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1 Introduction 

Modern business and technology with its vital concern for the efficient utilization of its limited resources 

provides an excellent source of challenging problems in discrete mathematics. In this paper, we concerned ourselves 

with NI graphs, namely graphs in which adjacent vertices have distinct degrees. Since not every situation that we will 

encounter will be this simple, we must be prepared to deal with the graphs with distinct neighbourhoods. When defining 

highly irregular graphs Yousef Alavi considered the degree of vertices in the neighbourhood set. If we use the closed 

neighbourhood of vertices instead of using degree, we can arrive a definition of NHI graph. Thus in this paper, we deal 

with those graphs with any two distinct vertices in the open neighbourhood of any vertex have distinct closed 

neighbourhoods. 

                    For any vertex v in V, let NG(v) = { uϵ V: uvϵ E} be the closed neighbourhood of v, let NG[v] = NG(v)∪ {v} 

be the closed neighbourhood of v. A connected graph G is said to be neighbourhood highly irregular (or simply NHI ) if 

for any vertex vϵ V, any two distinct vertices in the open neighbourhood of v have distinct closed neighbourhood sets. 

Of course, a disconnected graph in which each component is NHI can also be considered as an NHI graph. In this paper 

we give a necessary and sufficient condition for a graph to be NHI. For any n≥ 1, we obtain a sharp lower bound for the 

order of regular NHI graphs and a sharp lower bound for the order of NHI graphs with clique  

2 Results on NHI graphs: 

                In this section, we characterize the class of NHI graphs. We also find the smallest order of an r- regular NHI 

graph. In addition, we prove that, the smallest order of an NHI graph with clique number n is n+m where m is the least 

positive integer such that n≤ 2m. The following results gives a necessary and sufficient condition for a graph to be NHI. 

 

Theorem 2.1 

A connected graph G with n≥3 is NHI if and only if NG[u] ≠NG[v] for any pair of adjacent vertices u and v in G with 

d(u) = d(v). 
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Proof 

Let G be a connected graph in which. NG[u] ≠NG[v] for any two adjacent vertices u and v of same degree in G. 

however, obviously, for any two non-adjacent vertices u and v of G and for any two adjacent vertices u and v of distinct 

degrees,NG[u] ≠NG[v] and therefore, G is NHI.                       Conversely, assume that G is NHI. Let u and v be two 

adjacent vertices of same degree in V. we claim that NG[u] ≠NG[v].  If u and v have a common neighbour w, then u and 

v are in N(w). therefore, since G is NHI, NG[u] ≠ NG[v]. suppose u and v have no common neighbour. In this case, since 

n≥3 and G is connected, there is a vertex w in N(u) (in N(v) ) which is not in N(v) (in N(u) ). This forces that NG[u] ≠ 

NG[v]. Hence the theorem                                                            

       In the above theorem, if we consider the open neighbourhood instead of the closed neighbourhood then the theorem 

need not be true. For example, in a complete graph Kn, N[u] ≠N[v] for any pair of adjacent vertices u and v in Kn with 

d(u) = d(v), but kn is not NHI, n≥3. Note that K2 is NHI , in which NG[u] = NG[v]. In fact, Kn is the only graph in which 

NG[u] = NG[v] for any two vertices u and v. For, clearly in Kn,NG[u] = NG[v] for any two vertices u and v. In addition, if 

G is a graph in which NG[u] = NG[v] for any two vertices u and v, then u and v are adjacent in G. this means that, G is 

complete.  For any connected graph G which is not NI, let ℓG (or simply ℓ) denote the least positive integer such that G 

has two adjacent vertices of degree ℓ. Note that, ℓ≥ 2 whenever ℓ≥ 3. Recall that for any two vertex disjoint graphs G1 = 

(V1 ,E1) and G2 = (V2, E2) the graph G1∪ G2 with the vertex set V = V1∪ V2 and the edge set E = E1∪ E2 is called the 

union of G1 and G2. The join, G1∨ G2, of the graphs G1 and G2 is  the graph obtained from G1∪G2 by joining each vertex 

of G1 to each vertex of G2  by means of an edge. Let 𝐾𝑛
𝑐 denote the null graph on n vertices. 

Corollary  

Let G be a connected graph with n≥ 3. If G is NI or G contains no K2∨𝐾𝑙−1
𝑐  as a subgraph, then G is NHI. 

Proof 

 If G is NI, then obviously G is NHI. Assume that G contains no K2∨𝐾𝑙−1
𝑐  as a subgraph. If G is not NHI, then by the 

above theorem, there are two adjacent vertices u and v of same degree m in G such that NG[u] = NG[v]. Therefore, 

|NG[u]  =  NG[v]| = m+1 and hence K2∨𝐾𝑚−1
𝑐 is a subgraph of G . since ℓ≤ m this force that G contains K2∨𝐾𝑙−1

𝑐  as a 

subgraph, a contradiction. Hence G must be NHI.  The converse of the above corollary need not be true. For example, 

the graph shown in Figure 1 in NHI but not NI with ℓ = 2. In addition, it contains K2∨𝐾1
𝑐 as a subgraph. 

 

 

 

 

Figure 1 

Corollary  

Any connected triangle free graph is NHI.  Here we present a new proof using the above corollary. 
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Proof 

If n = 1 or 2, the result is obvious, Assume that n≥ 3. If G is NI, then clearly it is NHI. If G is not NI, then ℓ≥ 2. Since 

G is triangle free, G contains no K2∨𝐾𝑙−1
𝑐  and this follows that G is NHI by corollary. Since any connected bipartite 

graph is triangle free, we have. 

Corollary  

       Any connected bipartite graph is NHI.   Next we establish another characterization for NHI graph. 

Theorem 2.2 

        A connected graph G with n≥ 3 is NHI if and only if 𝑁𝐺𝑐(𝑢)≠𝑁𝐺𝑐(𝑣) for any two vertices u and v. 

Proof 

Let G be an NHI graph. Suppose there are vertices u and v such that 𝑁𝐺𝑐(𝑢)=𝑁𝐺𝑐(𝑣). Then u and v are not adjacent in 

Gc and hence adjacent in G and NG[u] = NG[v] also. Therefore, u and v have same degree in G such that NG[u] = NG[v], 

which contradicts Theorem 3.2.1. Hence 𝑁𝐺𝑐(𝑢)≠𝑁𝐺𝑐(𝑣) for any two vertices u and v. Conversely, suppose G is not 

NHI. Again, by theorem 2.1, G has two adjacent vertices u and v with same degree such that NG[u] = NG[v]. This 

implies that u and v are non-adjacent in Gc with  𝑁𝐺𝑐(𝑢)=𝑁𝐺𝑐(𝑣). That is, in Gc there are two vertices u and v such that 

𝑁𝐺𝑐(𝑢)=𝑁𝐺𝑐(𝑣). Hence the theorem.         

Theorem2.3 

       For any n ≥ 5, Kn \ H is NHI, where H is a Hamiltonian cycle in Kn. 

Proof  

       Let the vertices of Kn be 𝑣0,𝑣1, … 𝑣𝑛−1. Through out this proof, the operation + is addition modulo n. Let E(H) = { 

𝑒𝑖 = 𝑣𝑖𝑣𝑖+1 : 0 ≤i≤ n-1 }. Now G = Kn \ H is an      (n-3) -regular graph of order n, in which, for 0 ≤i≤ n- 1, N(𝑣𝑖) = { 

𝑣𝑖+2, 𝑣𝑖+3, … . 𝑣𝑛−2+𝑖}. Therefore, if 𝑣𝑖 and 𝑣𝑗, 0 ≤i< j ≤ n-1,are adjacent vertices in G, then clearly for                       (i, 

j) ∉ { (o, n- 2), (1, n-1)} 𝑣𝑖−1𝜖 N[𝑣𝑗] \ N[𝑣𝑖] and 𝑣𝑗+1ϵ N[𝑣𝑖] \ N[𝑣𝑗] otherwise 𝑣𝑖+1ϵ N[𝑣𝑗] \ N[𝑣𝑖] and 𝑣𝑗−1ϵ N[𝑣𝑖] \ 

N[𝑣𝑗]. That is ,N[𝑣𝑖] ≠ N[ 𝑣𝑗]. Hence, by theorem 2.2, G is NHI. The above theorem can be restated as follows: 

Corollary 

            𝐶𝑛
𝑐 is NHI, for all n≥ 5.  In a similar way, one can prove that  

Theorem 2.4             

          𝑃𝑛
𝑐  = 𝐾𝒏 \ 𝑃𝒏 is NHI, for any n > 3. 

