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Abstract— Hyperspectral imaging has become an essential tool for vegetation mapping through remotely sensed data since it 

contains abundant spectral information and can detect the indistinct features to accurately monitor the vegetation status. Mapping 

vegetation through these remotely sensed images involves various considerations, processes and techniques. The Increasing 

availability of hyperspectral remotely sensed images due to the rapid advancement of remote sensing technology expands the 

perception of making choices of imagery sources. Imagery from different sources contains differences in spectral, spatial and 

temporal characteristics and thus they are suitable for different purposes of vegetation mapping. This paper presents an overview 

of how hyperspectral imagery is used for mapping vegetation cover. The paper also focuses on the advantages and disadvantages 

of different vegetation indices used in vegetation mapping and also showcases the various applications of vegetation mapping. 
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I. INTRODUCTION 

Assessing, observing and monitoring the state of the earth’s surface is a key requirement for global change research 

(Committee on Global Change Research, National Research Council, 1999) [1], [2]. Vegetation mapping and its classification is 

essential for managing the technical task of natural resources as vegetation provides a base for all living beings and plays an 

important role in affecting global climate change, such as influencing terrestrial CO2 [3]. Vegetation mapping also gives us valuable 

information for understanding the natural and man-made environments through the process if quantifying vegetation cover from 

local to global scales at a given time point or over a continuous period. It is critical to obtain current states of vegetation cover in 

order to initiate vegetation protection and restoration programs [4], [5]. Traditional methods (e.g. field surveys, literature reviews, 

map interpretation, and ancillary data analysis), however, are not effective to acquire vegetation covers because they are time-

consuming, date lagged and often too expensive. Remote sensing is regarded as a technology that offers practical and economical 

means to study large areas of vegetation- cover change [6], [7]. Due to the potential capability for systematic and accurate 

observations at various scales, remote sensing technology extends attainable information from the present time to over several 

decades back.  

Urban vegetation study is a key feature in landscape monitoring; it provides a base for the ecological regulator and serves 

to many ecosystem services. Accurate mapping is required for the conservation and management of green vegetation spaces, which 

is carried out by field inspection, aerial photography interpretation, and many different money-consuming methods. The existing 

solutions of urban vegetation records may be significantly improved by introducing more advanced remote sensing techniques 

without a remarkable increase in costs [8]. Monitoring and mapping of vegetation in an urban context by remote sensing techniques, 

of course, remains a challenging issue because the vegetation spectral response is sensitive to chlorophyll content at the plant level, 

which tends to increase the spectral variation and fluctuation in respect of individual species. Many misclassifications between 

species could be therefore expected depending on the seasonality of data with its spectral/ spatial resolution [9]. An important aspect 

is to provide reliable vegetation maps that could aid as the basis for urban planners [10], municipalities [11], and decision-makers 

[12]. 

 

A. Hyperspectral Imagery for Vegetation Mapping  

Nowadays, the hyperspectral imagery is studied increasingly for vegetation mapping as compared to the multispectral 

imagery. Multispectral imagery only contains a dozen of spectral bands, whereas the hyperspectral imagery includes hundreds of 

spectral bands. Hyperspectral sensors are well adapted and suitable for vegetation studies as the reflectance spectral signatures from 

individual species as well as more complex mixed pixel communities can be effectively differentiated from the much wider spectral 

bands of hyperspectral imagery [13]. Consider an example, the hyperspectral imagery from AVIRIS is commonly used in the realm 

of earth remote sensing.  

An optical sensor known as AVIRIS is capable of delivering the calibrated images of upwelling spectral radiance in 224 

contiguous spectral channels (bands) with wavelengths ranging from 400 to 2500 nm. The information within those bands can be 

used to identify, measure and monitor constituents of the earth’s surface (e.g. vegetation types). AVIRIS imagery was studied for 

the classification of salt marshes in China and in San Pablo Bay of California, USA [14]. The study showed a satisfactory result 

that succeeded in classifying two main marsh vegetation species, Spartina and Salicornia, that covered approximately 93.8% of the 

total marsh, although further work was required to analyze and make the correction for false detection of other marsh vegetation 

species. Similar work was also conducted by monitoring vegetation dynamics that aimed at proposing sustainable management of 

wetland ecosystems in the study of the structure of wetlands in San Francisco Bay of California [15].  

