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Abstract:  

Graph Theory is one of the important branches of Mathematics which has many applications in other fields of 

Science. In this paper we discuss about power of a graph and subgroup intersection graph of a group. 
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1. Introduction 
The study of algebraic structures, using the properties of graphs, becomes an exciting research topic in the last 

twenty years, leading to many fascinating results and questions. There are many papers on assigning a graph to a ring or 

group and thereby investigating algebraic properties of the ring or group using the associated graph.  For example, 

Cayley graph, zero-divisor graph, non-commuting graph, commuting graph, etc., are some of them to mention in this 

regard.  

Even though Cayley graphs were extensively dealt in various literatures, only few authors have worked on 

domination Cayley graphs.    He obtained a necessary and sufficient condition for the existence of an efficient 

dominating set in a Cayley graph on a class of finite groups, in particular on symmetric groups.  As an application, he 

classified the hyper cubes which admit efficient dominating sets. 

  There are so many classes of Cayley graphs derived from symmetric groups depending upon various generating 

sets.  Some of the generating sets of symmetric groups 𝑆𝑛 and corresponding Cayley graphs are given below:  Let 𝑆𝑛be 

the symmetric group of all permutations on the set < n > = {1,2,…,n}. 

Ω1 = {
1𝑖

2
≤ 𝑖 ≤ 𝑛}.  Ω2 = {

𝑖𝑖+1

1
≤ 𝑖 ≤ 𝑛}.  Ω2

′ = Ω2 ∪ {(1 n)}. Ω3 = {
2𝑖−1 2𝑖

1
≤ 𝑖 ≤ 𝑛}. 

Ω4 = {(𝑖𝑗)/1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.  Ω5 = {
3𝑖−2 3𝑖−1

1
≤ 𝑖 ≤ 𝑛} ∪ {(3𝑖 − 2 3𝑖)/1 ≤ 𝑖 ≤ 𝑛}. 

Ω6 = {𝐼(𝑘)/2 ≤ 𝑘 ≤ 𝑛}. 

The Cayley graphs corresponding to S𝑛 and various generating sets are listed below: 

 Symbol Cayley graph on 𝐒𝒏  Generator set 

 ST𝑛  Star graph    Ω1 

 BS𝑛  Bubble-sort graph    Ω2 

MB𝑛  Modified bubble-sort graph   Ω2
,
 

 BC𝑛  Binary hypercube    Ω3 

 CT𝑛  Complete-transposition graph  Ω4 

 EC𝑛  Extension of hypercube version 1 Ω5 

 PR𝑛  Prefix-reversal graph   Ω6 

Let 𝑆𝑛 denote the set of all permutations over < 𝑛 > = {1,2, … , 𝑛}.  For , 𝜌 ∈ 𝑆𝑛, we take ‘o’ as (𝜎 ∘ 𝜌)𝑥 =
𝜌(𝜎(𝑥)).  Given 𝜎 ∈ 𝑆𝑛 and 𝜎 = (𝑝1𝑝2 … 𝑝𝑛) (image row), define 𝜎𝑘 is obtained from 𝜎 by reversing the prefix of 

length k in 𝜎.  Define Ω = {
𝐼(𝑘)

2
≤ 𝑘 ≤ 𝑛}, where I is the identity permutation.  Ωis a generating set for 𝑆𝑛 and Cayley 

graph of (𝑆𝑛, Ω) is called the prefix-reversal graph 𝑃𝑅𝑛. 
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2. Domination parameters of  𝑷𝑹𝒏 

In this section, we determine the values of the domination number 𝛾(𝑃𝑅𝑛), the independent domination number 

𝑖(𝑃𝑅𝑛), the perfect domination number 𝛾𝑝(𝑃𝑅𝑛), the inverse domination number 𝛾−1(𝑃𝑅𝑛), the split 

domination𝛾𝑠(𝑃𝑅𝑛) and we obtain bounds for the total domination number  𝛾𝑡(𝑃𝑅𝑛) and the connected domination 

number  𝛾𝑐(𝑃𝑅𝑛). 

Theorem 2.1.   

For any positive integer n > 2, (𝑃𝑅𝑛) = 𝑖(𝑃𝑅𝑛) = 𝛾𝑝(𝑃𝑅𝑛) = (𝑛 − 1)!. 

Proof. 

 We know that 𝑃𝑅𝑛 is a (n-1) regular graph.  By Theorem 2.2.70, 𝛾(𝑃𝑅𝑛) ≥ (𝑛 − 1)!.   

Let D = {𝜎 ∈
𝑉(𝑃𝑅𝑛)

𝜎(1)
= 1}. 

Claim:   D is a dominating set of (𝑃𝑅𝑛). 

Let 𝜎 ∈ 𝑉(𝑃𝑅𝑛) − 𝐷 and k = 𝜎(1).  Clearly 𝑘 ≠ 1 and 𝐼(𝑘)(𝜎(1)) = 1.  From this, we have 𝜎 ∘ 𝐼(𝑘) ∈ 𝐷 and so 

every element 𝜎 ∈ 𝑉(𝑃𝑅𝑛) − 𝐷 is adjacent to 𝜎 ∘ 𝐼(𝑘) ∈ 𝐷.  Hence D is a dominating set of 𝑃𝑅𝑛.  Therefore 𝛾(𝑃𝑅𝑛) ≤
|𝐷| = (𝑛 − 1)!.  Hence 𝛾(𝑃𝑅𝑛) = (𝑛 − 1)!.  Note that, for any k and 𝜎 ∈ 𝐷, 𝐼(𝑘)(𝜎(1)) ≠ 1.Therefore D is an 

independent set.  Since D is a minimum dominating set, D is a minimum independent dominating set.  Hence 𝑖(𝑃𝑅𝑛) =
(𝑛 − 1)!.  Let 𝜎 ∈ 𝑉(𝑃𝑅𝑛) − 𝐷 and 𝜎 ∘ 𝐼(𝐾1), 𝜎 ∘ 𝐼(𝐾2) ∈ 𝐷 for some 𝑘1 ≠ 𝑘2.  Then 𝐼(𝑘1)(𝜎(1)) = 1and 𝐼(𝑘2)(𝜎(1)) =
1.  This implies that 𝑘1 = 𝜎(1) = 𝑘2, which is a contradiction.  Therefore every vertex in 𝑉(𝑃𝑅𝑛) − 𝐷 is adjacent to 

exactly one vertex in D and so D is a minimum perfect dominating set.  Hence 𝛾𝑝(𝑃𝑅𝑛) = (𝑛 − 1)!. 