                    For even n≥ 4, let the vertices of 𝐾𝒏be 𝑣1,𝑣2, … 𝑣𝑛 and let                                               F = {𝑣2𝑖−1𝑣2𝑖, 1≤ i 

≤ n\2} be a 1-factor in𝐾𝒏. Then it has been proved that the regular graph 𝐾𝒏 \ F is NHI.    In fact, more generally, we can 

prove that complement of an NHI graph G is NHI. 

Theorem 2.5 

    If a graph G is NHI, then its complement 𝐺𝑐 is also NHI. 
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Proof 

        Let G be an NHI graph. We claim that 𝐺𝑐 is also an NHI graph. Let u and v be two adjacent vertices in 𝐺𝑐 with 

𝑑𝐺𝑐(𝑢) = 𝑑𝐺𝑐(𝑣). Then u and v are non-adjacent in G such that 𝑑𝐺(𝑢) = 𝑑𝐺(𝑣). Since  G is NHI, by theorem 2.4  

𝑁𝐺𝑐(𝑢) = 𝑁𝐺𝑐(𝑣). Consequently, 𝑁𝐺𝑐(𝑢)≠𝑁𝐺𝑐(𝑣). Hence by theorem 2.1 𝐺𝑐 is NHI. 

Theorem 2.6  

         For r ≥ 2, the smallest order of an r-regular NHI graph is {
𝑟 + 2, 𝑖𝑓 𝑟 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑟 + 3, 𝑖𝑓 𝑟 𝑖𝑠 𝑜𝑑𝑑

 . Also the bound is strict. 

Proof     

        Let G be an r- regular NHI graph with vertices. Then p≥ r+1. If p = r+1, then G is complete which is not NHI and 

hence p≥ r+2. However, when r is even, 𝐾𝑟+2\F is an r- regular NHI graph on r+2 vertices. In addition, when r is odd, 

r+2 is also odd and hence p ≥ r+3. Moreover, 𝐾𝑟+3\H where H is a Hamiltonian cycle in 𝐾𝑟+2, is an r- regular NHI 

graph on r+3 vertices.  Hence, the smallest order of the r- regular NHI graph is {
𝑟 + 2, 𝑖𝑓 𝑟 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑟 + 3, 𝑖𝑓 𝑟 𝑖𝑠 𝑜𝑑𝑑

 . 

Theorem 2.7 

For any, the smallest order of an NHI graph with clique number n is n+ m where m is the least positive integer such that 

n ≤2𝑚.  Before proving the theorem, we discuss the following: 

                     For any two positive integers i and k, 1≤ k ≤i, a B(k, i) – graph is a bipartite graph with bipartition ( 𝑉1 ,𝑉2 

) where |𝑉1| = ( 𝑖
𝑘

) and |𝑉2| = i in which every vertex in V1 is of degree k and every vertex in V2 is of degree ( 𝑖−1
𝑘−1

). For 

example, the graph shown in Figure 2 is B(2, 4). The existence of such a graph is proved in Lemma 3.2.12. Note that 

when k = 1, B(1, 1) is a 1- regular graph with 2i vertices.  

 

Figure 2 

         For 1 ≤ k ≤i, a graph is called a B(k, i) -graph if it is a bipartite graph with bipartition (V1, V2 ) where |𝑉1|<( 𝑖
𝑘

) 

and |𝑉2| = i in which every vertex in V1  is of degree k and every vertex in 𝑉2 is of degree less than or equal to (𝑗−1
𝑘−1

). 

For example, a B(3, 5) – graph is shown in Figure 3. 

 

 

 

 

Figure 3 
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        Clearly, all the B (k, i) – graph and the B’(k, i) -graph are NHI. Since they are biparitie. 

Lemma 2.8 

               For any 1≤ k ≤i, B(k, i) -graph exists. 

Proof 

Let V = 𝑉1∪𝑉2 where 𝑉1 contains the vertices 𝑣1,𝑣2, … , 𝑣
( 𝑖

𝑘)
 and 𝑉2 contains 𝑢1,𝑢2, … , 𝑢𝑖 and let 𝑢1,𝑢2, … , 𝑢

( 𝑖
𝑘)

 be the 

distinct k- subsets (subsets with k elements ) of 𝑉2. Join 𝑉𝑗 with every element of 𝑈𝑗,for 1 ≤ j ≤( 𝑖
𝑘

). Then the resultant 

graph G is bipartite with bipartition (V1, V2 ) in which |𝑉1| = ( 𝑖
𝑘

)and |𝑉2| = i. Moreover, every vertex in 𝑉1is adjacent to 

exactly k vertices of 𝑉2 and every vertex in 𝑉2 is adjacent to exactly ( 𝑖−1
𝑘−1

) vertices of 𝑉1is of degree k and each vertex in 

𝑉2 is of degree ( 𝑖−1
𝑘−1

) and hence G is B(k, i)-graph. 

Lemma 2.9 

     For any 1≤ k ≤i, there is a B (k, i) -graph. 

Proof  

Let V= 𝑉1∪𝑉2 where 𝑉1 contains the vertices 𝑉1, 𝑉2,… such that |𝑉1|<( 𝑖
𝑘

) and 𝑉2 = { 𝑈1, 𝑈2,…𝑈𝑖} and let 

𝑈1, 𝑈2,…𝑈
( 𝑖

𝑘)
be the distinct k -subsets (subsets with k elements ) of 𝑉2. Join 𝑉𝑗 with every element of 𝑈𝑗,for 1≤ j ≤( 𝑖

𝑘
). 

Then the resultant graph G is bipartite with bipartition (V1, V2) in which |𝑉1|<( 𝑖
𝑘

) and |𝑉2| =i. Moreover, every 

vertex in 𝑉1is of degree k and each vertex in 𝑉2 is of degree less than or equal to ( 𝑖−1
𝑘−1

) vertices of 𝑉1. Thus each vertex 

in 𝑉1 is of degree k and each vertex in 𝑉2 is of degree less than or equal to ( 𝑖−1
𝑘−1

) and hence G is B(k, i) -graph. 

                 Now we prove the main theorem. 

Proof of theorem 2.7 

              For any n≥ 1, we first construct an NHI graph 𝐺𝑛 of order n+ m with clique number n. 

              If n =1 or 2, then 𝐾1 and 𝑃3 are respectively the required graphs. So, assume that n≥ 3. 

              Let {𝑣1, 𝑣2, … 𝑣𝑛:𝑢1, 𝑢2, … 𝑢𝑚} be the vertices of 𝐺𝑛. Take V1 = {𝑣1, 𝑣2, … 𝑣𝑛} and w = {𝑢1, 𝑢2, … 𝑢𝑚}. 

Suppose 𝑈0 contains the first (𝑚
0

) vertex, that is, 𝑣1 of V1,U1  contains the next (𝑚
1

) vertices of V1 and so on. In general, 

Ukcontains the (𝑚
𝑘

) vertices next to the vertices of Uk-  in V1.               When n< 2m, there exists j, 0< j < m, such that |𝑈𝑗| 

= (𝑚
𝑗

) an𝑑|𝑉1 \ ⋃ 𝑈𝑘
𝑗
𝑘=0 |<( 𝑚

𝑗+1
). In this case, take 𝑈𝑗+1 = 𝑉1 \ ⋃ 𝑈𝑘

𝑗
𝑘=0  and 𝑈𝑗+2, 𝑈𝑗+3,…𝑈𝑚 are all empty sets. Note 

that the set 𝑈𝑗+1may also be empty. Now we define the edge set of 𝐺𝑛 as follows: 

1. Add the edges among the vertices of 𝑉1 such that 〈𝑉1〉≅𝐾𝑛. 

2. When n = 2m, for 1≤ k ≤ m, add the edges between the vertices of 𝑈𝑘and w such that 〈𝑈𝑘 , 𝑊〉 is a B(k, 

m) – graph. 

