systems) 

Let 𝐴(𝑡) = 𝐴 be an 𝑚 × 𝑛 matrix with constant entries and let 𝑥0 be any 𝑚-vector. Then the initial value 

problem 𝑥′ = 𝐴𝑥, 𝑥(0) = 𝑥0 has unique solution 𝑥(𝑡) defined for all values of 𝑡. 

Theorem: 3.3 (Uniqueness and Solution Crossings) 

Let 𝐴(𝑡) be an 𝑚 × 𝑛 matrix with entries continuous on 𝑎 < 𝑡 < 𝑏 and assume 𝑓(𝑡) is also continuous on 𝑎 <
𝑡 < 𝑏. If 𝑥(𝑡) and 𝑦(𝑡) are solutions of 𝑢′ = 𝐴(𝑡)𝑢 + 𝑓(𝑡) on 𝑎 < 𝑡 < 𝑏 and 𝑥(𝑡0) = 𝑦(𝑡0) for some 𝑡0, 𝑎 < 𝑡0 < 𝑏, 

then 𝑥(𝑡) = 𝑦(𝑡) for 𝑎 < 𝑡 < 𝑏. 

Superposition. Linear homogeneous systems have linear structure and the solutions to non homogeneous systems obey 

a principle of superposition. 

 

Theorem: 3.4 (Linear Structure) 

Let 𝑥′ = 𝐴(𝑡)𝑥 have two solutions 𝑥1(𝑡), 𝑥2(𝑡). If 𝑘1, 𝑘2 are constants, then 𝑥(𝑡) = 𝑘1𝑥1(𝑡) + 𝑘2𝑥2(𝑡) is also a 

solution of 𝑥′ = 𝐴(𝑡)𝑥.  The standard basis {𝑤𝑘}𝑘=1
𝑛 . The Picard-Lindelof theorem applied to initial conditions 𝑥(𝑡0) =

𝑥0, with 𝑥0 successively set equal to the columns of the 𝑛 × 𝑛 identity matrix, produces 𝑛 solutions 𝑤1, …… ,𝑤𝑛 to the 

equation 𝑥′ = 𝐴(𝑡)𝑥, all of which exist on the same interval 𝑎 < 𝑡 < 𝑏. The linear structure theorem implies that for 

any choice of the constants 𝑐1, …… , 𝑐𝑛, the vector linear combination 

𝑥(𝑡) = 𝑐1𝑤1(𝑡) + 𝑐2𝑤2(𝑡) + ⋯+ 𝑐𝑛𝑤𝑛(𝑡)                                    (2)  is a solution of 𝑥′ = 𝐴(𝑡)𝑥. 

Conversely, if 𝑐1, …… , 𝑐𝑛 are taken to be the components of a given vector 𝑥0, then the above linear combination must 

be the unique solution of the initial value problem with 𝑥(𝑡0) = 𝑥0. Therefore, all solutions of the equation 𝑥′ = 𝐴(𝑡)𝑥 

are given by the expression above, where 𝑐1, …… , 𝑐𝑛 are taken to be arbitrary constants. 

Theorem: 3.5 (Basis) 

The solution set of 𝑥′ = 𝐴(𝑡)𝑥 is an 𝑛-dimensional subspace of the vector space of all vector-valued functions 

𝑥(𝑡). Every solution has a unique basis expansion (2). 

Theorem: 3.6 (Superposition Principle) 

Let 𝑥′ = 𝐴(𝑡)𝑥 + 𝑓(𝑡) have a particular solution 𝑥𝑝(𝑡). If 𝑥(𝑡) is any solution of 𝑥′ = 𝐴(𝑡)𝑥 + 𝑓(𝑡), then 𝑥(𝑡) 

can be decomposed as homogeneous plus particular: 

𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡). The term 𝑥ℎ(𝑡) is a certain solution of the homogeneous differential equation 𝑥′ = 𝐴(𝑡)𝑥, which 

means arbitrary constants 𝑐1, 𝑐2, …… have been assigned certain values. The particular solution 𝑥𝑝(𝑡) can be selected to 

be free of any unresolved or arbitrary constants. 

Theorem: 3.7 (Difference of Solutions) 

Let 𝑥′ = 𝐴(𝑡)𝑥 + 𝑓(𝑡) have two solutions 𝑥 = 𝑢(𝑡) and 𝑥 = 𝑣(𝑡). Define 𝑦(𝑡) = 𝑢(𝑡) − 𝑣(𝑡). Then 𝑦(𝑡) 

satisfies the homogeneous equation 𝑦′ = 𝐴(𝑡)𝑦 
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Solution: 

We explain general solution by example. If a formula 𝑥 = 𝑐1𝑒
𝑡 + 𝑐2𝑒

2𝑡 is called a general solution, then it 

means that all possible solutions of the differential equation are expressed by this formula.  In particular, it means that a 

given solution can be represented by the formula, by specializing values for the constants 𝑐1, 𝑐2. We expect the number 

of arbitrary constants to be the least possible number. The general solution 𝑥′ = 𝐴(𝑡)𝑥 + 𝑓(𝑡) is an expression 

involving arbitrary constants 𝑐1, 𝑐2, …… and certain functions. The expression is often given in vector notation, although 

scalar expressions are commonplace and perfectly acceptable. 

Required is that the expression represents all solutions of the differential equation, in the following sense: 

(a) Every assignment of constants produces a solution of the differential equation. 

(b) Every possible solution is uniquely obtained from the expression by specializing the constants. 

Due to the superposition principle, the constants in the general solution are identified as multipliers against solutions 

of the homogeneous differential equation. The general solution has some recognizable structure. 

Theorem: 3.8 (General Solution) 

Let 𝐴(𝑡) be 𝑛 × 𝑛 and 𝑓(𝑡)𝑛 × 1, both continuous on an interval 𝑎 < 𝑡 < 𝑏. The linear nonhomogeneous 

system 𝑥′ = 𝐴(𝑡)𝑥 + 𝑓(𝑡) has general solution 𝑥 given by the expression 

𝑥 = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡) 

The term 𝑦 = 𝑥ℎ(𝑡) is a general solution of the homogeneous equation 𝑦′ = 𝐴(𝑡)𝑦, in which are to be found 𝑛 arbitrary 

constants 𝑐1, …… , 𝑐𝑛. The term 𝑥 = 𝑥𝑝(𝑡) is a particular solution of 𝑥′ = 𝐴(𝑡)𝑥 + 𝑓(𝑡), in which there are present no 

unresolved nor arbitrary constants. 

 

Recognition of homogeneous solution terms. An expression 𝑥 for the general solution of a nonhomogeneous equation 

𝑥′ = 𝐴(𝑡)𝑥 + 𝑓(𝑡) involves arbitrary constants 𝑐1, …… , 𝑐𝑛. It is possible to isolate both terms 𝑥ℎ and 𝑥𝑝 by a simple 

procedure. 

To find 𝑥𝑝, set of zero all arbitrary constants 𝑐1, 𝑐2, …. the resulting expression is free of unresolved and arbitrary 

constants. 