Corollary:   

For any integer 𝑛 ≥ 3, d(𝑃𝑅𝑛) = 𝑑𝑖(𝑃𝑅𝑛) = 𝑑𝑝(𝑃𝑅𝑛) = 𝑎𝑑(𝑃𝑅𝑛) = 𝑛. 

Proof. 

  Let 𝐷𝑖 = {
𝜎∈𝑉(𝑃𝑅𝑛)

𝜎(𝑖)
= 1} , 𝑖 = 1,2, … , 𝑛.  Clearly 𝑉(𝑃𝑅𝑛) =∪𝑖=1

𝑛 𝐷𝑖 and each 𝐷𝑖 is a minimal dominating set which is 

also independent, indivisible and perfect.  Hence the result follows. 

In view of Corollary, we have the following observation. 

Corollary:   

For any integer 𝑛 ≥ 3, 𝑃𝑅𝑛  is dogmatically full. 

Theorem 2.2. 

   Let n > 2 be any integer. Then  (i) 𝛾𝑡(𝑃𝑅𝑛) =
𝑛!

𝑛−1
 if n is even 

             (ii) 
𝑛!

𝑛−1
≤ 𝛾𝑡(𝑃𝑅𝑛) ≤ (𝑛 + 1)(𝑛 − 2)!if n is odd. 
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Proof. 

  Case 1.  Suppose n is even.  Define 𝐷𝑖 = {𝜎 ∈
𝑉(𝑃𝑅𝑛)

𝜎(𝑖)
= 1, 𝜎(𝑛 − 𝑖 + 1) = 𝑛} for i = 1,2,…,n.  We claim that 𝐷 =

∪𝑖=1
𝑛 𝐷𝑖 is a total dominating set of 𝑃𝑅𝑛.  Note that, for 𝜎 ∈ 𝐷𝑖, 𝐼(𝑛)(𝜎(𝑖)) = n and 𝐼(𝑛)(𝜎(𝑛 − 𝑖 + 1)) = 1 and so 𝜎 ∘

𝐼(𝑛) ∈ 𝐷𝑛−𝑖+1.  Hence each vertex of 𝐷𝑖 is adjacent to exactly one vertex in 𝐷𝑛−𝑖+1 so that < D >has  no isolated vertices.  

Next we claim that if 𝜎, 𝜌 ∈ 𝐷, then 𝑁(𝜎) ∩ 𝑁(𝜌) = ∅.If not, there exists an element 𝛼 ∈ 𝑁(𝜎) ∩ 𝑁(𝜌) for some 𝜎, 𝜌 ∈
𝐷.  From this, we have 𝜎 ∘ 𝐼(𝑘1) = 𝛼 = 𝜌 ∘ 𝐼(𝑘2)for some 𝑘1 ≠ 𝑘2 and 2 ≤ 𝑘1, 𝑘2 ≤ 𝑛. (3.1) without loss of  generality 

take 1 < 𝑘1 < 𝑘2 ≤ 𝑛. 

Sub case 1.1  Suppose𝜎, 𝜌 ∈ 𝐷𝑖 for some i.  Then 𝐼(𝑘1)(𝜎(𝑖)) = 𝑘1  and𝐼(𝑘2)(𝜌(𝑖)) = 𝑘2.  From 3.1, k1 = k2 , which is a 

contradiction. 

Sub case 1.2  Suppose𝜎 ∈ 𝐷𝑖 and 𝜌 ∈ 𝐷𝑗 for some i< j. 

Sub case 1.2.1  Suppose k2 ≠ 𝑛. Then 𝐼(𝑘1)(𝜎(𝑛 − 𝑖 + 1)) = 𝑛  and            𝐼(𝑘2)(𝜌(𝑛 − 𝑖 + 1)) = 𝑛.  From, we get that 

𝑛 − 𝑖 + 1 = 𝑛 − 𝑗 + 1 and hence       𝑖 = 𝑗, which is a contradiction.   

Sub case 1.2.2  Suppose k2 = n.  From 3.1, k1 = 𝐼(𝑘1)(𝜎(𝑖)) = 𝐼(𝑘2)(𝜌(𝑖)) = 𝐼(𝑛)(𝜌(𝑖)).This is possible only when 

𝜌(𝑖) = 𝑛 − 𝑘1 + 1.  Now, 𝐼(𝑘1)(𝜎(𝑛 − 𝑖 + 1)) = 𝑛 and 𝐼(𝑛)(𝜌(𝑗)) = 𝑛.  Therefore 𝑛 − 𝑖 + 1 = 𝑗 and so 𝑖 = 𝑛 − 𝑗 +
1.Therefore 𝜌(𝑖) = 𝜌(𝑛 − 𝑗 + 1), which implies 𝑛 − 𝑘1 + 1 = 𝑛 and hence k1 = 1, which is a contradiction. Hence 

𝑁(𝜎) ∩ 𝑁(𝜌) = ∅ 𝜎, 𝜌 ∈ 𝐷.  Also |𝑁(𝐷)| = 𝑛! = |𝑉(𝑃𝑅𝑛)| and hence D is a total dominating set.  Hence 𝛾𝑡(𝑃𝑅𝑛) ≤
𝑛!

𝑛−1
 .  By Lemma, 𝛾𝑡(𝑃𝑅𝑛) ≥

𝑛!

𝑛−1
   so that 𝛾𝑡(𝑃𝑅𝑛) =

𝑛!