Hyperion instrument on board the Earth Observing-1 (EO-1) satellite acquired the hyperspectral data which was evaluated 

for the discrimination of five important Brazilian sugarcane varieties [16]. The results showed that the five Brazilian sugarcane 
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varieties were discriminated using EO-1 Hyperion data. This imply that hyperspectral imagery has the potential of separating plant 

species, which may be very difficult by using multispectral images. The procedure for pre-processing and classification of 

hyperspectral and multispectral images are similar, the processing of hyperspectral data remains a challenge. Specialized, cost-

effective and computationally efficient procedures are required to process hundreds of bands [13]. To extract vegetation 

communities or species from hyperspectral imagery, a set of signature libraries of vegetation is usually required [17].  

 

 

B. Vegetation Indices for Vegetation Mapping  

The most important goal of remote sensing projects is to characterize the variety, quantity and condition of vegetation 

present within a particular scene. The amount of energy reflected from a surface is determined by the amount of solar irradiance 

that strikes the surface, and the reflectance property of the surface. Solar irradiance changes with time and atmospheric conditions. 

A simple measure of energy reflected from a surface is not sufficient enough to characterize the surface in a repeatable manner. 

This problem can be evaded by combining data from two or more spectral bands that is commonly known as a vegetation index. 

Vegetation Indices (VIs) are defined as the integration of surface reflectance at two or more wavelengths that are designed to 

highlight a specific property of vegetation. It is a number that is produced by different combinations of remote sensing bands and 

may have some relationship to the amount of vegetation in a given image pixel. They are designed to intensify the vegetation 

reflected signal from estimated spectral responses by combining two (or more) wavebands, often in the red (0.6 - 0.7 nm) and near-

infrared (NIR) wavelengths (0.7-1.1 nm) regions [18]. 

When light strikes a surface, it gets reflected, transmitted or absorbed. The relative amount of reflected, transmitted and 

absorbed light serves as a function of the surface and varies with the wavelength of the light. For example, the majority of light 

striking soils are either reflected or absorbed, with very little being transmitted and relatively little change with wavelength. With 

vegetation, however, most of the light in the near infrared wavelength is transmitted and reflected, with little absorbed, in contrast 

to the visible wavelengths where absorption is predominant, with some reflected and little transmitted [17]. 

 

 
Figure 1: A generic scheme of HSI spectral signature for dry soil, vegetation and wet soil 

Source: http://remote-sensing.net/concepts.html 

 

II. DIFFERENT VEGETATION INDICES 

A. Ratio Vegetation Index (RVI) 

In 1969, Jordan proposed Ratio Vegetation Index (RVI), following the principle that leaves absorb relatively more red 

than infrared light [19]. RVI can be expressed mathematically as- 

𝑅𝑉𝐼 =
𝑅

𝑁𝐼𝑅
 

 
where NIR is the near-infrared band reflectance and 𝑅 is red band reflectance. With respect to the spectral characteristics of vegetation, 

bushy plants usually contain a low amount of reflectance on the red band and have shown a high correlation with LAI, Leaf Dry 

Biomass Matter (LDBM), and chlorophyll content of leaves [20]. As the RVI is extremely sensitive to vegetation and has a good 

correspondence with plant biomass, it is immensely used for green biomass measurement and monitoring at high-density vegetation 

coverage. However, when the vegetation cover is dispersed or scattered (less than 50% cover), RVI is sensitive to atmospheric effects, 

and their representation of biomass is weak. 

B. Difference Vegetation Index (DVI) 

After Ratio Vegetation Index (RVI), The Difference Vegetation Index (DVI) was proposed. The DVI is very sensitive to 

changes in soil background and can be applied for monitoring the vegetation’s ecological environment. It is also called 

Environmental Vegetation Index (EVI) [21]. DVI can be expressed mathematically as- 

 

𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅 

 

where 𝑁𝐼𝑅 is the near-infrared band reflectance and R is the red band reflectance. 
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C. Perpendicular Vegetation Index (PVI) 

The Perpendicular Vegetation Index (PVI) was proposed by Richardson and Wiegand in 1977. This VI is the parent index 

from which the entire group of distance-based VIs is derived. The PVI makes use of the perpendicular distance from each pixel 

coordinate to the soil line. 