3. When n< 2m, 
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a. For 1≤ k ≤ j ≤ m, add the edges between the vertices of 𝑈𝑘  and W such that 〈𝑈𝑘 , 𝑊〉 is a 

B(k, m) – graph and  

b. If 𝑈𝑗+1 is nonempty then add the edges between the vertices of 𝑈𝑗+1 and W such 〈𝑈𝑗+1, 𝑊〉 is a 

B(j+1, m) -graph. 

           The resultant graph 𝐺𝑛 is an NHI graph of order n+ m with clique number n. 

 

 

 

    Figure 4 

           The graph 𝐺4is shown in Figure 4, 𝐺5, 𝐺6,𝐺8 are shown if Figure 5 𝐺9is shown if Figure 6. 

Now, it is enough to show that n+ m is minimum. 

 

 

 

 

 

 

 

 

 

 

 

 

                                      Figure 5 

         Suppose that there is a graph G with clique number n and order n+ s where s < m. Let W = {𝑣1,𝑣2, … . 𝑣𝑛}be the set 

of vertices of G which induces 𝐾𝑛 in G. Let U = {𝑢1,𝑢2, … . 𝑢𝑠} be the set of remaining vertices of G. Let W0 be the set 

of all vertices of W having no neighbours in U. For 1 ≤ t ≤ s, let 𝑊𝑡⊆ W be the set of all vertices of G with degree t in 

〈𝑊, 𝑈〉. 
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Figure 6 

Claim 𝑊𝑡 contains at most (𝑠
𝑡
) vertices, o ≤ t ≤ s. 

                   If 𝑊0 contains two vertices u and v, then N[u] = N[v] = W in G . This implies that G is not NHI, which is a 

contradiction. Therefore 𝑊0 contains at most one vertex, that is, |𝑊0|≤(𝑠
0
). Thus the result is true when t=0.   When t≥ 

1, each vertex in 𝑊𝑡 has degree t in 〈𝑊𝑡 , 𝑈〉. But |𝑈| = s. Therefore, for each vertex v in 𝑊𝑡, N(v) in 〈𝑊𝑡 , 𝑈〉is a t-subset 

(subset with t elements ) of U. But the number of distinct t-subsets of U is exactly (𝑠
𝑡
). If 𝑊𝑡 contains more than 

(𝑠
𝑡
)vertices, then there are at least two vertices u and v in 𝑊𝑡 such that N(u) = N(v) in 〈𝑊𝑡 , 𝑈〉 and hence in G, N[u] = 

N[v]. this is a contradiction to the fact that G is a NHI. Hence the claim. This forces that, 

                 n = |𝑊| = |𝑊0| + |𝑊1| + …+|𝑊𝑠|   ≤(𝑠
0
) + (𝑠

1
) + ⋯ + (𝑠

𝑠
)             = 2s. 

            Thus n≤ 2s, where s < m. This is a contradiction, to the choice of m and the proof is complete. 

3. IRREGULARITY OF PRODUCT GRAPHS 

Theorem 3.1  

        Let G and H be NI graphs with p(G) and p(H) vertices respectively.  Then 𝐺 ∨ 𝐻 is also NI if and only if 𝑑𝐺̅(𝑢) ≠

𝑑𝐻̅(𝑣).  For any u in G and v in H, that is, 𝑝(𝐺) − 𝑑𝐺(𝑢) ≠ 𝑝(𝐻) − 𝑑𝐻(𝑣). 

Proof.   

Assume that 𝐺 ∨ 𝑉 is NI.  We claim that for all vertices u in G and v in H, 𝑑𝐺̅(𝑢) ≠ 𝑑𝐻̅(𝑣). Let 𝑢 ∈ 𝐺 and 𝑣 ∈ 𝐻.  Then 

𝑢𝑣 ∈ 𝐸(𝐺 ∨ 𝐻).  But by our assumption 𝐺 ∨ 𝐻 is NI and therefore 𝑑𝐺 ∨ 𝐻(𝑢) ≠ 𝑑𝐺 ∨ 𝐻(𝑣).  This means that 𝑑𝐺∨𝐻̅̅ ̅̅ ̅̅ (𝑢) ≠

𝑑𝐺∨𝐻̅̅ ̅̅ ̅̅ (𝑣).  But 𝐺 ∨ 𝐻̅̅ ̅̅ ̅̅ ̅̅ = 𝐺̅ ∪ 𝐻̅.  Thus 𝑑𝐺̅∪𝐻̅(𝑢) ≠ 𝑑𝐺̅∪𝐻̅(𝑣) that is, 𝑑𝐺̅(𝑢) ≠ 𝑑𝐻̅(𝑣).  Since 𝑢 ∈ 𝐺̅ and 𝑣 ∈ 𝐻̅. 

Conversely, suppose 𝑑𝐺̅(𝑢) ≠ 𝑑𝐻̅(𝑣) for all 𝑢 ∈ 𝐺 and 𝑣 ∈ 𝐻.  Then we have to prove that 𝐺 ∨ 𝐻 is NI.  

Suppose not, then there are two adjacent vertices u and v in 𝐺 ∨ 𝐻 such that 𝑑𝐺 ∨ 𝐻(𝑢) = 𝑑𝐺 ∨ 𝐻(𝑣).  Since 𝑢𝑣 ∈ 𝐸(𝐺 ∨

𝐻), we have either 𝑢𝑣 ∈ 𝐸(𝐺) or 𝑢𝑣 ∈ 𝐸(𝐻) or 𝑢 ∈ 𝐺 and 𝑣 ∈ 𝐻. If 𝑢𝑣 ∈ 𝐸(𝐺), then 𝑢 ∈ 𝐺 and 𝑣 ∈ 𝐺.  Also, 

the degree of u in the join 𝑑𝐺 ∨ 𝐻(𝑢) ≠ 𝑑𝐺 (𝑢) + 𝑝(𝐻).  Therefore, 𝑑𝐺 ∨ 𝐻(𝑢) = 𝑑𝐺 ∨ 𝐻(𝑣) implies that 𝑑𝐺 (𝑢) + 𝑝(𝐻) =
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𝑑𝐺 (𝑣) + 𝑝(𝐻) and this forces that 𝑑𝐺 (𝑢) = 𝑑𝐺 (𝑣) where 𝑢𝑣 ∈ 𝐸(𝐺).  This is a contradiction.  Since G is NI.  Thus 

𝑢𝑣 ∉ 𝐸(𝐺). Suppose 𝑢𝑣 ∈ 𝐸(𝐺).  Then u and v are vertices in the NI graph H.  Now 𝑑𝐺 ∨ 𝐻(𝑢) = 𝑑𝐺 ∨ 𝐻(𝑣) implies that 

𝑑𝐻(𝑢) + 𝑝(𝐻) = 𝑑𝐻 (𝑣) + 𝑝(𝐺) and therefore 𝑑𝐻(𝑢) = 𝑑𝐻(𝑣) which is a contradiction.  Hence 𝑢𝑣 ∉ 𝐸(𝐻). Therefore, 

the only possibility is that 𝑢 ∈ 𝐺 and  𝑣 ∈ 𝐻 with 𝑢𝑣 ∈ 𝐸(𝐺 ∨ 𝐻) and 𝑑𝐺 ∨ 𝐻(𝑢) = 𝑑𝐺 ∨ 𝐻(𝑣), that is 𝑑𝐺∨𝐻̅̅ ̅̅ ̅̅ (𝑢) =

𝑑𝐺∨𝐻̅̅ ̅̅ ̅̅ (𝑣).  This means that 𝑑𝐺̅∪𝐻̅(𝑢) = 𝑑𝐺̅∪𝐻̅(𝑣) and hence 𝑑𝐺̅(𝑢) = 𝑑𝐻̅(𝑣) since 𝑢 ∈ 𝐺̅ and 𝑣 ∈ 𝐻̅.  This is a 

contradiction to the assumption.  Hence 𝐺 ∨ 𝐻 is NI which completes the proof. 