To find 𝑥ℎ, we find first the vector solutions 𝑦 = 𝑢𝑘(𝑡) of 𝑦′ = 𝐴(𝑡)𝑦, which are multiplied by constants 𝑐𝑘. Then the 

general solution 𝑥ℎ of the homogeneous equations 𝑦′ = 𝐴(𝑡)𝑦 is given by 

𝑥ℎ(𝑡) = 𝑐1𝑢1(𝑡) + 𝑐2𝑢2(𝑡) + ⋯+ 𝑐𝑛𝑢𝑛(𝑡) 

Use partial derivatives on expression 𝑥 to find the column vectors 

𝑢𝑘(𝑡) =
𝜕

𝜕𝑐𝑘
𝑥 

The technique isolates the vector components of the homogeneous solution from any form of the general solution, 

including scalar formulas for the components of 𝑥. In any case, the general solution 𝑥 of the linear system 𝑥′ = 𝐴(𝑡)𝑥 +
𝑓(𝑡) is represented by the expression 

𝑥 = 𝑐1𝑢1(𝑡) + 𝑐2𝑢2(𝑡) + ⋯+ 𝑐𝑛𝑢𝑛(𝑡) + 𝑥𝑝(𝑡) 

In this expression, each assignment of the constants 𝑐1, …… , 𝑐𝑛 produces a solution of the nonhomogeneous system, and 

conversely, each possible solution of the nonhomogeneous system is obtained by a unique specialization of the 

constants 𝑐1, …… , 𝑐𝑛. 

To illustrate the ideas, consider a 3 × 3 linear system 𝑥′ = 𝐴(𝑡)𝑥 + 𝑓(𝑡) with general solution 

𝑥 = (

𝑥1

𝑥2

𝑥3

) 

given in scalar form by the expressions 

𝑥1 = 𝑐1𝑒
𝑡 + 𝑐2𝑒

−𝑡 + 𝑡  , 𝑥2 = (𝑐1 + 𝑐2)𝑒
𝑡 + 𝑐3𝑒

2𝑡 , 𝑥3 = (2𝑐2 − 𝑐1)𝑒
−𝑡 + (4𝑐1 − 2𝑐3)𝑒

2𝑡 + 2𝑡 

To find the vector form of the general solutions, we take partial derivatives 𝑢𝑘 =
𝜕𝑥

𝜕𝑐𝑘
 with respect to the variable 

names 𝑐1, 𝑐2, 𝑐3: 

𝑢1 = (
𝑒𝑡

𝑒𝑡

−𝑒−𝑡 + 4𝑒2𝑡
) , 𝑢2 = (

𝑒−𝑡

𝑒𝑡

2𝑒−𝑡

) , 𝑢3 = (
0

𝑒2𝑡

−2𝑒2𝑡
) 

To find 𝑥𝑝(𝑡), set 𝑐1 = 𝑐2 = 𝑐3 = 0 

𝑥𝑝(𝑡) = (
𝑡
0
2𝑡

) 
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Finally, 

𝑥 = 𝑐1𝑢1(𝑡) + 𝑐2𝑢2(𝑡) + 𝑐3𝑢3(𝑡) + 𝑥𝑝(𝑡) 

    = 𝑐1 (
𝑒𝑡

𝑒𝑡

−𝑒−𝑡 + 4𝑒2𝑡
) + 𝑐2 (

𝑒−𝑡

𝑒𝑡

2𝑒−𝑡

) + 𝑐3 (
0

𝑒2𝑡

−2𝑒2𝑡
) + (

𝑡
0
2𝑡

) 

The expression 𝑥 = 𝑐1𝑢1(𝑡) + 𝑐2𝑢2(𝑡) + 𝑐3𝑢3(𝑡) + 𝑥𝑝(𝑡) satisfies required elements (𝑎) and (𝑏) in the definition of 

general solution. We will develop now a way to routinely test the uniqueness requirement in (b). 

 

Independence. Constants 𝑐1, …… , 𝑐𝑛 in the general solution 𝑥 = 𝑥ℎ + 𝑥𝑝 appear exactly in expression 𝑥ℎ, which has 

the form 

𝑥ℎ = 𝑐1𝑢1 + 𝑐2𝑢2 + ⋯+ 𝑐𝑛𝑢𝑛 

A solution 𝑥 uniquely determines the constants. In particular, the zero solution of the homogeneous equation is uniquely 

represented, which can be state this way: 

𝑐1𝑢1 + 𝑐2𝑢2 + ⋯+ 𝑐𝑛𝑢𝑛 = 0   implies  𝑐1 = 𝑐2 = ⋯𝑐𝑛 = 0 

This statement is equivalent to the statement that the vector-valued functions 𝑢1(𝑡), … . . , 𝑢𝑛(𝑡) 

It is possible to write down a candidate general solution to some 3 × 3 linear system 𝑥′ = 𝐴𝑥 via equations like𝑥1 =
𝑐1𝑒

𝑡 + 𝑐2𝑒
𝑡 + 𝑐3𝑒

2𝑡 ,  𝑥2 = 𝑐1𝑒
𝑡 + 𝑐2𝑒

𝑡 + 2𝑐3𝑒
2𝑡 , 𝑥3 = 𝑐1𝑒

𝑡 + 𝑐2𝑒
𝑡 + 3𝑐3𝑒

2𝑡 

This example was constructed to contain a classic mistake, for purposes of illustration. 

How can we detect a mistake, given only that this expression is supposed to represent the general solution? First of all, 

we can test that 𝑢1 = 𝜕𝑥/𝜕𝑐1, 𝑢2 = 𝜕𝑥/𝜕𝑐2, 𝑢3 = 𝜕𝑥/𝜕𝑐3 are indeed solutions. But to insure the unique representation 

requirement, the vector functions 𝑢1, 𝑢2, 𝑢3 must be linearly independent. We compute 

𝑢1 = (
𝑒𝑡

𝑒𝑡

𝑒𝑡

) , 𝑢2 = (
𝑒𝑡

𝑒𝑡

𝑒𝑡

) , 𝑢3 = (
𝑒2𝑡

2𝑒2𝑡

4𝑒2𝑡

) 

Therefore, 𝑢1 = 𝑢2, which implies that the functions 𝑢1, 𝑢2, 𝑢3 fail to be independent. While is possible to test 

independence by a rudimentary test based upon the definition, we prefer the following test due to Abel. 

Theorem: 3.11 (Abel’s Formula and the Wronskian) 

 

Let 𝑥ℎ(𝑡) = 𝑐1𝑢1(𝑡) + 𝑐2𝑢2(𝑡) + ⋯+ 𝑐𝑛𝑢𝑛(𝑡) be a candidate general solution to the equation 𝑥′ = 𝐴(𝑡)𝑥. In 

particular, the vector functions 𝑢1(𝑡),… . . , 𝑢𝑛(𝑡) are solutions of 𝑥′ = 𝐴(𝑡)𝑥. Define the Wronskian by 

𝑤(𝑡) = det(𝑎𝑢𝑔 (𝑢1(𝑡),… . . , 𝑢𝑛(𝑡)))   

Then Abel’s formula holds:   𝑤(𝑡) = 𝑒
∫ 𝑡𝑟𝑎𝑐𝑒 (𝐴(𝑠))𝑑𝑠

𝑡

𝑡0 𝑤(𝑡0) 

In particular, 𝑤(𝑡) is either everywhere nonzero or everywhere zero, accordingly as 𝑤(𝑡0) ≠ 0 or 𝑤(𝑡0) = 0. 