𝑛−1
  when n is even.    

Case 2.  Assume that n is odd. 

Define 𝐷𝑖 = {𝜎 ∈
𝑉(𝑃𝑅𝑛)

𝜎(𝑖)
= 1, 𝜎(𝑛 − 𝑖 + 1) = 𝑛} , 𝑖 = 1,2, … ,

𝑛−1

2
,

𝑛+3

2
, … , 𝑛, 𝐴1 = {𝜎 ∈

𝑉(𝑃𝑅𝑛)

𝜎(1)
= 1, 𝜎 (

𝑛+1

2
) = 𝑛}and  

𝐴2 = {𝜎 ∈
𝑉(𝑃𝑅𝑛)

𝜎(1)
= 𝑛, 𝜎 (

𝑛+1

2
) = 1}. Let 𝐷 = ⋃ 𝑖=1

𝑖≠
𝑛+1

2

𝑛 𝐷𝑖and 𝐷𝑡 = 𝐷 ∪ 𝐴1 ∪ 𝐴2. We claim that 𝐷𝑡 is a total dominating 

set of 𝑃𝑅𝑛. N Clearly each vertex of 𝐷𝑖 is adjacent to one vertex in 𝐷𝑛−𝑖+1  and also each vertex of 𝐴1 has exactly one 

adjacent vertex in A2 so that < 𝐷𝑡> has no isolated vertices.  Repeating the similar argument as in the even case, we 

obtain  𝑁(𝜎) ∩ 𝑁(𝜌) = ∅   ∀𝜎,𝜌 ∈ 𝐷.  Clearly 𝑁(𝜎) ∩ 𝑁(𝜌) = ∅   ∀𝜎,𝜌 ∈ 𝐴1.  Let 𝜎 ∈ 𝐷and 𝜌 ∈ 𝐴1. 

Claim  𝑁(𝜎) ∩ {𝑁(𝜌) − 𝜌 ∘ 𝐼(𝑛)} = ∅. 

Suppose not, 𝑁(𝜎) ∩ {𝑁(𝜌) − 𝜌 ∘ 𝐼(𝑛)} ≠ ∅.  Then there exists 𝛼 ∈  𝑁(𝜎) ∩ {𝑁(𝜌) − 𝜌 ∘ 𝐼(𝑛)} and so 𝜎 ∘ 𝐼(𝑘1) = 𝛼 =

𝜌 ∘ 𝐼(𝑘2) for some 𝑘1 < 𝑘2 and 2 ≤ 𝑘1, 𝑘2 < 𝑛.  But 𝐼(𝑘1)(𝜎(𝑛 − 𝑖 + 1)) = 𝑛 and 𝐼(𝑘2) (𝜌 (
𝑛+1

2
)) = 𝑛.From this 𝑛 − 𝑖 +

1 =
𝑛+1

2
 and hence 𝑖 =

𝑛+1

2
  which is a contradiction.  Let 𝑋 = {𝜎 ∘ 𝐼(𝑛) ∶  𝜎 ∈ 𝐴1}.  Now |𝑁(𝐷)| = (𝑛 − 1)2 (𝑛 − 2)!and 

|𝑁[𝐴1] − 𝑋| = (𝑛 − 1)(𝑛 − 2)!.  Hence |𝑁(𝐷)| ∪ {𝑁[𝐴1] − 𝑋}| = 𝑛! = |𝑉(𝑃𝑅𝑛)|.  Therefore 𝐷 ∪ 𝐴1 is a dominating 

set and hence 𝐷𝑡 is a total dominating set of 𝑃𝑅𝑛.  Hence 𝛾𝑡(𝑃𝑅𝑛) ≤ (𝑛 + 1)(𝑛 − 2)!.  On the other  hand, 𝛾𝑡(𝑃𝑅𝑛) ≥
𝑛!

𝑛−1
  and the theorems follows. 

 

3.Subgroup Complementary Cayley Graph 

Definition  

Let G be a group and let H be a subgroup of G.  The Cayleygraph 𝐶𝑎𝑦(𝐺, �̅�), where �̅� = 𝐺 − 𝐻 is called the 

subgroup complementary Cayley graph and is denoted by 𝑆𝐶(𝐺, 𝐻). 

 

 

Example  

Consider the group 𝐺 = ℤ6 and its subgroup 𝐻 = {0,3}.  The corresponding subgroup complementary Cayley 

graph is given below: 

http://www.jetir.org/
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𝑺𝑪(ℤ𝟔, {𝟎, 𝟑}) 

Remark  

Note that 𝑆𝐶(𝐺, 𝐻) is a regular graph of degree |𝐺 − 𝐻|.  Since G – H is a generating set of G, 𝑆𝐶(𝐺, 𝐻)is a 

connected graph. 

Proposition 3.1  

 Let G be any group and let H be a subgroup of G.  Then diam (𝑆𝐶(𝐺, 𝐻)) = {
1   𝑖𝑓 𝐻 = {𝑒}.

2   𝑖𝑓 𝐻 ≠ {𝑒}.
 

Proof.  

 If 𝐻 = {𝑒}, then 𝑆𝐶(𝐺, 𝐻) is a regular graph of |𝐺 − 𝐻| = |𝐺| − 1.Therefore𝑆𝐶(𝐺, 𝐻) ≅ 𝐾|𝐺| and hence 

diam (𝑆𝐶(𝐺, 𝐻)) = 1.  Take 𝐻 ≠ {𝑒}.  Let 𝑎, 𝑏 ∈ 𝐺 − 𝐻.  Both a and b are adjacent to e and so 𝑑(𝑎, 𝑏) ≤ 2.Since 𝐻 ≠
{𝑒}, |𝐻| ≥ 2.  Let 𝑎, 𝑏 ∈ 𝐻 and 𝑥 ∈ 𝐺 − 𝐻.  If 𝑥−1𝑎 ∈ 𝐻,  then 𝑥−1𝑎𝑎−1 ∈ 𝐻  and so 𝑥−1 ∈ 𝐻, a contradiction.  From 

this argument, 𝑥−1𝑎, 𝑥−1𝑏 ∈ 𝐺 − 𝐻 and so 𝑥 is adjacent to both a and b.  Since 𝑎−1𝑏 ∉ 𝐺 − 𝐻, a and b are non adjacent.  