Corollary  

 Let G and H be NI graphs with same order then 𝐺 ∨ 𝐻 is NI if and only if 𝑑𝐺(𝑢) ≠ 𝑑𝐻(𝑣) for any vertex u in G and v 

in H. 

Proof 

 Let G and H be NI graphs with 𝑝(𝐺) = 𝑝(𝐻).  By the above theorem 𝐺 ∨ 𝐻 is NI if and only if 𝑑𝐺̅(𝑢) = 𝑑𝐻̅(𝑣), 

for all u in G and v in H, that is 𝑝(𝐺) − 1 − 𝑑𝐺(𝑢) ≠ 𝑝(𝐻) − 1 − 𝑑𝐻(𝑣), for all u in G and v in H.  This  forces that, 

𝑑𝐺(𝑢) ≠ 𝑑𝐻(𝑣), for any vertex u in G and v in H.  This proves the corollary. 

Theorem 3.2   

G and H are NI graphs if and only if  𝐺 × 𝐻 is NI. 

Proof  

Let G and H be NI graphs.  We claim that 𝐺 × 𝐻 is NI. First we note that for any vertex (u, v) in 𝐺 × 𝐻, 𝑑𝐺×𝐻(𝑢, 𝑣) =

𝑑𝐺(𝑢) + 𝑑𝐻(𝑣). 

Let (𝑢1, 𝑣1) and (𝑢2, 𝑣2) be any two adjacent vertices in 𝐺 × 𝐻.  Then, either 𝑢1 = 𝑢2and 𝑣1𝑣2 ∈ 𝐸(𝐻) or 𝑣1 =

𝑣2 and 𝑢1𝑢2 ∈ 𝐸(𝐺).  Since G and H are NI graphs.  We have either 𝑑𝐺(𝑢1) = 𝑑𝐺(𝑢2) and  𝑑𝐻(𝑣1) ≠ 𝑑𝐻(𝑣2), or  

𝑑𝐺(𝑢1) ≠ 𝑑𝐺(𝑢2) and  𝑑𝐻(𝑣1) = 𝑑𝐻(𝑣2).  In both the cases, 𝑑𝐺(𝑢1) + 𝑑𝐻(𝑣1) ≠ 𝑑𝐺(𝑢2) + 𝑑𝐻(𝑣2) and hence  

𝑑𝐺×𝐻(𝑢1, 𝑣1) ≠ 𝑑𝐺×𝐻(𝑢2, 𝑣2).  Consequently, 𝐺 × 𝐻 is NI. 

Conversely, suppose 𝐺 × 𝐻 is NI.  We will now show that both G and H are NI.  Let 𝑢1 and 𝑢2 be any two 

adjacent vertices in G, and let v be any vertex in H.  Now  (𝑢1, 𝑣) and  (𝑢2, 𝑣) are adjacent vertices in 𝐺 × 𝐻.  Since 

𝐺 × 𝐻 is NI, 𝑑𝐺×𝐻(𝑢1, 𝑣) ≠ 𝑑𝐺×𝐻(𝑢2, 𝑣), that is𝑑𝐺(𝑢1) + 𝑑𝐻(𝑣) ≠ 𝑑𝐺(𝑢2) + 𝑑𝐻(𝑣).  This forces that, 𝑑𝐺(𝑢1) ≠

𝑑𝐺(𝑢2) and hence G is NI. Let u be any vertex in G, and let 𝑣1 and 𝑣2 be any two adjacent vertices in H.  Then (𝑢, 𝑣1) 

and (𝑢, 𝑣2) are adjacent vertices in 𝐺 × 𝐻 which is NI.  Therefore, 𝑑𝐺×𝐻(𝑢, 𝑣1) ≠ 𝑑𝐺×𝐻(𝑢, 𝑣2). 𝑑𝐺(𝑢) + 𝑑𝐻(𝑣1) ≠

𝑑𝐺(𝑢) + 𝑑𝐻(𝑣2).  Consequently,𝑑𝐻(𝑣1) ≠ 𝑑𝐻(𝑣2) and hence H is NI.  Thus the proof follows. 

Theorem 3.3 

  Let G and H be NI graphs.  Then 𝐺⨂𝐻 is NI if and only if for any two edges 𝑢1𝑢2 ∈ 𝐸(𝐺) and 𝑣1𝑣2 ∈ 𝐸(𝐻).  

𝑑𝐺(𝑢1)𝑑𝐻(𝑣1) ≠ 𝑑𝐺(𝑢2)𝑑𝐻(𝑣2). 

Proof  

Assume that 𝐺⨂𝐻 is NI.  We have to prove that 𝑑𝐺(𝑢1)𝑑𝐻(𝑣1) ≠ 𝑑𝐺(𝑢2)𝑑𝐻(𝑣2)  for any two edges 𝑢1𝑢2 ∈ 𝐸(𝐺) and 

𝑣1𝑣2 ∈ 𝐸(𝐻). Let 𝑢1𝑢2 and 𝑣1𝑣2 be two edges in G and H respectively.  Then (𝑢1, 𝑣1) and (𝑢2, 𝑣2) are adjacent 
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vertices in 𝐺⨂𝐻.  But by our assumption 𝐺⨂𝐻 is NI, and thus 𝑑𝐺⨂𝐻(𝑢1, 𝑣1) ≠ 𝑑𝐺⨂𝐻(𝑢2, 𝑣2).  Here note that for any 

vertex (x, y) in 𝐺⨂𝐻, 𝑑𝐺⨂𝐻(𝑥, 𝑦) = 𝑑𝐺(𝑥)𝑑𝐻(𝑦).  This forces that, 𝑑𝐺(𝑢1)𝑑𝐻(𝑣1) ≠ 𝑑𝐺(𝑢2)𝑑𝐻(𝑣2). 

Conversely, assume that for any two edges 𝑢1𝑢2 in G and 𝑣1𝑣2 in H, 𝑑𝐺(𝑢1)𝑑𝐻(𝑣1) ≠ 𝑑𝐺(𝑢2)𝑑𝐻(𝑣2).  We 

will now prove that 𝐺⨂𝐻 is NI.  Suppose not, then there are adjacent vertices (𝑢1, 𝑣1) and (𝑢2, 𝑣2) in 𝐺⨂𝐻 such that 

𝑑𝐺⨂𝐻(𝑢1, 𝑣1) ≠ 𝑑𝐺⨂𝐻(𝑢2, 𝑣2).  The adjacency between (𝑢1, 𝑣1) and (𝑢2, 𝑣2) in 𝐺⨂𝐻 means that, 𝑢1𝑢2 ∈ 𝐸(𝐺) and 

𝑣1𝑣2 ∈ 𝐸(𝐻).  Also, 𝑑𝐺⨂𝐻(𝑢1, 𝑣1) = 𝑑𝐺⨂𝐻(𝑢2, 𝑣2) results that  𝑑𝐺(𝑢1)𝑑𝐻(𝑣1) = 𝑑𝐺(𝑢2)𝑑𝐻(𝑣2).  Thus there are edges 

𝑢1𝑢2 ∈ 𝐸(𝐺) and 𝑣1𝑣2 ∈ 𝐸(𝐻) such that 𝑑𝐺(𝑢1)𝑑𝐻(𝑣1) = 𝑑𝐺(𝑢2)𝑑𝐻(𝑣2).  Thus, there are edges 𝑢1𝑢2 ∈ 𝐸(𝐺) and 

𝑣1𝑣2 ∈ 𝐸(𝐻) such that 𝑑𝐺(𝑢1)𝑑𝐻(𝑣1) = 𝑑𝐺(𝑢2)𝑑𝐻(𝑣2), which is a contradiction.  This proves the converse part. 

Theorem 3.4  

The graphs 𝐺, 𝐻1, 𝐻2, … , 𝐻𝑛 are NI if and only if                      𝐺[𝐻1 ∪ 𝐻2 ∪ … ∪ 𝐻𝑛] is NI. 