Theorem: 3.12 (Abel’s Wronskian Test for independence) 

The vector solutions 𝑢1, …… , 𝑢2 of 𝑥′ = 𝐴(𝑡)𝑥 are independent if and only if the Wronskian 𝑤(𝑡) is nonzero for some 

𝑡 = 𝑡0. 

Clever use of the point 𝑡0 in Abel’s Wronskian test can lead to succinct independence tests. For instance, let 

𝑢1 = (
𝑒𝑡

𝑒𝑡

𝑒𝑡

) , 𝑢2 = (
𝑒𝑡

𝑒𝑡

𝑒𝑡

) , 𝑢3 = (
𝑒2𝑡

2𝑒2𝑡

4𝑒2𝑡

) 

Then 𝑤(𝑡) might appear to be complicate, but 𝑤(0) is obviously zero because it has two duplicate columns. Therefore, 

Abel’s Wronskian test detects dependence of 𝑢1, 𝑢2, 𝑢3. 

To illustrate Abel’s Wronskian test when it detects independence, consider the column vectors 

𝑢1 = (
𝑒𝑡

𝑒𝑡

−𝑒−𝑡 + 4𝑒2𝑡
) , 𝑢2 = (

𝑒−𝑡

𝑒𝑡

2𝑒−𝑡

) , 𝑢3 = (
0

𝑒2𝑡

−2𝑒2𝑡
) 

At 𝑡 = 𝑡0 = 0, they become the column vectors 

𝑢1 = (
1
1
3
) , 𝑢2 = (

1
1
2
) , 𝑢3 = (

0
1

−2
) 

Then 𝑤(0) = det (𝑎𝑢𝑔( 𝑢1(0), 𝑢2(0), 𝑢3(0))) = 1 is non zero, testing independence of 𝑢1, 𝑢2, 𝑢3. 

Initial value problems and the rref method. An initial value problem is the problem of solving for 𝑥, given 

𝑥′ = 𝐴(𝑡)𝑥 + 𝑓(𝑡), 𝑥(𝑡0) = 𝑥0 
If a general solution is known 

𝑥 = 𝑐1𝑢1(𝑡) + ⋯+ 𝑐𝑛𝑢𝑛(𝑡) + 𝑥𝑝(𝑡) 

then the problem of finding 𝑥 reduces to finding 𝑐1, …… , 𝑐𝑛 in the relation 
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𝑐1𝑢1(𝑡0) + ⋯+ 𝑐𝑛𝑢𝑛(𝑡0) + 𝑥𝑝(𝑡0) = 𝑥0 

This is a matrix equation for the unknown constants 𝑐1, …… , 𝑐𝑛 of the form 𝐵𝑐 = 𝑑, where  

𝐵 = aug( 𝑢1(𝑡0),… , 𝑢3(𝑡0)), 𝑐 = (

𝑐1

⋮
𝑐2

) ,   𝑑 = 𝑥0 − 𝑥𝑝(𝑡0) 

The rref-method applies to find 𝑐. The method is to perform swap, combination and multiply operations to 𝐶 =
aug(𝐵, 𝑑) until rref(𝐶) = aug(𝐼, 𝑐). 

To illustrate the method, consider the general solution 

𝑥1 = 𝑐1𝑒
𝑡 + 𝑐2𝑒

−𝑡 + 𝑡 , 𝑥2 = (𝑐1 + 𝑐2)𝑒
𝑡 + 𝑐3𝑒

2𝑡, 𝑥3 = (2𝑐2 − 𝑐1)𝑒
−𝑡 + (4𝑐1 − 2𝑐3)𝑒

2𝑡 + 2𝑡 

We shall solve for 𝑐1, 𝑐2, 𝑐3 given the initial condition 𝑥1(0) = 1, 𝑥2(0) = 0, 𝑥3(0) = −1. The above relations 

evaluated at 𝑡 = 0 give the system 

1 = 𝑐1𝑒
0 + 𝑐2𝑒

0 + 0 ,0 = (𝑐1 + 𝑐2)𝑒
0 + 𝑐3𝑒

0, −1 = (2𝑐2 − 𝑐1)𝑒
0 + (4𝑐1 − 2𝑐3)𝑒

0 + 0 

In standard scalar form, this is the 3 × 3 linear system  

      𝑐1 + 𝑐2 = 1,                        𝑐1 + 𝑐2 + 𝑐3 = 0,   3𝑐1 + 2𝑐2 − 2𝑐3 = −1, 

The augmented matrix 𝐶, to be reduced to rref form, is given by 

𝐶 = (
1 1 0    1
1 1 1    0
3 2 −2 −1   

) 

After the rref process is completed, we obtain  

rref(𝐶) = (
1 0  0 −5
0 1 0   6 
0 0   1 −1   

) 

From this display, we read off the answer 𝑐1 = −5, 𝑐2 = 6, 𝑐3 = −1 and report the final answer 𝑥1 = −5𝑒𝑡 + 6𝑒−𝑡 +
𝑡    , 𝑥2 = 𝑒𝑡 − 𝑒2𝑡 , 𝑥3 = 17𝑒−𝑡 − 18𝑒2𝑡 + 2𝑡 

Equilibria. An equilibrium point 𝑥0 of a linear system 𝑥′ = 𝐴(𝑡)𝑥 is a constant solution 𝑥(𝑡) = 𝑥0 for all 𝑡. Mostly, 

this makes sense when 𝐴(𝑡) is constant, although the definition applies to continuous systems. For a solution 𝑥 to be 

constant means 𝑥′ = 0, hence all equilibria are determined from the equation 

𝐴(𝑡)𝑥0 = 0 for all 𝑡. 
This is a homogeneous system of linear algebraic equations to be solved for 𝑥0. It is not allowed for the answer 𝑥0. It is 

not allowed for the answer 𝑥0 to depend on 𝑡 (if it does, then it is not an equilibrium). The theory for a constant matrix 

𝐴(𝑡) ≡ 𝐴 says that either 𝑥0 = 0 is the unique solution or else there are infinitely many answer for 𝑥0(the nullity of 𝐴 is 

positive). 

 

4. MATRIX EXPONENTIAL 

 

The problem    𝑥′(𝑡) = 𝐴𝑥(𝑡), 𝑥(0) = 𝑥0 has a unique solution, according to the Picard-Londelof theorem. Solve 

the problem 𝑛 times, when 𝑥0 equals a column of the identity matrix and write 𝑤1(𝑡),… .𝑤𝑛(𝑡) for the 𝑛 solutions so 

obtained. Define the matrix exponential by packaging these 𝑛 solutions into a matrix 𝑒𝐴𝑡 ≡ aug(𝑤1(𝑡),… .𝑤𝑛(𝑡)). By 

construction, any possible solution 𝑥′ = 𝐴𝑥 can be uniquely expressed in terms of the matrix exponential 𝑒𝐴𝑡 by the 

formula 

𝑥(𝑡) = 𝑒𝐴𝑡𝑥(0) 
 

Matrix Exponential Identities:4.1 

Announced here and proved below are various formulae and identities for the matrix exponential 𝑒𝐴𝑡. 