Therefore 𝑑(𝑎, 𝑏) = 2.  Hence diam (𝑆𝐶(𝐺, 𝐻)) = 2. 

Proposition  3.2.   

Let G be a group and H be a subgroup of G.  The maximum independence number 𝛽0(𝑆𝐶(𝐺, 𝐻)) = |𝐻|. 

Proof.   

Since H is subgroup of G, H is an independent set in 𝑆𝐶(𝐺, 𝐻).Suppose there exists an independent set S of 

𝑆𝐶(𝐺, 𝐻) such that |S| > |H|.  If 𝑥 ∈ 𝑆, then deg(𝑥) < |𝐺 − 𝐻|, which is a contradiction to the regularity of 𝑆𝐶(𝐺, 𝐻). 

Hence H is a maximum independent set and 𝛽0(𝑆𝐶(𝐺, 𝐻)) = |𝐻|. 

Theorem 3.3.   

Let H be a subgroup of a group G.  A subset S of G is a maximum independent set of 𝑆𝐶(𝐺, 𝐻) if and only if S is 

a left coset of H. 

Proof.  

 Assume that S is a left coset of  H and 𝑆 = 𝑎𝐻 for some 𝑎 ∈ 𝐺.  Let 𝑥, 𝑦 ∈ 𝑆, 𝑥 = 𝑎ℎ1 and 𝑦 = 𝑎ℎ2 for some ℎ1, ℎ2 ∈ 𝐻.  
Then 𝑥−1𝑦 = ℎ1

−1𝑎−1𝑎ℎ2 = ℎ1
−1ℎ2 ∈ 𝐻 and so 𝑥−1𝑦 ∉ 𝐺 − 𝐻.  Therefore 𝑥 and 𝑦 are non-adjacent in 𝑆𝐶(𝐺, 𝐻), so S is 

an independent set of  𝑆𝐶(𝐺, 𝐻).  Since |S| = |H|, by Proposition 3.2, S is a maximum independent set of 𝑆𝐶(𝐺, 𝐻). 

Conversely, assume that S is a maximum independent set of 𝑆𝐶(𝐺, 𝐻).  If S = H, then the result is true.  Suppose 

𝑆 ≠ 𝐻.  There exists 𝑠 ∈ 𝐺 − 𝐻 such that 𝑠 ∈ 𝑆.Since𝐺 = ⋃ 𝑎𝐻𝑎∈𝐺 , 𝑠 ∈ 𝑎𝐻 for some 𝑎 ∉ 𝐻. 

Claim: 𝑆 ⊆ 𝑎𝐻. 

If not, ∃ 𝑦 ∈ 𝑆 such that 𝑦 ∉ 𝑎𝐻.  Let 𝑦 ∈ 𝑏𝐻 for some 𝑏 ∉ 𝐻.  Take 𝑥 = 𝑎ℎ1 and 𝑦 = 𝑏ℎ2, ℎ1, ℎ2 ∈ 𝐻.  Since S 

is an independent set, 𝑥−1𝑦 ∈ 𝐻, which means (𝑎ℎ1)−1(𝑏ℎ2) ∈ 𝐻,  so that 𝑎−1𝑏 ∈ 𝐻.  So 𝑏 = 𝑎ℎ for some ℎ ∈ 𝐻.  
Therefore 𝑦 ∈ 𝑏𝐻 = (𝑎ℎ)𝐻 = 𝑎𝐻 which is a contradiction to the fact 𝑦 ∉ 𝑎𝐻.  Hence 𝑆 ⊆ 𝑎𝐻. Since S is a maximum 

independent set, |𝐻| = |𝑆| = |𝑎𝐻| and hence 𝑆 = 𝑎𝐻. 

Proposition 3.4  

 Let H be a proper subgroup of a group G.  Then 𝑆𝐶(𝐺, 𝐻) is Hamiltonian. 
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Proof.  

 By Lagrange’s theorem, |𝐺| ≥ 2|𝐻|.  Note that |𝐺 − 𝐻| ≥ |𝐺| − |𝐻| ≥ |𝐺| −
|𝐺|

2
=

|𝐺|

2
 .  Since deg(𝑥) = |𝐺 −

𝐻|, deg (𝑥) ≥
|𝐺|

2
 for any 𝑥 ∈ 𝐺.  By Dirac’s theorem(p.54,[6]) 𝑆𝐶(𝐺, 𝐻) is Hamiltonian. 

Theorem 3.5  

 Let H be any subgroup of a group G.  Then the girth of 𝑆𝐶(𝐺, 𝐻) is given by  

𝑔𝑟(𝑆𝐶(𝐺, 𝐻)) = {4   𝑖𝑓 |𝐻| =
|𝐺|

2
3   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Proof.  Case 1:   Suppose |𝐻| =
|𝐺|

2
 .  𝐺 = 𝐻⋃𝑎𝐻for some 𝑎 ∈ 𝐺, 𝑎 ∉ 𝐻.  By Proposition 4.2.5 and Theorem 4.2.6, H 

and aH are two maximum independent sets in 𝑆𝐶(𝐺, 𝐻).  Since 𝑆𝐶(𝐺, 𝐻) is connected and regular, every element of H is 

adjacent to every element of aH in 𝑆𝐶(𝐺, 𝐻) and so 𝑆𝐶(𝐺, 𝐻) ≅ 𝐾|𝐺|

2
,
|𝐺|

2

 .  This implies that 𝑔𝑟(𝑆𝐶(𝐺, 𝐻)) = 4. 