Proof  

Let = 𝐻1 ∪ 𝐻2 ∪ … ∪ 𝐻𝑛 .  Suppose G and H are NI graphs.  We have to prove that G[H] is NI.  Suppose G[H] is not 

NI.  Then there are adjacent vertices (𝑢1, 𝑣1) and (𝑢2, 𝑣2) in 𝐺[𝐻] such  that 𝑑𝐺[𝐻](𝑢1, 𝑣1) =𝑑𝐺[𝐻](𝑢2, 𝑣2).  Therefore, 

𝑑𝐺(𝑢1)𝑝(𝐻) + 𝑑𝐻(𝑣1) = 𝑑𝐺(𝑢2)𝑝(𝐻) + 𝑑𝐻(𝑣2).  This means that,     𝑝(𝐻)[𝑑𝐺(𝑢1) − 𝑑𝐺(𝑢2) = 𝑑𝐻(𝑣2) − 𝑑𝐻(𝑣1) 

……….(1). But (𝑢1, 𝑣1) and (𝑢2, 𝑣2) are adjacent vertices in G[H], that is either u1 is adjacent with u2 in G, or u1 = u2 

and v1 is adjacent with v2 in H.  If  u1 is adjacent with u2 in G, then 𝑑(𝐺)(𝑢1) ≠ 𝑑(𝐺)(𝑢2), since G is NI.  With out loss of 

generality, we can assume that 𝑑𝐺(𝑢1) > 𝑑𝐺(𝑢2).  Then, 𝑑𝐺(𝑢1) − 𝑑𝐺(𝑢2) ≥ 1.  Therefore by (1), 𝑑𝐻(𝑣2) − 𝑑𝐻(𝑣1) ≥

𝑝(𝐻), which is impossible and hence G[H] is NI.   If 𝑢1 = 𝑢2 in G and 𝑣1𝑣2 ∈ 𝐸(𝐻), then (1) implies that 𝑑𝐻(𝑣1) =

𝑑𝐻(𝑣2), which is a contradiction to our assumption that H is the union of NI graphs and therefore G[H] is NI. 

Conversely, let 𝐺[𝐻1 ∪ 𝐻2 ∪ … ∪ 𝐻𝑛] = 𝐺[𝐻] be NI.  We claim that all 𝐺, 𝐻1, 𝐻2, … , 𝐻𝑛 are NI graphs.  Let u1 and u2 be 

any two adjacent vertices in G and let v be any vertex in H.  Then (𝑢1, 𝑣)and (𝑢2, 𝑣) are adjacent vertices in G[H].  

Since G[H] is NI, 𝑑𝐺[𝐻](𝑢1, 𝑣) ≠ 𝑑𝐺[𝐻](𝑢2, 𝑣).  This means that 𝑑𝐺(𝑢1)𝑝(𝐻) + 𝑑𝐻(𝑣) ≠ 𝑑𝐺(𝑢2)𝑝(𝐻) + 𝑑𝐻(𝑣).  So,  

𝑑𝐺(𝑢1) ≠ 𝑑𝐺(𝑢2) and this proves that G is NI. Let u be any vertex in G and let 𝑣𝑖1
 and 𝑣𝑖2

 be any two adjacent vertices 

in 𝐻𝑖.  Then  (𝑢, 𝑣𝑖1
)and (𝑢, 𝑣𝑖2

) are adjacent vertices in G[H].  Since G[H] is NI, 𝑑𝐺[𝐻](𝑢, 𝑣𝑖1
) ≠ 𝑑𝐺[𝐻](𝑢, 𝑣𝑖2

). That is 

𝑑𝐺(𝑢)𝑝(𝐻) + 𝑑𝐻(𝑣𝑖1
) ≠ 𝑑𝐺(𝑢)𝑝(𝐻) + 𝑑𝐻(𝑣𝑖2

).  This forces that 𝑑𝐻𝑖
(𝑣𝑖1

) ≠ 𝑑𝐻𝑖
(𝑣𝑖2

).  This implies that Hi is NI 

which completes the proof. 

Theorem 3.5 

 Tensor product of an NI graph with any regular graph is NI. 

Proof   

Since𝐺⨂𝐻 = 𝐻⨂𝐺.  With out loss of generality, we can assume that G is NI andH is regular.  We have to prove that 

𝐺⨂𝐻 is NI. Let (𝑢1, 𝑣1) and (𝑢2, 𝑣2) be two adjacent vertices in 𝐺⨂𝐻.  Then 𝑢1𝑢2 ∈ 𝐸(𝐺) and 𝑣1𝑣2 ∈ 𝐸(𝐻) such that 

𝑑𝐺(𝑢1) = 𝑑𝐺(𝑢2) and 𝑑𝐻(𝑣1) = 𝑑𝐻(𝑣2).  Since 𝑑𝐺⨂𝐻(𝑢, 𝑣) = 𝑑𝐺(𝑢)𝑑𝐻(𝑣)  for any vertex (u, v) in 𝐺⨂𝐻, we have 

𝑑𝐺⨂𝐻(𝑢1, 𝑣1) = 𝑑𝐺(𝑢1)𝑑𝐻(𝑣1) ≠ 𝑑𝐺(𝑢2)𝑑𝐻(𝑣2) = 𝑑𝐺⨂𝐻(𝑢2, 𝑣2).Consequently, 𝐺⨂𝐻 is NI.  This complies the proof. 

4 Product NHI graphs 

Some product graphs which are NHI are established in this section.  
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A vertex v in G is called a full vertex of G if v is adjacent to all the vertices of G except. 

 

Theorem 4.1 

Let G and H be NHI graphs.  Then 𝐺 ∨ 𝐻 is NHI if and only if at least one of the graphs G and H has no full vertex. 

Proof   

If both G and H have full vertex then let 𝑢 ∈ 𝐺 and 𝑣 ∈ 𝐻 be the full vertices of G and H respectively.  

Therefore, in 𝐺 ∨ 𝐻.  𝑁[𝑢] = 𝑉(𝐺 ∨ 𝐻) = 𝑉(𝐺) ∪ 𝑉(𝐻) = 𝑁[𝑣].  In addition, u and v are adjacent vertices with same 

degree in 𝐺 ∨ 𝐻 and thus 𝐺 ∨ 𝐻 is not NHI. Conversely, suppose that G or H has no full vertex.  Without loss of 

generality, assume that G has no full vertex.  We claim that 𝐺 ∨ 𝐻 is NHI.  Let u and v be two adjacent vertices with 

same degree in 𝐺 ∨ 𝐻. If both u and v are the vertices of G.  Then, since G is NHI.  𝑁𝐺[𝑢] ≠ 𝑁𝐺[𝑣] and hence, 𝑁𝐺[𝑢] ∪

𝑉(𝐻) ≠ 𝑁𝐺[𝑣] ∪ 𝑉(𝐻).  This forces that, 𝑁𝐺∨𝐻[𝑢] ≠ 𝑁𝐺∨𝐻[𝑣]. Similarly, if both u and v are the vertices of the NHI 

graph H then 𝑁𝐻[𝑢] ≠ 𝑁𝐻[𝑣] and hence 𝑁𝐻[𝑢] ∪ 𝑉(𝐺) ≠ 𝑁𝐻[𝑣] ∪ 𝑉(𝐺).  That is 𝑁𝐺∨𝐻[𝑢] ≠ 𝑁𝐺∨𝐻[𝑣]. If 𝑢 ∈ 𝐺 and 

𝑣 ∈ 𝐻, then as G has no full vertex, there is a vertex w in G such that u and w are non-adjacent in G.  This forces that 

𝑤 ∉ 𝑁𝐺∨𝐻[u] and 𝑤 ∈ 𝑁𝐺∨𝐻[v] and therefore, 𝑁𝐺∨𝐻[u]≠ 𝑁𝐺∨𝐻[v]. 

Theorem 4.2 

  If G and H are NHI graphs, then 𝐺 × 𝐻 is also NHI. 