(𝑒𝐴𝑡)′ = 𝐴𝑒𝐴𝑡      Columns satisfy 𝑥′ = 𝐴𝑥. 

𝑒0 = 𝐼        Where 0 is the zero matrix 

𝐵𝑒𝐴𝑡 = 𝑒𝐴𝑡𝐵      If 𝐴𝐵 = 𝐵𝐴. 

𝑒𝐴𝑡𝑒𝐵𝑡 = 𝑒(𝐴+𝐵)𝑡                 If 𝐴𝐵 = 𝐵𝐴. 

𝑒𝐴𝑡𝑒𝑠𝑡 = 𝑒(𝐴+𝑠)𝑡     At and As commute. 

(𝑒𝐴𝑡)′ = 𝑒−𝐴𝑡      Equivalently, 𝑒𝐴𝑡𝑒𝑖𝐴𝑡 = 𝐼. 

𝑒𝐴𝑡 = 𝑟1(𝑡)𝑃1 + ⋯+ 𝑟𝑛(𝑡)𝑃𝑛    Putzer’s spectral formula 

𝑒𝐴𝑡 = 𝑒𝜆1𝑡𝐼 +
𝑒𝜆1𝑡−𝑒𝜆2𝑡

𝜆1−𝜆2
(𝐴 − 𝜆1𝐼)   𝐴 is 2 × 2, 𝜆1 ≠ 𝜆2 real. 

𝑒𝐴𝑡 = 𝑒𝜆1𝑡𝐼 + 𝑡𝑒𝜆1𝑡(𝐴 − 𝜆1𝐼)    𝐴 is 2 × 2, 𝜆1 = 𝜆2 real. 

𝑒𝐴𝑡 = 𝑒𝑎𝑡 cos 𝑏𝑡 𝐼 + 
𝑒𝑎𝑡 sin𝑛𝑡

𝑏
(𝐴 − 𝑎𝐼)              𝐴 is 2 × 2, 𝜆1 = �̅�2 = 𝑎 + 𝑖𝑏, 𝑏 > 0 
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𝑒𝐴𝑡 = ∑ 𝐴𝑛 𝑡𝑛

𝑛!
∞
𝑛=0     Picard series. 

𝑒𝐴𝑡 = 𝑃−1𝑒𝐽𝑡𝑃     Jordan form 𝐽 = 𝑃𝐴𝑃−1 

 

Putzer’s Spectral Formula: 4.2  

The spectral formula of Putzer applies to a system 𝑥′ = 𝐴𝑥 find the general solution, using matrices 𝑃1, … , 𝑃𝑛 

constructed from 𝐴 and the eigenvalues 𝜆1, … , 𝜆2 of 𝐴, matrix multiplication, and the solution 𝑟(𝑡) of the first order 𝑛 ×
𝑛 initial value problem 

𝑟′(𝑡) =

(

 
 

𝜆1 0 0
1 𝜆2 0
0 1 𝜆3

… 0 0
… 0 0
… 0 0

   
0 0 0

⋮   
⋯ 1 𝜆𝑛)

 
 

𝑟(𝑡), 𝑟(0) = (

1
0
⋮
0

) 

The system is solved by first order scalar method and back-substitution. We will derive the formula separately for the 

2 × 2 case (the one used most often and the 𝑛 × 𝑛 case. 

 

Putzer’s 𝟐 × 𝟐 Spectral Formula:4.3 

The general solution of 𝑥′ = 𝐴𝑥 is given by the formula 

𝑥(𝑡) = (𝑟1(𝑡)𝑃1 + 𝑟2(𝑡)𝑃2)𝑥(0), 
where 𝑟1, 𝑟2, 𝑃1, 𝑃2 are defined as follows. 

The eigenvalues 𝑟 = 𝜆1, 𝜆2 are the two roots of the quadratic equation 

det(𝐴 − 𝑟𝐼) = 0 

Define 2 × 2 matrices 𝑃1, 𝑃2 by the formulae 

𝑃1 = 𝐼, 𝑃2 = 𝐴 − 𝜆1𝐼 
The functions 𝑟1(𝑡), 𝑟2(𝑡) are defined by the differential system 

𝑟1
′ = 𝜆1𝑟1, 𝑟1(0) = 1, 

𝑟2
′ = 𝜆2𝑟2 + 𝑟1, 𝑟2(0) = 1 

Proof: 

The Cayley-Hamilton formula (𝐴 − 𝜆1𝐼)(𝐴 − 𝜆2𝐼) = 0 is valid for any 2 × 2 matrix 𝐴 and the two roots 𝑟 = 𝜆1, 𝜆2 of 

the determinant equality det(𝐴 − 𝑟𝐼) = 0. The Cayley-Hamilton formula is the same as (𝐴 − 𝜆2)𝑃2 = 0, which implies 

the identity 𝐴𝑃2 = 𝜆2𝑃2. Compute as follows. 

𝑥′(𝑡) = (𝑟1
′𝑃2 + 𝑟2

′𝑃2)𝑥(0) 

           = (𝜆1𝑟1(𝑡)𝑃1 + 𝑟1(𝑡)𝑃2 + 𝜆2𝑟2(𝑡)𝑃2)𝑥(0) 

           = (𝑟1(𝑡)𝐴 + 𝜆2𝑟2(𝑡)𝑃2)𝑥(0) 

           = ( 𝑟1(𝑡)𝐴 + 𝑟2(𝑡)𝐴𝑃2)𝑥(0) 

           = 𝐴( 𝑟1(𝑡)𝐼 + 𝑟2(𝑡)𝑃2)𝑥(0)  = 𝐴𝑥(𝑡) 

This proves that 𝑥(𝑡) is a solution. Because 𝛷(𝑡) ≡ 𝑟1(𝑡)𝑃1 + 𝑟2(𝑡)𝑃2 satisfies 𝛷(0) = 𝐼, then any possible solution of 

𝑥′ = 𝐴𝑥 can be represented by the given formula. The proof is complete. 

 

4.8 How to Remember Putzer’s 𝟐 × 𝟐 Formula 

           The expressions           𝑒𝐴𝑡 = 𝑟1(𝑡)𝐼 + 𝑟2(𝑡)(𝐴 − 𝜆1𝐼), 

𝑟1 = 𝑒𝜆1𝑡, 𝑟2 =
𝑒𝜆1𝑡−𝑒𝜆2𝑡

𝜆1−𝜆2
are enough to generate all three formulae. The fraction 𝑟2(𝑡) is difference quotient with limit 

𝑡𝑒𝜆1𝑡 as 𝜆2 → 𝜆1, therefore the formula includes the case 𝜆1 = 𝜆2 by limiting. If 𝜆1 = �̅�2 = 𝑎 + 𝑖𝑏 with 𝑏 > 0, then the 

fraction 𝑟2 is already real, because it has for 𝑧 = 𝑒𝜆1𝑡 and 𝑤 = 𝜆1 the form 

𝑟2(𝑡) =
𝑧 − 𝑧̅

𝑤 − �̅�
=

sin 𝑏𝑡

𝑏
. 