The main purpose of PVI is to cancel the effect of soil brightness in different scenarios where vegetation is sparse and 

pixels contain a mixture of green vegetation and soil background. This technique is specifically important in arid and semi-arid 

environments. The entire process for PVI is based on the soil line that is later obtained through the technique of linear regression 

of the near-infrared band against the red band for a sample of bare soil pixels. Pixels that are away from the soil line are considered 

as vegetation while those pixels that are near the soil line are considered as soil [22]. PVI can be expressed mathematically as- 

 

𝑃𝑉𝐼 = √(𝑃𝑠𝑜𝑖𝑙 − 𝑃𝑣𝑒𝑔)𝑅
2 − (𝑃𝑠𝑜𝑖𝑙 − 𝑃𝑣𝑒𝑔)𝑁𝐼𝑅

2 

 

where, 𝑁𝐼𝑅 is the near-infrared band reflectance, 𝑅 is red band reflectance, 𝑃𝑠𝑜𝑖𝑙  is the soil reflectance and 𝑃𝑣𝑒𝑔 is vegetation 

reflectivity. 

 

D. Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) was introduced by Rouse et al. (1974). It was intended to produce 

a spectral VI that would be capable of separating green vegetation from its background soil brightness using Landsat MSS digital 

data. The range of NDVI values is between 0 and 1 because the index is calculated through a normalization procedure that has a 

sensitive response to green vegetation even for low vegetation-covered areas. NDVI is usually used in research related to regional 

and global vegetation assessments and was considered to be related not only to canopy structure and LAI but also to canopy 

photosynthesis [23], [24]. NDVI can be expressed mathematically as- 

 

𝑁𝐷𝑉𝐼 =
(𝑃𝑁𝐼𝑅 − 𝑃𝑅)

𝑃𝑁𝐼𝑅
+ 𝑃𝑅 

 

where 𝑃𝑁𝐼𝑅 is the near-infrared band reflectance, 𝑃𝑅 is red band reflectance. 

 

E. Atmospherically Resistant Vegetation Index (ARVI) 

Due to the limitations of NDVI under atmospheric effects, the Atmospherically Resistant Vegetation Index (ARVI) was 

proposed by Kaufman and Tanr´e [25]. ARVI is based on the principle that the atmosphere affects significantly ‘𝑅’ compared to 

the ‘NIR’. Thus, Kaufman and Tanr´e modified the radiation value of 𝑅 by the difference between the blue (𝐵) and 𝑅. Therefore, 

ARVI is capable of reducing the dependence on atmospheric effects, which is expressed as- 

 

𝐴𝑅𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐵)

(𝑁𝐼𝑅 + 𝑅𝐵)
 

 

where 𝑅𝐵 is the difference between 𝐵 and 𝑅. NIR is the near-infrared reflectivity related to the molecular scattering and gaseous 

absorption for ozone corrections, and represents the parameters for air conditioning. 

 

F. Soil Adjusted Vegetation Index (SAVI) 

Soil Adjusted Vegetation Index is the dissimilarity and divergence of vegetation from the soil background. This VI was 

originally proposed by Richardson and Wiegand [26] by evaluating the soil line, which is considered as a linear relationship on the 

2D plane of the soil’s spectral reflectance values between the NIR and 𝑅. Therefore, it can be considered as a detailed description 

of a large number of soil spectral information from a number of different environments [27]. SAVI was established to improve the 

sensitivity of NDVI to soil backgrounds. Many VIs that are based on the effect of soil background has been based on this principle. 