Proof   

Let G be a NHI graph of order m and H be a NHI  graph of order n.  Let 𝑉(𝐺) = {𝑢1, 𝑢2, … , 𝑢𝑚} and 𝑉(𝐻) ==

{𝑣1, 𝑣2, … , 𝑣𝑛}.  If 𝑢 = (𝑢1, 𝑣1) ∈ 𝑉(𝐺) × 𝑉(𝐻), then the vertices adjacent to u are of the form (𝑢1, 𝑣𝑖) or (𝑢𝑗, 𝑣1) where 

𝑢1𝑢𝑗 ∈ 𝐸(𝐺) or 𝑣1𝑣𝑖 ∈ 𝐸(𝐻). We claim that 𝐺 × 𝐻 is NHI.  Let u and v be two adjacent vertices of same degree in 𝐺 ×

𝐻.  Let 𝑢 = (𝑢1, 𝑣1).  If  𝑣 = (𝑢1, 𝑣𝑖), then v1 and vi are adjacent in H, and 𝑑(𝑢1) + 𝑑(𝑣𝑖) = 𝑑(𝑢1, 𝑣𝑖) = 𝑑(𝑣) =

𝑑(𝑢) = 𝑑(𝑢1, 𝑣1) = 𝑑(𝑢1) + 𝑑(𝑣1) and hence 𝑑(𝑣1) = 𝑑(𝑣𝑖).  Also, since H is NHI and v1 and vi are adjacent in H, 

𝑁𝐻[𝑣1] ≠ 𝑁𝐻[𝑣𝑖].  As 𝑑(𝑣1) = 𝑑(𝑣𝑖),  we have 𝑁𝐻[𝑣1] is not a proper subset of 𝑁𝐻[𝑣𝑖].  Therefore, there exists 𝑤 ∈

𝑁𝐻[𝑣1] such that 𝑤 ∉ 𝑁𝐻[𝑣𝑖] and hence in 𝐺 × 𝐻, (𝑢, 𝑤) ∈ 𝑁𝐺×𝐻[𝑢] and (𝑢, 𝑤) ∉ 𝑁𝐺×𝐻[𝑣].  This means that 

𝑁𝐺×𝐻[𝑢] ≠ 𝑁𝐺×𝐻[𝑣].   Similarly, if 𝑣 = (𝑢𝑗, 𝑣1), then 𝑢1 and 𝑢𝑗 are adjacent in G, and 𝑑(𝑢𝑗) + 𝑑(𝑣1) = 𝑑(𝑢𝑗 , 𝑣1) =

𝑑(𝑣) = 𝑑(𝑢) = 𝑑(𝑢1, 𝑣1) = 𝑑(𝑢1) + 𝑑(𝑣1) and hence 𝑑(𝑢𝑗) + 𝑑(𝑢1).  But G is NHI and 𝑢1 and 𝑢𝑗  are adjacent in G.  

Thus 𝑁𝐺[𝑢1] ≠ 𝑁𝐺[𝑢𝑗].  As 𝑑(𝑢𝑗) = 𝑑(𝑢1),  we have 𝑁𝐺[𝑢1] is not a proper subset of 𝑁𝐺[𝑢𝑗].  Therefore, there exits 

𝑠 ∈ 𝑁𝐺[𝑢1] such that 𝑠 ∉ 𝑁𝐺[𝑢𝑗] and hence in 𝐺 × 𝐻, (𝑠, 𝑣) ∈ 𝑁𝐺×𝐻[𝑢] and (𝑠, 𝑣) ≠ 𝑁𝐺×𝐻[𝑣].  Hence 𝑁𝐺×𝐻[𝑢] ≠

𝑁𝐺×𝐻[𝑣].  Therefore by Theorem 3.2.1, in both the cases    𝐺 × 𝐻 is NHI.  This completes the proof. 

Remark   

Let G be any NHI graph and let 𝑢𝑖 and 𝑢𝑗be two adjacent vertices in G.  If 𝑑(𝑢𝑖) ≠ 𝑑(𝑢𝑗), then  𝑁(𝑢𝑖) ≠ 𝑁(𝑢𝑗).  If 

𝑑(𝑢𝑖) = 𝑑(𝑢𝑗) and if  𝑁(𝑢𝑖) ≠ 𝑁(𝑢𝑗), then 𝑁(𝑢𝑖) ≠ 𝑁(𝑢𝑗). 

Theorem 4.3  

Tensor product of an NHI graph with any graph is NHI. 
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Proof 

  Let G be an NHI graph and H be any graph.  We claim that 𝐺⨂𝐻 is NHI.  Let (𝑢1, 𝑣1) and (𝑢2, 𝑣2) be two adjacent 

vertices with same degree in 𝐺⨂𝐻.  Then u1 is adjacent with u2 in G and v1 is adjacent with v2 in H.  We know that in 

𝐺⨂𝐻, for any vertex (𝑢. 𝑣). 𝑑(𝑢. 𝑣) = 𝑑(𝑢)𝑑𝑣) and 𝑁(𝑢, 𝑣) = 𝑁(𝑢) × 𝑁(𝑣). 

𝑁[(𝑢1, 𝑣1)] = {(𝑢1, 𝑣1)} ∪ 𝑁(𝑢1, 𝑣1) = {(𝑢1, 𝑣1)} ∪ 𝑁(𝑢1) × 𝑁(𝑣1) 

≠ {(𝑢2, 𝑣2)} ∪ 𝑁(𝑢2) × 𝑁(𝑣2)  (Since G is NHI and 𝑢1𝑢2 ∈ 𝐸(𝐺))  = 𝑁[(𝑢2, 𝑣2)] 

Theorem 4.4 

  If G and H are NHI graphs, then 𝐺 ∘ 𝐻 is also NHI. 

Proof   

G and H are NHI graphs.  We have to prove that 𝐺 ∘ 𝐻 is NHI.  Let (𝑢1, 𝑣1) and (𝑢2, 𝑣2) be any two adjacent vertices in 

𝐺 ∘ 𝐻 with same degree.  Then (i) 𝑢1 = 𝑢2 and 𝑣1 is adjacent with v2 in H, or (ii) 𝑣1 = 𝑣2 and 𝑢1 is adjacent with u2 in 

G, or (iii) u1 is adjacent with u2  in G and v1 is adjacent with v2  in H.  If 𝑢1 = 𝑢2 and v1 is adjacent with v2 in H, then 

𝑁[𝑢1] = 𝑁[𝑢2] and 𝑁[𝑣1] ≠ 𝑁[𝑣2], since H is NHI.  Therefore, 𝑁[𝑢1] × 𝑁[𝑣1] ≠ 𝑁[𝑢2] × 𝑁[𝑣2] and hence 

𝑁[(𝑢1, 𝑣1)] ≠ 𝑁[(𝑢2, 𝑣2)].  If 𝑣1 = 𝑣2 and 𝑢1 is adjacent with 𝑢2 in G, then 𝑁[𝑣1] = 𝑁[𝑣2] and 𝑁[𝑢1] ≠ 𝑁[𝑢2], since 

G is NHI.   Therefore, 𝑁[𝑢1] × 𝑁[𝑣1] ≠ 𝑁[𝑢2] × 𝑁[𝑣2] and hence 𝑁[(𝑢1, 𝑣1)] ≠ 𝑁[(𝑢2, 𝑣2)].  If u1 is adjacent with u2  

in G and v1  is adjacent with v2 in H, then 𝑁[𝑢1] ≠ 𝑁[𝑢2] and 𝑁[𝑣1] ≠ 𝑁[𝑣2], since G and H are NHI.  Therefore, in 

this case also, 𝑁[𝑢1] × 𝑁[𝑣1] ≠ 𝑁[𝑢2] × 𝑁[𝑣2]  and 𝑁[(𝑢1, 𝑣1)] ≠ 𝑁[(𝑢2, 𝑣2)].       

Theorem 4.5 

 The lexicographic product of two NHI graphs is also NHI. 