Taking real parts to expression (1) then gives the complex case formula for 𝑒𝐴𝑡. 

 

4.9 Putzer’s 𝒏 × 𝒏 Spectral Formula 

 

         The general solution of 𝑥′ = 𝐴𝑥 is given by the formula  

𝑥(𝑡) = (𝑟1(𝑡)𝑃1 + 𝑟2(𝑡)𝑃2 + ⋯+ 𝑟𝑛(𝑡)𝑃𝑛)𝑥(0), 
where 𝑟1, 𝑟2, … , 𝑟𝑛, 𝑃1, 𝑃2, … , 𝑃𝑛 are defined as follows. 

The eigenvalues 𝑟 = 𝜆1, … , 𝜆𝑛 are the roots of the polynomial equation 

det(𝐴 − 𝑟𝐼) = 0. 
Define 𝑛 × 𝑛 matrices 𝑃1, 𝑃2, … , 𝑃𝑛 by the formulae 

𝑃1 = 𝐼, 𝑃𝑘 = 𝑃𝑘−1(𝐴 − 𝜆𝑘−1𝐼), 𝑘 = 2,… , 𝑛. 
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More succinctly, 𝑃𝑘 = ∏ (𝐴 − 𝜆𝑗𝐼)
𝑘−1
𝑗=1 . The functions 𝑟1(𝑡), … , 𝑟𝑛(𝑡) are defined by the differential system 

𝑟1
′ = 𝜆1𝑟1,                        𝑟1(0) = 1, 

𝑟2
′ = 𝜆2𝑟2 + 𝑟1,               𝑟2(0) = 0, 

⋮                                                
𝑟𝑛

′ = 𝜆𝑛𝑟𝑛 + 𝑟𝑛−1,           𝑟𝑛(0) = 0, 
Proof: 

The Cayley-Hamilton formula (𝐴 − 𝜆1𝐼)… (𝐴 − 𝜆𝑛𝐼) = 0 is valid for any 𝑛 × 𝑛 matrix 𝐴 and the 𝑛 roots 𝑟 = 𝜆1, … , 𝜆𝑛 

of the determinant equality implies 𝐴𝑃𝑛 = 𝜆𝑛𝑃𝑛; (2) The definition of 𝑃𝑘 implies 𝜆𝑘𝑃𝑘 + 𝑃𝑘+1 = 𝐴𝑃𝑘 for 1 ≤ 𝑘 ≤ 𝑛 −
1. Compute as follows. 

                   1   𝑥′(𝑡) = (𝑟1
′(𝑡)𝑃1 + ⋯+ 𝑟𝑛

′(𝑡)𝑃𝑛)𝑥(0) 

                   2             = (∑ 𝜆𝑘𝑟𝑘(𝑡)𝑃𝑘

𝑛

𝑘=1

+ ∑ 𝑟𝑘−1𝑃𝑘

𝑛

𝑘=2

)𝑥(0) 

                   3             = (∑ 𝜆𝑘𝑟𝑘(𝑡)𝑃𝑘 + 𝑟𝑛(𝑡)𝜆𝑛𝑃𝑛

𝑛−1

𝑘=1

+ ∑ 𝑟𝑘𝑃𝑘+1

𝑛−1

𝑘=1

)𝑥(0) 

                   4             = (∑ 𝑟𝑘(𝑡)(𝜆𝑘𝑃𝑘 + 𝑃𝑘+1) + 𝑟𝑛(𝑡)𝜆𝑛𝑃𝑛

𝑛−1

𝑘=1

)𝑥(0) 

                   5             = (∑ 𝑟𝑘(𝑡)𝐴𝑃𝑘 + 𝑟𝑛(𝑡)𝐴𝑃𝑛

𝑛−1

𝑘=1

)𝑥(0) 

                   6             = 𝐴(∑ 𝑟𝑘(𝑡)𝑃𝑘

𝑛

𝑘=1

)𝑥(0) 

                   7             = 𝐴𝑥(𝑡) 

Details: 1  Differentiate the formula for 𝑥(𝑡). 2  Use the differential equations for 𝑟1, … , 𝑟𝑛. 3  Split off the last term 

from the first sum, then re-index the last sum. 4  Combine the two sums. 5  Use the recursion for 𝑃𝑘 and the Cayley-

Hamilton formula (𝐴 − 𝜆𝑛𝐼)𝑃𝑛 = 0. 6  Factor out 𝐴 on the left. 7  Apply the definition of 𝑥(𝑡). 

This proves that 𝑥(𝑡) is a solution. Because 𝛷(𝑡) ≡ ∑ 𝑟𝑘(𝑡)𝑃𝑘
𝑛
𝑘=1  satisfies 𝛷(0) = 𝐼, then any possible solution of 𝑥′ =

𝐴𝑥 can be so represented. The proof is complete. 

 

5. SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS 

 

 In this section, we will discuss system of first order differential equations. There are many applications that 

involving find several unknown functions simultaneously. Those unknown functions are related by a set of equations 

that involving the unknown functions and their first derivatives. For example, in chapter Two, we studied the epidemic 

of contagious diseases. Now if 

 𝑆(𝑡) denotes number of people that is susceptible to the disease but not infected yet. 

 𝐼(𝑡) denotes number of people actually infected. 

 𝑅(𝑡) denotes the number of people have recovered. 

If we assume 

 The fraction of the susceptible who becomes infected per unit time is proportional to the number infected, 𝑏 is 

the proportional number. 

 A fixed faction 𝑟𝑆 of the infected population recovers per unit time, 0 ≤ 𝑟 ≤ 1. 

 A fixed fraction of the recovers 𝑔 become susceptible and infected, 0 ≤ 𝑔 ≤ 1 proportional function. 

The system of differential equations model this phenomena are 

𝑆′ = −𝑏𝐼𝑆 + 𝑔𝑅 

𝐼′ = 𝑏𝐼𝑆 − 𝑟𝐼 

𝑅′ = 𝑟𝐼 − 𝑔𝑅 

The numbers of unknown function in a system of differential equations can be arbitrarily large, but we will 

concentrate ourselves on 2 to 3 unknown functions. 