Case  2:  Suppose |𝐻| ≠
|𝐺|

2
  and so |𝐺 − 𝐻| > |𝐻|.  From this G – H is not a coset of H.  By Theorem 3.3, G – H is not 

an independent set of 𝑆𝐶(𝐺, 𝐻).  Hence there exist 𝑎, 𝑏 ∈ 𝐺 − 𝐻 such that a is adjacent to b.  Since e is adjacent to both a 

and b, {e,a,b} is a triangle in 𝑆𝐶(𝐺, 𝐻) and so 𝑔𝑟(𝑆𝐶(𝐺, 𝐻)) = 3. 

Theorem 3.6  

Let H be any subgroup of a group G.  For 𝑥 ∈ 𝐺, 𝑁(𝑥) = 𝑁(𝑥−1) in 𝑆𝐶(𝐺, 𝐻) if and only if 𝑥2 ∈ 𝐻. 

Proof.  

 Assume that 𝑥2 ∈ 𝐻.  Let 𝑎 ∈ 𝑁(𝑥), 𝑎 = 𝑥𝑥1 for some 𝑥1 ∈ 𝐺 − 𝐻.  Then 𝑎 = 𝑥−1𝑥2𝑥1.  Since 𝑥2 ∈ 𝐻, 𝑥1 ∈
𝐺 − 𝐻, 𝑥2𝑥1 ∈ 𝐺 − 𝐻.  Therefore 𝑎 ∈ 𝑁(𝑥−1) and so 𝑁(𝑥) ⊆ 𝑁(𝑥−1).  Similarly one can prove that 𝑁(𝑥−1) ⊆ 𝑁(𝑥).  
Hence 𝑁(𝑥) = 𝑁(𝑥−1).Conversely, assume that 𝑁(𝑥) = 𝑁(𝑥−1).Suppose 𝑥2 ∉ 𝐻.  Since 𝑥 = 𝑥−1𝑥2, 𝑥 and 𝑥−1 are 

adjacent in 𝑆𝐶(𝐺, 𝐻) and so 𝑥 ∈  𝑁(𝑥−1), whereas 𝑥 ∉ 𝑁(𝑥), which is a contradiction to the fact 𝑁(𝑥) = 𝑁(𝑥−1). 

Theorem 3.7   

Let G be any group.  Let 𝐻 = ⋂ 𝐻𝑖
𝑛
𝑖=1 , where each 𝐻𝑖 is a subgroup of G.  Then 𝑆𝐶(𝐺, 𝐻) ≅ ⋃ 𝑆𝐶(𝐺, 𝐻𝑖)𝑛

𝑖=1 . 

Proof. 

Clearly 𝑉[𝑆𝐶(𝐺, 𝐻)] = 𝑉[⋃ 𝑆𝐶(𝐺, 𝐻𝑖)𝑛
𝑖=1 ]. 

Then (𝑥, 𝑦) ∈ 𝐸[𝑆𝐶(𝐺, 𝐻)] ⇔ 𝑥−1𝑦 ∉ 𝐻 

⇔ 𝑥−1𝑦 ∉ 𝐻𝑖for some i 

⇔ (𝑥, 𝑦) ∈ 𝐸[𝑆𝐶(𝐺, 𝐻𝑖)]for some i 

⇔ (𝑥, 𝑦) ∈ 𝐸[⋃𝑖=1
𝑛  𝑆𝐶(𝐺, 𝐻𝑖)] 

Therefore E[𝑆𝐶(𝐺, 𝐻)] = 𝐸[⋃𝑖=1
𝑛  𝑆𝐶(𝐺, 𝐻𝑖)]. 

4.  Power Graph of a Group 

Definition 

Let G be a group.  The power graph Γ𝑃(𝐺) of G is a graph with 𝑉(Γ𝑃(𝐺)) = 𝐺 and two distinct vertices 𝑥 and 𝑦 

are adjacent in Γ𝑃(𝐺) if and only if either 𝑥𝑖 = 𝑦 or 𝑦𝑗 = 𝑥,where 2 ≤ 𝑖, 𝑗 ≤ 𝑛. 
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Example  

  The power graphs of 𝑆3 and ℤ5 are given below: 

               𝚪𝑷(𝑺𝟑)                                                                    𝚪𝑷(ℤ𝟓) 

 

 

 

The following are some of the vital characterizations of power graphs. 

Proposition 4.1  

 Let G be a group with at least one non-self inverse element.  Then gr(Γ𝑃(𝐺)) = 3. 

Proof.  

Let G be a group with identity e.  Let x be a non-self inverse element of G.  Note that < 𝑥 > = < 𝑥−1 >, 𝑒 ∈ <
𝑥 > and so the graph induced by the set {𝑒, 𝑥, 𝑥−1} is 𝐾3in Γ𝑃(𝐺).  Hence 𝑔𝑟(Γ𝑃(𝐺)) = 3. 

Theorem 4.2 

Let G be any group with n elements.  Then Γ𝑃(𝐺) is a graph with 
∑ 𝑜(𝑥)𝑥≠𝑒

2
 edges if and only if every element 

other than identity of the group G has a prime order. 

Proof.   

Assume that Γ𝑃(𝐺) is a graph with 
∑ 𝑜(𝑥)𝑥≠𝑒

2
 edges.  It means thatdeg(𝑥) = 𝑜(𝑥) − 1 for all 𝑒 ≠ 𝑥 ∈ 𝐺 in Γ𝑃(𝐺).  

Let 𝑥 ≠ 𝑒 be any element of G.  Suppose order of x is not a prime.  Without loss of generality, we assume that o(x)=pq, 

where p,q are distinct primes. Consider the subgroup H = < x > .sincep|o(H), H has an element say y such that o(y) = p.  

From this deg(y) = o(y)-1 = p-1.  Since 𝑥 ∉ < 𝑦 > and 𝑦 ∈ < 𝑥 >, y is adjacent to at least 𝑥, 𝑦2, … , 𝑦𝑝 = 𝑒.This implies 

that deg(𝑦) > 𝑝 − 1 = 𝑜(𝑦) − 1, which is a contradiction. 

Hence every element other than identity in the group G is of prime order. 