Proof  

 Let G and H be NHI graphs.  For any vertex (u, v) in G[H], 𝑁[𝑢, 𝑣] = {𝑢} × 𝑁[𝑣] ∪ 𝑁(𝑢) × 𝑉(𝐻).  Let 

(𝑢1, 𝑣1) and (𝑢2, 𝑣2) be two adjacent vertices with same degree in G[H].  Then either (i) u1 is adjacent with u2 in G. or 

(ii) 𝑢1 = 𝑢2 and v1 is adjacent with v2 in H. 

Case (i)  Suppose u1 is adjacent with u2 in G. 

Then since G is NHI.  𝑁[𝑢1] ≠ 𝑁[𝑢2].  Therefore there is a vertex x distinct from u1 and u2 which is not a common 

neighbor of u1  and u2 that is there exists 𝑥 ≠ 𝑢2 in N(u1) such that 𝑥 ∉ 𝑁(𝑢2).  or 𝑥 ≠ 𝑢1 in N(𝑢2) such that 𝑥 ∉ 𝑁(𝑢1). 

Let 𝑥 ≠ 𝑢2 in 𝑁(𝑢1) such that 𝑥 ∉ 𝑁(𝑢2).Then, for any vertex ℎ ∈ 𝑉(𝐻), (𝑥. ℎ) ∉ {𝑢2} × 𝑁[𝑣2] and (𝑥, ℎ) ∉ 𝑁(𝑢2) ×

𝑉(𝐻). 

Thus, (𝑥, ℎ) ∉ {𝑢2} × 𝑁(𝑣2) ∪ 𝑁(𝑢2) × 𝑉(𝐻). But (𝑥, ℎ) ∈ {𝑢1} × 𝑁(𝑣1) ∪ 𝑁(𝑢1) × 𝑉(𝐻). 𝑁[(𝑢1, 𝑣1)] = {𝑢1} ×

𝑁[𝑣1] ∪ 𝑁(𝑢1) × 𝑉(𝐻) ≠ {𝑢2} × 𝑁[𝑣2] ∪ 𝑁(𝑢2) × 𝑉(𝐻) = [(𝑢2. 𝑣2)] and hence G[H] is NHI. Suppose 𝑥 ≠ 𝑢1 

in 𝑁(𝑢2) such that 𝑥 ∉ 𝑁(𝑢1). Then, for any vertex 𝑠 ∈ 𝑉(𝐻).  (𝑥. 𝑠) ∉ {𝑢1} × 𝑁[𝑣1] and (𝑥. 𝑠) ∉ 𝑁(𝑢1) × 𝑉(𝐻).  

Thus, (x, s)∉  𝑁(𝑢1) × 𝑉(𝐻). 

Thus, (𝑥. 𝑠) ∉ {𝑢1} × 𝑁[𝑣1] ∪ 𝑁(𝑢1) × 𝑉(𝐻). But (x, s) ∈  {𝑢2} × 𝑁[𝑣2] ∪ 𝑁(𝑢2) × 𝑉(𝐻). 

Hence 𝑁[(𝑢1, 𝑣1)] =  {𝑢1} × 𝑁[𝑣1] ∪ 𝑁(𝑢1) × 𝑉(𝐻). ≠  {𝑢2} × 𝑁[𝑣2] ∪ 𝑁(𝑢2) × 𝑉(𝐻). 
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= 𝑁[(𝑢2, 𝑣2)] 

Case (ii)  Suppose𝑢1 = 𝑢2 and 𝑣1 is adjacent with 𝑣2 in H. 

 Then 𝑁(𝑣1) ≠ 𝑁(𝑣2) since H is NHI. Now, there exists 𝑦 ≠ 𝑣2 in 𝑁(𝑣1) such that 𝑦 ∉ 𝑁(𝑣2), or 𝑦 ≠ 𝑣1 in 

𝑁(𝑣2) such that 𝑦 ∉ 𝑁(𝑣1).If 𝑦 ≠ 𝑣2 in N(v1) such that 𝑦 ∉ 𝑁(𝑣2), then (𝑢1, 𝑦) ∈ {𝑢1} × 𝑁[𝑣1]. But (𝑢1, 𝑦) ∉ {𝑢1} ×

𝑁[𝑣2].  Also obviously (𝑢1, 𝑦) ∉  𝑁[𝑢1] × 𝑉(𝐻). Hence (𝑢1, 𝑦) ∉ {𝑢1} × 𝑁[𝑣2] ∪  𝑁[𝑢1] × 𝑉(𝐻) and (𝑢1, 𝑦) ∈ {𝑢1} ×

𝑁[𝑣1] ∪  𝑁[𝑢1] × 𝑉(𝐻).  Thus,  𝑁[(𝑢1, 𝑣1)] =  {𝑢1} × 𝑁[𝑣1] ∪ 𝑁(𝑢1) × 𝑉(𝐻). ≠  {𝑢1} × 𝑁[𝑣2] ∪ 𝑁(𝑢1) × 𝑉(𝐻). =

𝑁[(𝑢1, 𝑣2)] = 𝑁[(𝑢2, 𝑣2)]. Suppose 𝑦 ≠ 𝑣1 in 𝑁(𝑣2) such that 𝑦 ∉ 𝑁(𝑣1).  Then (𝑢1, 𝑦) ∈ {𝑢1} × 𝑁[𝑣2]. But (𝑢1, 𝑦) ∉

{𝑢1} × 𝑁[𝑣1]. Also, (𝑢1, 𝑦) ∉  𝑁[𝑢1] × 𝑉(𝐻). Hence (𝑢1, 𝑦) ∉ {𝑢1} × 𝑁[𝑣1] ∪  𝑁[𝑢1] × 𝑉(𝐻)  and  (𝑢1, 𝑦) ∈ {𝑢1} ×

𝑁[𝑣2] ∪  𝑁[𝑢1] × 𝑉(𝐻).  Hence, 𝑁[(𝑢1, 𝑣1)] = {𝑢1} × 𝑁[𝑣1] ∪  𝑁[𝑢1] × 𝑉(𝐻) ≠ {𝑢1} × 𝑁[𝑣2] ∪  𝑁[𝑢1] × 𝑉(𝐻)  =

𝑁[(𝑢1, 𝑣2)] = 𝑁[(𝑢2, 𝑣2)]. Hence in both the cases, 𝑁[(𝑢1, 𝑣1)] = 𝑁[(𝑢2, 𝑣2)]. 

5 Lattice Theoretic Approach To The Study of Irregular Graphs 

Both Lattices and Boolean algebra have important applications in the theory and design of computers.  There 

are many other areas such as engineering and science to which Boolean algebra is applied.  In this section, the basic 

concepts in lattice theory and Boolean algebra have been discussed. A set L on which a partial ordering ≤ is defined is 

called a partially ordered set or a poset and is denoted by (L,≤).  

 Let (L, ≤) be a poset and let A ⊆ L. Any element x ∈ L is an upper bound for A if for all a ∈ A, a ≤ x.  An 

element x ∈ L is the least upper bound (lub) for A if x is an upper bound for A and x ≤ y, where y is any upper bound 

for A. Similarly, any element x ∈ L is the greater lower bound (glb) for A if x is a lower bound for A and x ≤ y, where y 

is any lower bound for A.  A lattice is poset L in which every pair of elements has a glb and a lub such that for all 

a, b, c ∈ L.  

 a ˅ a = a and a ˄ a = a    a ˅ b = b ˅ a and a ˄ b = b ˄ a 

a ˅ (b ˅ c) = (a ˅ b) ˅ c and a ˄ (b ˄ c) = (a ˄ b) ˄ c  a ˅ (a ˄ b) = a and a ˄ ( a ˅ b) = a 

Since lattice is an algebraic system with binary operations ˅ and ˄.  It is denoted by (L, ˅, ˄).  