 

Principle of superposition:5.1 

 

Let 𝑎𝑖𝑗(𝑡), 𝑏𝑗(𝑡), 𝑖 = 1,2,… , 𝑛 and 𝑗 = 1,2,… , 𝑛 be known function, and 𝑥𝑖𝑡, 𝑖 = 1,2, … , 𝑛 be unknown 

functions, the linear first order system of differential equation for 𝑥𝑖𝑡 is the following, 
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𝑥1
′(𝑡) = 𝑎11(𝑡)𝑥1(𝑡) + 𝑎12(𝑡)𝑥2(𝑡) + ⋯+ 𝑎1𝑛(𝑡)𝑥𝑛(𝑡) + 𝑏1(𝑡) 

𝑥2
′ (𝑡) = 𝑎21(𝑡)𝑥1(𝑡) + 𝑎22(𝑡)𝑥2(𝑡) + ⋯+ 𝑎2𝑛(𝑡)𝑥𝑛(𝑡) + 𝑏2(𝑡) 

𝑥3
′ (𝑡) = 𝑎31(𝑡)𝑥1(𝑡) + 𝑎32(𝑡)𝑥2(𝑡) + ⋯+ 𝑎3𝑛(𝑡)𝑥𝑛(𝑡) + 𝑏3(𝑡) 

  ⋮  
𝑥𝑛

′ (𝑡) = 𝑎𝑛1(𝑡)𝑥1(𝑡) + 𝑎𝑛2(𝑡)𝑥2(𝑡) + ⋯+ 𝑎𝑛𝑛(𝑡)𝑥𝑛(𝑡) + 𝑓1(𝑡) 

Let 𝑥(𝑡) be the column vector of unknown functions 𝑥𝑖𝑡, 𝑖 = 1,2,… , 𝑛, 𝐴(𝑡) = 𝑎𝑖𝑗(𝑡) and 𝑏(𝑡) be the column 

vector of known functions 𝑏𝑖𝑡, 𝑖 = 1,2,… , 𝑛, we can write the first order system of equations as 

𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝑏(𝑡)                                                 (1) 

 When 𝑛 = 2, the linear first order system of equations for two unknown functions in matrix form is 

[
𝑥1

′(𝑡)

𝑥2
′ (𝑡)

] = [
𝑎11(𝑡) 𝑎12(𝑡)
𝑎21(𝑡) 𝑎22(𝑡)

] [
𝑥1(𝑡)
𝑥2(𝑡)

] + [
𝑏1(𝑡)
𝑏2(𝑡)

] 

 When 𝑛 = 3, the linear first order system of equations for three unknown functions in matrix form is, 

[

𝑥1
′(𝑡)

𝑥2
′ (𝑡)

𝑥3
′ (𝑡)

] = [

𝑎11(𝑡) 𝑎12(𝑡) 𝑎13

𝑎21(𝑡) 𝑎22(𝑡) 𝑎23

𝑎31(𝑡) 𝑎32(𝑡) 𝑎33

] [
𝑥1(𝑡)
𝑥2(𝑡)
𝑥3𝑡

] + [

𝑏1(𝑡)
𝑏2(𝑡)
𝑏3(𝑡)

] 

A solution of equation (1) on the open interval 𝐼 is an column vector function 𝑥(𝑡) whose derivative (as 

a vector-values function) equals 𝐴(𝑡)𝑥(𝑡) + 𝑏(𝑡). The following theorem gives existence and uniqueness of 

solutions. 

 

Theorem: 5.2 

If the vector-valued functions 𝐴(𝑡) and 𝑏(𝑡) are continuous over an open interval 𝑡0, then the initial value 

problem 

{
𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝑏(𝑡)

𝑥(𝑡0) = 𝑥0                         
 

has an unique vector-values solution 𝑥(𝑡) that is defined on entire interval 𝐼 fir any given initial value 𝑥0. 

When 𝑏(𝑡) ≡ 0, the linear first order system of equations becomes 

𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡), 
which is called a homogeneous equation. 

As in the case of one equation, we want to find out the general solutions for the linear first order system of 

equations. To this end, we first have the following results for the homogeneous equations. 

 

Theorem: 5.3  

Principle of Superposition Let 𝑥1(𝑡), 𝑏𝑥2(𝑡),… , 𝑥𝑛(𝑡) be 𝑛 solutions of the homogeneous linear equation 

𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) 

on the open interval 𝐼. If 𝑐1, 𝑐2, … , 𝑐𝑛 are 𝑛 constants, then the linear combination 

𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) + 𝑐3𝑥3(𝑡) + ⋯+ 𝑐𝑛𝑥𝑛(𝑡) 

is also a solution on 𝐼. 

 

Theorem: 5.4 

Let 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑏𝑥𝑛(𝑡) be 𝑛 linearly independent (as vectors) solution of the homogeneous system 

𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) 

then for any solution 𝑥𝑐(𝑡) there exists 𝑛 constants 𝑐1, 𝑐2, … , 𝑐𝑛 such that  

𝑥𝑐(𝑡) = 𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) + 𝑐3𝑥3(𝑡) + ⋯+ 𝑐𝑛𝑥𝑛(𝑡) 

We call 𝑥𝑐(𝑡) the general solution of the homogeneous system. 

If 𝑥𝑝(𝑡) is a particular solution of the nonhomogeneous  system, 

𝑥(𝑡) = 𝐵(𝑡)𝑥(𝑡) + 𝑏(𝑡) 

and 𝑥𝑐(𝑡) is the general solution to the associate homogeneous system, 

𝑥(𝑡) = 𝐵(𝑡)𝑥(𝑡) 

then 𝑥(𝑡) = 𝑥𝑐(𝑡) + 𝑥𝑝(𝑡) is the general solution. 

 

 Homogeneous System:5.5 

We will use a powerful method called eigenvalue method to solve the homogeneous system 

𝑥′(𝑡) = 𝐴𝑥(𝑡) 

Where 𝐴 is a matrix with constant entry. We will present this method for 𝐴 is either a 2 × 2 or 3 × 3 cases. The method 

can be used for 𝐴 is an 𝑛 × 𝑛 matrix. The idea is to find solutions of form 

𝑥(𝑡) = 𝑣𝑒𝜆𝑡,                                                                   (3) 
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a straight line that passing origin in the direction 𝑣. Now taking derivative on 𝑥(𝑡), we have  

𝑥′(𝑡) = 𝜆𝑣𝑒𝜆𝑡                                                                  (4) 

put (3) and (2.2) into the homogeneous equation, we get 

𝑥′(𝑡) = 𝜆𝑣𝑒𝜆𝑡 = 𝐴𝑣𝑒𝜆𝑡 
So  

𝐴𝑣 = 𝜆𝑣 

which indicates that 𝜆 must be an eigenvalue of 𝐴 and 𝑣 is an associate eigenvector. 

 𝐴 is 2 × 2 matrix. suppose 

𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
] 

Then the characteristic polynomial 𝑝(𝜆) of 𝐴 is 

𝑝(𝜆) = |𝐴 − 𝜆𝐼| = (𝑎11 − 𝜆) ∗ (𝑎22 − 𝜆) − 𝑎12𝑎21 = 𝜆2 − (𝑎11 + 𝑎22) + (𝑎11𝑎22 − 𝑎12𝑎22) 

So 𝑝(𝜆) is a quadratic polynomial of 𝜆. From Algebra, we know that 𝑝(𝜆) = 0 has either 2 distinct real solutions, or a 

double solution, or 2 conjugate complex solutions. The following theorem summarize the solution to the homogeneous 

system. 