Conversely, assume that every element other than identity of the group G is of prime order.  We have to prove 

that Γ𝑃(𝐺) is a graph with 
∑ 𝑜(𝑥)𝑥≠𝑒

2
 edges.  It is enough to prove that deg(𝑥) = 𝑜(𝑥) − 1 for all 𝑒 ≠ 𝑥 ∈ 𝐺in Γ𝑃(𝐺).  

Suppose deg(𝑥) > 𝑜(𝑥) − 1 for some 𝑥 ∈ 𝐺 − 𝑒.Then there exists 𝑦 ∉< 𝑥 > and y is adjacent to x.  This implies that 

𝑥 ∈< 𝑦 > and so < 𝑥 >⊆< 𝑦 >.  Since 𝑜(𝑥) and 𝑜(𝑦) are prime, we get that < 𝑥 > = < 𝑦 >, a contradiction to 𝑦 ∉<
𝑥 >.  Hence deg(𝑥) = 𝑜(𝑥) − 1 for all 𝑒 ≠ 𝑥 ∈ 𝐺 in  Γ𝑃(𝐺). 

Proposition 4.3 

Let G be a group with n elements and Z(G) be its center.  If deg(𝑥) = 𝑛 − 1in Γ𝑃(𝐺), then 𝑥 ∈ 𝑍(𝐺). 

Proof.   

Let 𝑥 ∈ 𝐺 be a vertex with deg(𝑥) = 𝑛 − 1in Γ𝑃(𝐺).  Let 𝐻 =< 𝑥 >.  Since deg(𝑥) = 𝑛 − 1in Γ𝑃(𝐺), 𝑥 ∈<
𝑦 > for all 𝑦 ∈ 𝐺 − 𝐻.  Hence x commutes with all elements in G and so 𝑥 ∈ 𝑍(𝐺). 

Remark  

The converse of Proposition 4.3  is not true.  For example, consider the group (ℤ6, +6) and the graph Γ𝑃(ℤ6) 

(given below.  Here 3 ∈ 𝑍(ℤ6), whereas deg(3) = 3 ≠ 5 = 𝑛 − 1. 
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𝚪𝑷(ℤ𝟔) 

Theorem 4.4 

Let G be a group with n elements.  Then the following are equivalent:  

(i) Γ𝑃(𝐺) ≅ 𝐾1,𝑛−1  (ii)Γ𝑃(𝐺) is a tree  (iii) Every element of G is its own inverse. 

 

Proof.  (𝑖) ⟹ (𝑖𝑖) Proof is trivial 

(𝑖𝑖) ⟹ (𝑖𝑖𝑖) 

   Assume that Γ𝑃(𝐺) is a tree.  Suppose that there exist an element 𝑎 ∈ 𝐺 such that 𝑎 ≠ 𝑎−1.  Then the graph 

induced by {𝑒, 𝑎, 𝑎−1} is a triangle in Γ𝑃(𝐺), which is a contradiction. 

(𝑖𝑖𝑖) ⟹ (𝑖)  

Assume that every element of G has self inverse.  We have Γ𝑃(𝐺) ≅ 𝐾1,𝑛−1 and hence it is a tree.  From this <
𝑥 >= {𝑒, 𝑥} for al 𝑥 ∈ 𝐺 − 𝑒. Then Γ𝑃(𝐺) ≅ 𝐾1,𝑛−1. 

Theorem 4.5  

 Let G be a group of order 𝑝𝑞, where 𝑝 < 𝑞, 𝑝, 𝑞 are two distinct primes and ∅ is the Euler function.  Then  

(i) G is cyclic if and only if Γ𝑃(𝐺) ≅ (𝐾𝑝−1 ∪ 𝐾𝑞−1) + 𝐾∅(𝑝𝑞)+1 

(ii)  G is non-cyclic if and only if Γ𝑃(𝐺) ≅ 𝐾1 + (𝑞𝐾𝑝−1 ∪ 𝐾𝑞−1). 

Proof.   

(i): Let G be a cyclic group of order 𝑝𝑞.  Then G has a unique 𝑝-Sylow subgroup namely 𝐻1 and a unique q- 

Sylow subgroup namely 𝐻2.  We have,   Γ𝑃(𝐻1) ≅ 𝐾𝑝  and Γ𝑃(𝐻2) ≅ 𝐾𝑞 .  Note that all elements in 𝐺 − (𝐻1 ∪ 𝐻2) are 

generators of G and so |𝐺 − (𝐻𝑝 ∪ 𝐻𝑞)| = ∅(𝑝𝑞).  Since the generators and the identity element e of G have full degree 

in Γ𝑃(𝐺) and every non identity element in 𝐻1 is not adjacent to every non identity element in 𝐻2, Γ𝑃(𝐺) ≅ (𝐾𝑝−1 ∪

𝐾𝑞−1) + 𝐾∅(𝑝𝑞)+1. 

Conversely, assume that Γ𝑃(𝐺) ≅ (𝐾𝑝−1 ∪ 𝐾𝑞−1) + 𝐾∅(𝑝𝑞)+1.If G is non-cyclic, then every non identity element 

of G has order either p or q.  From this, identity is the only vertex of full degree in Γ𝑃(𝐺), which is a contradiction.  

Hence G is cyclic.   

(ii):Let G be a non-cyclic group.  Then the number of 𝑝-Sylow subgroups of G is  q and G has a unique 𝑞-Sylow 

subgroup.  Also the identity element of G has full degree in Γ𝑃(𝐺).  Hence Γ𝑃(𝐺) ≅ 𝐾1 + (𝑞𝐾𝑝−1 ∪ 𝐾𝑞−1).  Conversely, 

assume that Γ𝑃(𝐺) ≅ 𝐾1 + (𝑞𝐾𝑝−1 ∪ 𝐾𝑞−1).  If G is cyclic, then G has ∅(𝑝𝑞) generators and so Γ𝑃(𝐺) has ∅(𝑝𝑞) +1  

full degree vertices, which is a contradiction.  Hence G is non cyclic. 