The glb of a, b  L is denoted by a ˄ b and is also called the meet. The lub of a, b L is denoted by a ˅ b and is also 

called the join.  For example, let A be any set and P(A) be its power set.  The posset (P(A),⊆) is a lattice in which the 

meet and join are respectively the same as the operations intersection  and union  on sets.  A lattice (L, ˅, ˄) is 

called a distributive lattice if for any a, b, c  L. a ˄ (b ˅ c) = (a ˄ b) ˅ (a ˄ c) and  a ˅(b ˄ c) = (a ˅ b) ˄ (a ˅ c) 

In other words, in a distributive lattice the operations ˄ and ˅ distribute over each other.  For example, the lattice (P(A), 

, ) of the power set of any set A is a distributive lattice. (under ⊆) 

A lattice (L, ˅, ˄) is said to be if a ≤ c ⇒ a ˅ (b ˄ c) = (a ˅ b) ˄ c, for any a, b, c  L. A lattice    (L, ˅, ˄) which has 

both a least element, denoted by 0 and a greatest element, denoted by 1 is called a bounded lattice. A bounded lattice (L, 

˅, ˄) is said to be a complemented lattice if and only if for every element a  L, there exists an element á  L such that 

a ˄ á = 0 and a ˅ á = 1.  The element á is called the complement of the element a. A unary operation’: L L is called an 

orthocomplementation, if it satisfies the following conditions: 

(i) a ˅ á = 1 and a ˄ á = 0 (ii) a ≤ b implies b´  (iii) (a´)´ = a 
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A posset L together with an orthocomplementation is called an orthoptist. A lattice L together with an 

orthocomplementation is called an Orth lattice.  Let (L, ˅, ˄, ‘) be an orthoclastic.  Then L is said to be orthomodular, if 

it satisfies the orthomodular law “a ≤ b implies a ˅ (á ˄ b) = b.”  An Orth lattice, which satisfies the modular law is said 

to be a modular orthoclastic. A lattice is called complete if each if each of its nonempty subset has a least upper bound 

and a greatest lower bound. A Boolean algebra is a lattice which contains a  least element and a greatest element and 

which is both complemented and distributive.  A Boolean algebra will generally be denoted by (B,’ ˅, ˄, 0, 1) (or) (B,’ 

˅, ˄) in which (B, ˅, ˄) is a lattice with two binary operations ˄ and ˅ called the meet and join respectively.  The 

corresponding partially ordered set will be denoted by (B, ≤).  The bound of the lattice are denoted by 0 and 1, where 0 

is the least element or zero element and 1, the greatest element or unit element of (B, ≤).  Since (B, ˅, ˄) is a 

complemented, distributive lattice, each element of B has unique complement.  Unary operation of complementation is 

denoted by ‘.  Thus a Boolean algebra (B,’ ˅, ˄) consists of a set B, a pair of binary operations ˄ (meet) and ˅ (join), 

and a unary operation’  (complementation).  Let (B,’ ˅, ˄) be a Boolean algebra.  A non zero element a  B is said to be 

an atom if for every x  B, x ˄ a = a x ˄ a = 0.   Note that in any Boolean algebra, the immediate successors of the zero 

elements are called atoms. 

Theorem 5.1  

Lattice of In is isomorphic to 𝐵
⌊

𝑛

2
⌋+1

 , Boolean Algebra of [
𝑛

2
] + 1 atoms and so the graph is In is a Boolean graph. 

Proof   

For the graph I2n, the elements of vertex of L(I2n) are given below:  L(I2n) = {,   {vn}, {vn+1}, …., {v2n}, {v2, vn+2}, {vn, 

vn+3}, ….., {vn, v2n}, {vn+1, vn+2},  {vn+1, v2n}, …., {v2n-1, v2n}, ……,  {vn-1, vn, vn+1}, {vn, vn+2, vn+3},…….., {v2n-2, v2n-1, v2n}, 

{vn-1,  vn, vn+1,  vn+3},  ………., {v2n-3, v2n-2, v2n-1, v2n}, {vn-2, vn-1, vn+1, vn+2}, ……..,  {v2, v3......, v2n-2},……., {v2, v3......, v2n-2, 

v2n}, {v1, v2......, v2n-2, v2n-1}}. The atoms of L(I2n) are {vn}, (vn+1)…….,{v2n}. For the graph I2n+1. 

L(I2n-1) = {,   {vn+2}, {vn+3}, …., {v2n}, {v2+1}, {vn, vn+1}, {vn+2, vn+3}, …….., {vn+2, v2+1}, {vn+3, vn+4}, {vn+3, 

v2n+1},………., {v2n, v2n+1}, {vn, vn+1, vn+3}, {vn, vn+1, vn+4}, …... {v2n-1, v2n, v2n+1}, {vn-1, vn, vn+1, vn+2},……….  {v2n-2, v2n-1, 

v2n, v2n+1}, {vn-1, vn, vn+1, vn+2,   vn+4},………….   {v2, v3,…………v2n-1},……{v2,  v3,……..v2n-1, v2n+1},  {v1, v2,……,v2n-1, v2n}}. The 

atoms of L(I2n+1) are {vn+2}, {vn+3},……{v2n}, {v2n+1}, {vn, vn+1}. Thus L(I2n) and L(I2n+1) contains 2n+1elements and 

consequently isomorphic to Boolean algebra of n+1 atoms.  Thus L(In) is isomorphic to 𝐵
⌊

𝑛

2
⌋+1

 , Boolean Algebra 

of [
𝑛

2
] + 1 atoms and hence In  is a Boolean graph. 

Theorem 5.2  

Highly irregular bipartite graph Hn, n , n ≥ 2 is an ortho graph.  That is, the lattice of Hn,n is an ortho lattice. 

Proof   

First we prove this result for the cases when n = 2 and 3.  In H2, 2, N(u1) = {v2}, N(u2) = {v1, v2}, N(v1) = {u2} and N(v2) 

= {u1, u2}. Now γ(γ({u1}) = γ({v2}) = {u1,u2}  {u1}, and  γ(γ{u2}) = γ({v1, v2}) = {u2}. Hence {u1}  L(H2,2) and {u2} 

L(H2, 2).Similarly {v1} L(H2, 2) and {v2}  L(H2, 2).  γ( γ({v1, v2})) = {v1, v2} and γ( γ({u1, u2})) = {u1, 

u2}.Consequently {u1, u2}, {v1, v2} L(H2, 2). Thus L(H2, 2) = {, V(H2, 2) , {v1, v2}, {u1, u2}, {v2}, {u2}}.L(H2, 2)  O6.  

If a lattice contains O6, then it is an ortholattice, consequently H2, 2 is an ortho graph. For the graph H3, 3 is an graph. 
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L(H3,3) = {, V(H3, 3), {v1, v2, v3}, {u1, u2, u3}, {v2, v3}, {u2, u3}, {v3}, {u3}},  since γ(γ({v2, v3})) = γ({u1, u2, u3}) = {v3}, 

γ(γ({v2, v3})) = γ({u2, u3}) = {v2, v3}, γ(γ({v1, v2, v3})) = γ({u3}) = {v1, v2, v3}. Similarly {u3}, (u2, u3), {u1, u2, u3} L(H3, 

3).  L(H3, 3) contains an isomorphic copy  of O6, given by the elements {, {v3}, {u3}, {v2, v3},  {u2, u3}, V(H3, 3)} or {, 

{v3}, {u3}, { v1, v2, v3}, { u1, u2, u3}, V(H3, 3)}.  Consequently  L(H3, 3) is an ortholattice and hence H3, 3 is an ortho 

graph. Now we prove the general case.  For a graph Hn,n, N(v1) = {un}, N(v2) = { un-1, un},… N(vi) = {un-(i-1),….. un-1, 

un}, N(vn) = {u1, u2,……. un-1, un}, and N(u1) = {vn}, N(ui) = {vn-(i-1),…… vn-1, vn} and the lattice of Hn, n, L(Hn, n) = {, 

V(Hn, n), {v1, v2,…, vn}, {u1, u2,…. un-1, un}, { v2, v3,…., vn}, { v2, v3,….. vn}, { u2, u3,…… un-1, un},…..{vn},{un}}.  The 

lattice L(Hn, n) contains a sub lattice which is isomorphic to O6 and is given bythe element {, {vn}, {un}, {v1, v2,…, vn}, 

{u1, u2,…, un-1, un}, V(Hn, n)} and hence Hn, n, is an ortho graph.  Hence the highly irregular bipartite graphs Hn, n, ,n ≥ 2 

are ortho graphs. 
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