 

Theorem: 5.6 

Let 𝑝(𝜆) be the characteristic polynomial of 𝐴, for 𝑥′(𝑡) = 𝐴𝑥(𝑡), 
Case 1: 

 𝑝(𝜆) = 0 has two distinct real solutions 𝜆1 and 𝜆2 

Suppose 𝑣1 = [
𝑣11

𝑣21
] and 𝑣2 = [

𝑣12

𝑣22
] are associate eigen-vector (i.e, 𝐴𝑣1 = 𝜆1𝑣1 and 𝐴𝑣2 = 𝜆2𝑣2). Then the 

general solution is  

𝑥𝑐(𝑡) = 𝑐1𝑣1𝑒
𝜆1𝑡 + 𝑐2𝑣2𝑒

𝜆2𝑡 
And  

𝛷(𝑡) = [
𝑣11𝑒

𝜆1𝑡 𝑣12𝑒
𝜆2𝑡

𝑣21𝑒
𝜆1𝑡 𝑣22𝑒

𝜆2𝑡
] 

is called the fundamental matrix ( 𝐴 fundamental matrix is a square matrix whose columns are linearly independent 

solutions of the homogeneous system). 

Case 2: 

𝑝(𝜆) = 0 has a double solutions 𝜆0 

In this case 𝑝(𝜆) = (𝜆 − 𝜆0)
2 and 𝜆0 is a zero of 𝑝(𝜆) with multiplicity 2. 

(1) 𝜆0 has two linearly independent eigenvectors: 

Suppose 𝑣1 = [
𝑣11

𝑣21
] and 𝑣2 = [

𝑣12

𝑣22
] are associate linearly independent eigenvectors. Then the general solution 

is 

𝑥𝑐(𝑡) = (𝑐1𝑣1 + 𝑐2𝑣2)𝑒
𝜆0𝑡 

And  

𝛷(𝑡) = 𝑒𝜆0𝑡 [
𝑣11 𝑣12

𝑣21 𝑣22
] 

(2) 𝜆0 has only one associate eigenvector: 

Suppose 𝑣1 = [
𝑣11

𝑣21
] is the only associate eigenvector and 𝑣2 = [

𝑣12

𝑣22
] is a solution of, 

(𝜆0𝐼 − 𝐴)𝑣2 = 𝑣1 
Then the general solution is, 

𝑥𝑐(𝑡) = (𝑐1𝑣1 + 𝑐2(𝑡𝑣1 + 𝑣2))𝑒
𝜆0𝑡 

And  

𝛷(𝑡) = 𝑒𝜆0𝑡 [
𝑣11 (𝑣11𝑡 + 𝑣12)

𝑣21 (𝑣21𝑡 + 𝑣22)
] 

is the fundamental solution matrix. 

 

 

Case 3: 

 𝑝(𝜆) = 0 has two conjugate complex solutions 𝑎 + 𝑏𝑖 and 𝑎 − 𝑏𝑖. 

Suppose 𝑣 = [
𝑣11 + 𝑖𝑣12

𝑣21 + 𝑖𝑣22
] is the associate complex eigen-vector with respect 𝑎 + 𝑏𝑖, then the general solution 

is 𝑣1 = [
𝑣11

𝑣21
] and 𝑣2 = [

𝑣12

𝑣22
] 
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𝑥𝑐(𝑡) = [𝑐1(𝑣1 cos(𝑏𝑡) − 𝑣2 sin(𝑏𝑡))𝑐2(𝑣2 cos(𝑏𝑡) + 𝑣1 sin(𝑏𝑡))]𝑒𝑎𝑡 
And  

𝛷(𝑡) = 𝑒𝑎𝑡  [
𝑣11 cos(𝑏𝑡) − 𝑣12 sin(𝑏𝑡) 𝑣12 cos(𝑏𝑡) + 𝑣11 sin(𝑏𝑡)

𝑣21 cos(𝑏𝑡) − 𝑣22 sin(𝑏𝑡) 𝑣22 cos(𝑏𝑡) + 𝑣21 sin(𝑏𝑡)
]  

 

is the fundamental matrix. 

Form Theorem 6.6, let 𝛷(𝑡) be the fundamental matrix, the general solution is given by 𝑥𝑐(𝑡) = 𝛷(𝑡)𝑐, with 

𝑐 = [
𝑐1

𝑐2
] and the solution that satisfies a given initial condition 𝑥(𝑡0) = 𝑥0 is given by  

𝑥(𝑡) = 𝛷(𝑡)𝛷(𝑡0)
−𝑡𝑥0 

 𝑨 is a 𝟑 × 𝟑 matrix.:5..7 

Suppose  

𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

Then the characteristic polynomial 𝑝(𝜆) of given by 

𝑝(𝜆) = |𝐴 − 𝜆𝐼| 
is a cubic polynomial of 𝜆. From Algebra, we know that 𝑝(𝜆) = 0 has either 3 distinct real solutions, or 2 distinct 

solutions and one is a double solution, or one real solution and 2 conjugate complex solutions, or a triple solution. The 

following theorem summarize the solution to the homogeneous system. 

 

Theorem: 5.8 

Let 𝑝(𝜆) be the characteristic polynomial of 𝐴, for 𝑥′(𝑡) = 𝐴𝑥(𝑡), 

Case 1: 

 𝑝(𝜆) = 0 has three distinct real solutions 𝜆1, 𝜆2, and 𝜆3 

Suppose 𝑣1 = [

𝑣11

𝑣21

𝑣31

] , 𝑣2 = [

𝑣12

𝑣22

𝑣32

], and 𝑣3 = [

𝑣13

𝑣23

𝑣33

] 

are associate eigenvector (i.e., 𝐴𝑣1 = 𝜆1𝑣1, 𝐴𝑣2 = 𝜆2𝑣2 and 𝐴𝑣3 = 𝜆3𝑣3).  

Then the general solution is 

𝑥𝑐(𝑡) = 𝑐1𝑣1𝑒
𝜆1𝑡 + 𝑐2𝑣2𝑒

𝜆2𝑡 + 𝑐3𝑣3𝑒
𝜆3𝑡 

And the fundamental matrix is 

𝛷(𝑡) = [

𝑣11𝑒
𝜆1𝑡 𝑣12𝑒

𝜆2𝑡 𝑣13𝑒
𝜆3𝑡

𝑣21𝑒
𝜆1𝑡 𝑣22𝑒

𝜆2𝑡 𝑣23𝑒
𝜆3𝑡

𝑣31𝑒
𝜆1𝑡 𝑣32𝑒

𝜆2𝑡 𝑣33𝑒
𝜆3𝑡

] 

Case 2: 

 𝑝(𝜆) = 0 has a double solution 𝜆0. 

So 𝑝(𝜆) = (𝜆 − 𝜆0)
2(𝜆 − 𝜆1), and 𝜆0 has multiplicity 2. Let 𝑣3 = [

𝑣12

𝑣22

𝑣32

] is the eigenvector associated with 𝜆1. 