SAVI can be expressed mathematically as- 

𝑆𝐴𝑉𝐼 =
(𝑃𝑁 − 𝑃𝑅)(1 + 𝐿)

(𝑃𝑁 + 𝑃𝑅 + 𝐿)
 

 

where 𝐿 is defined as soil conditioning index, that is used to improve the sensitivity of NDVI to soil background. The range of 𝐿 is 

from 0 to1. In various fields of applications, the values of 𝐿 are considered and determined according to the specific environmental 

conditions. It can be assumed that when the degree of vegetation coverage is high, 𝐿 is close to 1, indicating that the soil background 

has no effect on the extraction of vegetation information.  

 

III. AREAS OF APPLICATION 

Agriculture plays a key role in economies of both developed and undeveloped countries. Vls are used as took to classify 

crop types, to assess crop conditions and to estimate crop yield, as well as to map soil characteristics and soil management practices.  

Applications of Vls for monitoring crop condition and predicting crop yield at the regional scale have been substantially 

studied over last decades [28], [29]. An operational application for agriculture is the land use map obtained by the multitemporal 

crop classification at the high spatial resolution, extracting the classes in the image by their eon1 time evolution of the VI. 

Traditionally, a known approach based on statistical regression models were used. Studies based on light use efficiency models 
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have shown that the cumulative seasonal NDVI values were significantly correlated with reported crop yields [30]. In these models, 

the VI estimates the fAPAR which provides, in combination with the light use efficiency and the PAR integrated over time, the 

estimate of the net primary production [31].  

The rapid degradation of forest environments is of important international concern [32]. Among the forestry applications 

where V1s have been used, that can be used to highlight land cover and land use changes, forest fire detection forest fire risk 

assessment, and vegetation regeneration.  

Land cover changes appear as one of the major large-scale environmental perturbations grouped under the term Global 

Change [33]. Those changes play an active role in the surface energy and water balance, as well as in the carbon cycle [34]. There 

is a variety of methodologies to assess vegetation dynamics based on the analysis of long-time series of PIS. Certain algorithm 

make use of NDVI time series to derive parameters related to vegetation phenology and production that are necessary for modelling 

vegetation distribution and dynamics [35]. Land cover change is often detected by analyzing time series of coarse-resolution 

AVHRR data [36], [37]. With the availability of MODIS NDVI 250 m data, time-series data analysis has been adapted to higher 

resolution applications [38]. 

Regarding burned area detection and mapping, spectral FZs, and specially NDVI, have proved a simple and fast method 

to map vegetation abundance using the NOAA-AWRR and the Landsat m. Other indices widely used for free mapping includes the 

shortwave-infrared (SWIR) instead of red wavelengths, such as the Normalized Difference Infrared Index (NDII) [39], the 

Normalized Difference Moisture Index (NDMI) [40] and the Normalized Difference Water Index (NDWI) [41] because of their 

ability to estimate the water content in the vegetation. In addition to this, due to the ability of the NOAA-AVHRR sensor to cover 

a wide area and its high temporal frequency, the NDVI has often been used in the prediction of fie risk [42]. A link between a NDVI 

decrement to vegetation water stress, vegetation photosynthetic activity and to fie risk has been found [43]. Another relevant 

application where the indices have a direct application is the hydrology. Different applications of remote sensing, particularly 

forestry, agriculture and land cover, the field of hydrology plays an important role since water is a vital component in each of these 

disciplines. The remote sensing data are inputs in the hydrological models such as the crop coefficient map, land use [44], etc. 

 

IV. CONCLUSION  

Combination of the visible and NIR band with simple VIs have notably improved the sensitivity of detecting the green 

vegetation. Different environments have their own variable and complex characteristics, which need to be considered when using 

different vegetation indices (VIs). As a result, each VI has its specific expression of green vegetation, its own suitability for specific 

uses, and some limiting factors. Therefore, for practical applications, the choice of using a specific VI needs to be made with caution 

by comprehensively considering and analyzing the advantages and limitations of existing VIs and then integrate them so that it can 

be applied in a specific environment. In this way, the usage of VIs can be altered to specific platforms, instrumentation used, and 

applications. With the development of hyperspectral and multispectral remote sensing technology, new VIs can be developed, which 

will broaden research areas accordingly. 
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