Theorem 4.6 

  Let G be a finite group.  Then Γ𝑃(𝐺) is Eulerian if and only if o(G) is odd. 

Proof.   

Assume that o(G) is odd.  Clearly deg (𝑒) is even in Γ𝑃(𝐺).For any 𝑒 ≠ 𝑥 ∈ 𝐺, clearly o(x) is odd and so o(x)-1 is 

even.  If deg(𝑥) = 𝑜(𝑥) − 1in Γ𝑃(𝐺), then deg (𝑥) is even.  If deg(𝑥) > 𝑜(𝑥) − 1, then there exists an element 𝑦 ∈ 𝐺 

such that 𝑦 ∉< 𝑥 > and 𝑥 ∈< 𝑦 >.  Since < 𝑦 >=< 𝑦−1 >, 𝑥 ∈< 𝑦−1 >.  From this x is adjacent to 

{𝑒, 𝑥2, … , 𝑥𝑜(𝑥)−1, 𝑦1, 𝑦1
−1, … , 𝑦𝑘𝑦𝑘

−1} for some 𝑘 ≥ 1.  Since o(G) is odd, G has no self inverse element and so deg (𝑥) is 

even in Γ𝑃(𝐺).  Hence Γ𝑃(𝐺) is Eulerian. 
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Conversely, assume that Γ𝑃(𝐺) is Eulerian.  If o(G) is even, then deg (𝑒) is odd, which is a contradiction to 

Γ𝑃(𝐺) is Eulerian.  Hence o(G) is odd. 

 

 

5. Sub Group Intersection Graph of a Group 

Definition  

Let G be a group. The subgroup intersection graph Γ𝑆𝐼(G) of G is a graph with V(Γ𝑆𝐼(G) = G - ℯ and two distinct 

vertices x and y are adjacent in Γ𝑆𝐼(G) if  |< 𝑥 >∩< 𝑦 >|>1, where < x > is the subgroup generated by x 𝜖G. 

Example  

  The subgroup intersection graph of D6 = {e, r, r2, s, sr, sr2} and ℤ7 are below: 

 

  

                                                     𝚪𝑺𝑰(D6))                                                  (𝚪𝑺𝑰(ℤ7)) 

Proposition 5.1 

Let G be a finite group with identify e. For any x 𝜖G – e,        𝑑𝑒𝑔Γ𝑆𝐼(G)(x) ≥0(x) -2. 

Proof. 

Let x 𝜖G – e. since <xi>∩<x> = <xi> for all 2 ≤i≤o(x) -1, x is adjacent to x2
, x3, … ,x0(x) -1 and so 𝑑𝑒𝑔Γ𝑆𝐼(G)(x) ≥o(x) -2 for 

all x 𝜖 G-e. 

Proposition 5.2  

 Let G be a finite group. Isolated vertices of Γ𝑆𝐼(G) are self-inverse elements in G. 

Proof.  

If a is not a self-inverse element in G, then 0(a) >2 and so  

|< 𝑎 >∩< 𝑎−1 >| > 1. Hence a, a-1 are adjacent in Γ𝑆𝐼(G) and so a is not an isolated vertex of Γ𝑆𝐼(G). 

Remark  

     The converse of proposition 6.2.4 is not true. For, let G = (𝕫6, +6) and a = 3. Here 3 is a self-inverse element 

in G, but deg(3) =2≠0 as can be seen from the graph given below. 

 

 

 

 

Γ𝑆𝐼(𝕫6) 

Proposition 5.3 

Let G be a finite group and q be number the of edges Γ𝑆𝐼(G).  

Then q ≥ 
∑ 0(𝑥)−2𝑥∈𝐺−𝑒

2
 .  Moreover, this bound is sharp. 
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Proof. 

By proposition 6.2.3, for all x∈G-e, 𝑑𝑒𝑔𝑟𝑆𝐼(G)(x) ≥ 0(x) -2. From this, ∑ 𝑑𝑒𝑔Γ𝑆𝐼(G)(x)  ≥𝑥∈𝐺−𝑒 ∑ 0(𝑥) − 2𝑥∈𝐺−𝑒 . 

Hence q ≥ 
∑ 0(𝑥)−2𝑥∈𝐺−𝑒

2
.  Consider the group      ℤ3 × ℤ3, order in Γ𝑆𝐼(G) equals 

∑ 3−2𝑥∈𝐺−𝑒

2
 = 4.  We now characterize the 

groups G for which the associated graph Γ𝑆𝐼(G) attains the bound specified above. 

Theorem 5.4. 

Let g be a finite group and q be number the of edges in Γ𝑆𝐼(G). Then   

q =  
∑ 0(𝑥)−2𝑥∈𝐺−𝑒

2
  if and only if every element other than identity of the group G is of prime order. 

Proof. 

Assume that Γ𝑆𝐼(G) is a graph with 
∑ 0(𝑥)−2𝑥∈𝐺−𝑒

2
  edges.  

In view of proposition 5.3, we get that 𝑑𝑒𝑔Γ𝑆𝐼
(x) = 0(x) -2 for all vertices                       x∈G-e = Γ𝑆𝐼(G). for x∈G-

e. suppose 0(x) is not prime without loss of generality, we can take 0(x) = pq, where p is a prime and q is a positive 

integer. Consider the subgraph H =<x>. since p\o(H) and by Cauchy’s Theorem, H has an element say y such that o(y) = 

p. By assumption, 𝑑𝑒𝑔Γ𝑆𝐼
(y) = o(y)-2 = p-2. On the other hand, note that x∉<y> and y∈<x>, y is adjacent to at least 

x,y2,…, yn-1 which every element other that identity of the group G has a prime order. 

Conversely, assume that every element other than identity of the group g is of prime order. Suppose there exists an 

element x∈G -e such that deg(x) = 0(x) -2. Then there exists an element y∈ G- {e, x}, y ∉<x> and y is adjacent to x. 
this implies that |< 𝑥 >∩< 𝑦 >|>1. Since o(x) and o(y) are prime, o(x) =o(y). in such a case <x> = <y>, a 
contradiction to y ∉<x>. Hence deg(x) = =o(x) - 2 for all x∈G-e in Γ𝑆𝐼(G). 