 

 

(1) 𝝀𝟎 has two linearly independent eigenvectors: 

Suppose 𝑣1 = [
𝑣11

𝑣12
] and 𝑣2 = [

𝑣12

𝑣22
] are associate linearly independent eigenvectors. Then the general solution 

is 

𝑥𝑐(𝑡) = (𝑐1𝑣1 + 𝑐2𝑣2)𝑒
𝜆0𝑡 + 𝑐3𝑣3𝑒

𝜆1𝑡 

And  

𝛷(𝑡) = [

𝑣11𝑒
𝜆0𝑡 𝑣12𝑒

𝜆0𝑡 𝑣13𝑒
𝜆1𝑡

𝑣21𝑒
𝜆0𝑡 𝑣22𝑒

𝜆0𝑡 𝑣23𝑒
𝜆1𝑡

𝑣31𝑒
𝜆0𝑡 𝑣32𝑒

𝜆0𝑡 𝑣33𝑒
𝜆1𝑡

] 

(2) 𝝀𝟎 has one eigenvector: 

Suppose 𝑣1 = [

𝑣11

𝑣21

𝑣31

] is the associated eigenvector with respect to 𝜆0 and 𝑣2 = [

𝑣12

𝑣22

𝑣32

] is a solution of  

(𝜆0𝐼 − 𝐴)𝑣2 = 𝑣1 
And  
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𝛷(𝑡) = [

𝑣11𝑒
𝜆0𝑡 (𝑣11𝑡 + 𝑣12)𝑒

𝜆0𝑡 𝑣13𝑒
𝜆1𝑡

𝑣21𝑒
𝜆0𝑡 (𝑣21𝑡 + 𝑣22)𝑒

𝜆0𝑡 𝑣23𝑒
𝜆1𝑡

𝑣31𝑒
𝜆0𝑡 (𝑣31𝑡 + 𝑣32)𝑒

𝜆0𝑡 𝑣33𝑒
𝜆1𝑡

] 

is the fundamental solution matrix. 

Case 3: 

 𝑝(𝜆) = 0 has two conjugate complex solutions 𝑎 ± 𝑏𝑖 and a real solution 𝜆1. 

 Suppose 𝑣 = [
𝑣11 + 𝑖𝑣12

𝑣21 + 𝑖𝑣22

𝑣31 + 𝑖𝑣32

] is the associate complex eigenvector with respect to 𝑎 + 𝑏𝑖, then the general solution 

is, let 𝑣3 = [

𝑣13

𝑣23

𝑣33

], are associated eigenvectors with respect to 𝜆1 

𝑥𝑐(𝑡) = [𝑐1(𝑣1 cos(𝑏𝑡) − 𝑣2 sin(𝑏𝑡))𝑐2(𝑣2 cos(𝑏𝑡) + 𝑣1 sin(𝑏𝑡))]𝑒𝑎𝑡 + 𝑐3𝑣3𝑒
𝜆3 

And  

𝛷(𝑡) = 𝑒𝑎𝑡 [

𝑣11 cos(𝑏𝑡) − 𝑣12 sin(𝑏𝑡) 𝑣12 cos(𝑏𝑡) + 𝑣11 sin(𝑏𝑡) 𝑣13𝑒
𝜆1

𝑣21 cos(𝑏𝑡) − 𝑣22 sin(𝑏𝑡) 𝑣22 cos(𝑏𝑡) + 𝑣21 sin(𝑏𝑡) 𝑣23𝑒
𝜆1

𝑣31 cos(𝑏𝑡) − 𝑣32 sin(𝑏𝑡) 𝑣32 cos(𝑏𝑡) + 𝑣31 sin(𝑏𝑡) 𝑣33𝑒
𝜆1

] 

Case 4: 

𝑝(𝜆) = 0 has solution 𝜆0 with multiplicity 3. 

In this case, 𝑝(𝜆) = (𝜆 − 𝜆0)
3 

(1) 𝜆0 has three linearly independent eigenvectors 

Let  𝑣1 = [

𝑣11

𝑣21

𝑣31

] , 𝑣2 = [

𝑣12

𝑣22

𝑣32

], and 𝑣3 = [

𝑣13

𝑣23

𝑣33

] be the three linearly independent eigenvectors. Then the general 

solution is 𝑥𝑐(𝑡) = (𝑐1𝑣1 + 𝑐2𝑣2 + 𝑐3𝑣3)𝑒
𝜆0𝑡 and fundamental matrix is  

𝛷(𝑡) =

[
 
 
 
 
𝑣11 𝑣12 𝑣13

𝑣21 𝑣22 𝑣23

𝑣31    
𝑣32   
𝑣33              ]

 
 
 
 

 

(2) 𝜆0 has two linearly independent eigenvectors. 

Suppose 𝑣1 = [

𝑣11

𝑣21

𝑣31

] , 𝑣2 = [

𝑣12

𝑣22

𝑣32

] are the linearly independent eigenvectors. Let 𝑣3 = [

𝑣13

𝑣23

𝑣33

], then only 

one of the two equations, (𝐴 − 𝜆0𝐼)𝑣3 = 𝑣1 or (𝐴 − 𝜆0𝐼)𝑣3 = 𝑣2 can has a solution that is linearly independent 

with 𝑣1, 𝑣2. 
  Suppose (𝐴 − 𝜆0𝐼)𝑣3 = 𝑣2 generates such a solution. Then the general solution is 𝑥𝑐(𝑡) =
[𝑐1𝑣1 + 𝑐2𝑣2 + 𝑐3(𝑡𝑣2 + 𝑣3)]𝑒

𝜆0𝑡 and fundamental matrix is  

𝛷(𝑡) = 𝑒𝜆0𝑡 [

𝑣11 𝑣12 𝑡𝑣12 + 𝑣13

𝑣21 𝑣22 𝑡𝑣22 + 𝑉23

𝑣31 𝑣32 𝑡𝑣32 + 𝑉33

] 

(3) 𝜆0 has only one eigenvector. 

Let 𝑣1 = [

𝑣11

𝑣21

𝑣31

] be the linearly independent eigenvectors. Let 𝑣2 = [

𝑣12

𝑣22

𝑣32

] and 𝑣3 = [

𝑣13

𝑣23

𝑣33

] be two vectors that 

satisfies 

(𝐴 − 𝜆0𝐼)𝑣2 = 𝑣1  𝑎𝑛𝑑  (𝐴 − 𝜆0𝐼)𝑣3 = 𝑣2 
Then the general solution 

𝑥𝑐(𝑡) = [𝑐1𝑣1 + 𝑐2(𝑡𝑣1 + 𝑣2) + 𝑐3(𝑡
2𝑣1 + 𝑡𝑣2 + 𝑣3)]𝑒

𝜆0𝑡 

and fundamental matrix is  

𝛷(𝑡) = 𝑒𝜆0𝑡 [

𝑣11 𝑡𝑣11 + 𝑣12 𝑡2𝑣11 + 𝑡𝑣12 + 𝑣13

𝑣21 𝑡𝑣21 + 𝑣22 𝑡2𝑣21 + 𝑡𝑣22 + 𝑉23

𝑣31 𝑡𝑣31 + 𝑣32 𝑡2𝑣31 + 𝑡𝑣32 + 𝑉33

] 
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