Theorem 5.5. 

Let G be a finite group.  Then Γ𝑆𝐼(G) is a complete graph if and only if G has a unique subgroup of order p and o(G) 

= pm for some prime number p and positive integer m. 

Proof.   

Let G be a finite group of order n. Assume that Γ𝑆𝐼(G) is a complete graph. If n is not a prime power, then there 

exist two prime divisors p and q of n. By Cauchy’s theorem, G has two elements a and b such that o(a) = p and o(b) =q. 

Clearly |<a>∩<b> | =1 so that a and b are non-adjacent, which is a contradiction to the assumption that Γ𝑆𝐼(G) is 

complete. Hence o(G) = Pm for a prime number p, 

Suppose G has two different subgroups of order p. then there exist two non-identity elements a,b∈G such that o(a) = 

o(b) =p and |<a>∩<b> | =1. From this a and are non-adjacent in Γ𝑆𝐼(G), which is again a contradiction. Hence G has a 

unique subgroup of order p. 

Conversely, assume that o(G) =pm for some prime p ad G has a unique subgroup H of order p. since p is prime, 

there exist a∈G such that H=< a >.  

Since o(G) =pm, for any b∈G – e, o(b) =Pk where k is an integer with 1≤k≤m. Since H=<a> is a unique 
subgroup of order p, < a > ⊆< b > for all b∈G – e. Therefore |< 𝑥 >∩< 𝑦 >| ≥ p > 1 for all x, y ∈G – e = V(Γ𝑆𝐼(G)) 

i.e., x and y are adjacent and hence Γ𝑆𝐼(G) is complete. 

Theorem 5.6. 

For any finite group G, Γ𝑆𝐼(G) is a tree if and only if G is isomorphic to either ℤ2 or ℤ3. 

Proof.  

By Theorem 5.5, Γ𝑆𝐼(ℤ2) = K1,Γ𝑆𝐼(ℤ3) = K2 and hence Γ𝑆𝐼(𝐺) is a tree when G is isomorphic to either ℤ2 or ℤ3. 

Conversely, assume that Γ𝑆𝐼(𝐺) is a tree. 
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If p|o(G) for some prime number p ≥ 5, by Cauchy’s Theorem G has an element of order p. By Theorem 5.5, 
Kp-1(p ≥ 5) is a subgroup of Γ𝑆𝐼(𝐺) and so Γ𝑆𝐼(𝐺) is not a tree, a contradiction. From this G must be of order 2n or 3 n for 

some n≥ 1. 

Suppose G is an elementary abelian group of order 2n or 3 nfor some n>1. Then Γ𝑆𝐼(𝐺) is either (2n – 1) K1 or 
3𝑛−1

2
K2 respectively and so Γ𝑆𝐼(𝐺)  is disconnected, a contradiction. 

Suppose every element of G is of order 2 or 3. Then Γ𝑆𝐼(𝐺) is disconnected, a contradiction to the assumption. 

Hence G contains an element a such that o(a) ≥ 4. Now, the subgraph induced by <a> contains K3 ⊆Γ𝑆𝐼(𝐺), again a 

contradiction to the assumption. From this G is isomorphic to one of the groups ℤ2 or ℤ3. 

Theorem 5.7. 

 Let G be a finite group of order n = 𝑃1
𝛼1𝑃2

𝛼2,….𝑃𝑘
𝛼𝑘, where 𝑝1,𝑝2,,…,𝑝𝑘 are distinct prime numbers and 

𝛼1, 𝛼2,…,𝛼𝑘 are positive integers. If G has unique subgroups of orders 𝑝1,𝑝2,,…,𝑝𝑘,then Γ𝑆𝐼(𝐺) is connected and 

diam(Γ𝑆𝐼(𝐺))≤4. 

Proof: 

   Since each pi  divides o(G), by Cauchy’s Theorem, G contain elements aisuch that, o(ai) = pi, for 1≤i≤ k. consider ai, 

aj∈ G with o(ai) = pi and o(aj) = pj for some 1≤i, j≤k and j≠j. Hi  =<ai> and Hj = <aj> be subgroups of G. By 
assumption, Hi and Hjare unique subgroups of orders pi and pjrespectively and so Hi and Hjare normal subgroups 
of G. Therefore HiHj is also a normal subgroup of G and so o(HiHj) = pipj. since Hi and Hj are cyclic subgroups, the 
subgroup HiHj is cyclic and so contains an element b of order pipj. By assumption, <ai> ∩ < b> = <ai> and <aj>∩ 
< b> = <aj>. Therefore, aibaj is a path in Γ𝑆𝐼(𝐺). Let x, y ∈ G. Then there exists pi and pj for some I, j with 1≤i, j≤k 

such that pi\o(x) and pj\o(y). Note that xaibzjy is a path between x and y in Γ𝑆𝐼(𝐺). Hence Γ𝑆𝐼(𝐺) is connected and diam 

(Γ𝑆𝐼(𝐺)) ≤4. 

Theorem 5.8.   

  Let G be a finite group of order n = 𝑃1
𝛼1𝑃2

𝛼2,….𝑃𝑘
𝛼𝑘, where 𝑝1,𝑝2,,…,𝑝𝑘 are distinct primes and 𝛼1, 𝛼2,…,𝛼𝑘 are 

positive integers. Then the independence number 𝛽0 (Γ𝑆𝐼(𝐺) )≥k. 

Proof. 

Since each pi divides o(G), by Cauchy’s Theorem G contain elements ai such that o(ai) =pi for 1≤i≤k.  Note that 

<aj>∩ <aj> = { ℯ} for all i ≠ j. From this {𝑎1, 𝑎2,…,𝑎𝑛} is an independent set of Γ𝑆𝐼(𝐺)and hence the result follows. 
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