
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907N23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 880

AN ASSESSMENT MODEL TO FOSTER THE

ADOPTION OF AGILE SOFTWARE PRODUCT

LINE IN THE AUTOMOTIVE DOMAIN

Surekha.V1, Kavitha.S2

 Research Scholar M.Phil. (CS)., Assistant Professor,(CS)

Department of Computer Science

Auxilium College, Vellore, India.

Abstract : A Software Product Line is commonly used for the Software Development in Large Automotive Organizations.

Software development organizations frequently face changes that require them to be flexible. The principles and practices of

Agile software are often associated with improving software organizations’ flexibility. However, Introducing agile practices have

its benefits and limitations. To amplify benefits and all evirate challenges, Agile adoption guidelines are being proposed to

provide strategies for introducing Agile practices. One instance of such guidelines is known as Agile Maturity Models (AMMs).

A strategic reuse of software is needed to handle the increasing complexity of the development and to maintain the quality of

numerous software variants. However, the development process needs to be continuously adapted at a fast pace to satisfy the

changing market demands.

 Introducing agile software development methods promise the flexibility to react on customers' change requests and

market demands to deliver high quality software. Despite this need, it is still challenging to combine agile software development

and product lines. The maturity of an agile adoption is often hard to determine. Assessing the current situation regarding the

combination is a first step towards a successful inclusion of agile methods into automotive software product lines. Based on an

interview study with 16 participants and a literature review, build the so-called ASPLA Model allowing self-assessments within

the team to determine the current state of agile software development in combination with software product lines. The model

comprises seven areas of improvements and recommends a possibility to improve the current status.

 The combination of agile software development and software product lines in the automotive domain is seen as a

promising approach. With this approach, a shorter time to market and a faster learning loop about the maturity of the software

could be achieved. The current status of the agile adoption within software product line is hard to define. In this paper, to

examine the aspects that needs to be considered for an adjusted assessment model that assess an organization’s current situation

regarding agile software development and software product lines. Several assessment models for CMMI and ASPICE, XP, ISO

26550 models are used.

IndexTerms - Agile software development, software product lines,process maturity framework, software process improvement,automotive

domain,embedded software development, ASPLA Model.

I INTRODUCTION

Flexibility is important for any organization, including software organizations to keep up with changes in the business

environment and maintain a competitive advantage. In software engineering, flexibility is often associated with the principles and

practices of agile software development. Agile software development is a group of software development methodologies, e.g.,

Extreme Programming (XP), Scrum, and Crystal that focus on delivering working software products in small iterations, being

adaptive towards requirement changes, and collaborating closely with customers.

The increasing complexity of software can be addressed by a strategic reuse, to manage the development and to maintain

the quality of numerous customized software variants. Software product lines are a software paradigm for systematic software

reuse and commonly used in the automotive software development. In the automotive embedded development it is necessary to

manage the high number of different software variants that meet different requirements across multiple markets, while

simultaneously maintaining the quality of the software.

Current software development in the automotive domain is heavily structured by standardized processes. Process assessments

are used to evaluate the processes of the organizational unit against a predefined process assessment model. The most popular

standards in the automotive domain are CMMI and Automotive SPICE (ASPICE). Assessing the current status of the development

is a prerequisite for a successful combination of agile methods and software product lines in the automotive domain. The identified

the need for an adjusted assessment model, addressing Agile Software Product Lines in the Automotive Domain (ASPLA Model).

Maturity Model Integration (CMMI) or Software Process Improvement and Capability Determination (SPICE) is not suitable

for Agile processes. AMMs claim to provide Agile-specific guidelines for practitioners to engage in Agile transformation while

managing its risks and challenges. AMMs usually follow an evolutionary progression with levels similar to CMMI or SPICE.

Typically AMMs map Agile practices and maturity levels, indicating some practices are to be introduced before the other. Three

examples of typical AMMs. As we can see from, AMMs suggest that Agile practices should be gradually and continuously added.

However, AMMs are not in agreements which Agile practices should be introduced at which maturity level. A similar observation

is also reported by Leppanen. With contradictory suggestions among the AMMs, practitioners do not yet have the means to

determine which AMM or which order of practice introduction would suit them best. Most importantly, currently there is no way

for practitioners to tell if one strategy suggested by one AMM would lead to a more successful Agile practice implementation.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907N23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 881

II BACKGROUND

1.Software Productivity

 Principally, software productivity depends on overall software process, tools/technologies,

Fig. 1: Software Productivity

Processes for executing software projects have been studied actively for over three decades. Tools and technology to

improve productivity has also been an active area of development and improvement and continue to evolve. However, there is

insufficient understanding of programmer productivity, particularly at a task level. This thesis focuses on this aspect.

 2.Measuring Software Size
 The software size measures commonly used in the calculation of software productivity include lines of code (LOC),

function points (FP), testable requirements, and use case points.

3.Software Process Improvements for Improving Productivity

 During the last three decades, focus was on the importance of the overall process of software development on software

productivity. This naturally led to an increase in emphasis on improving software process for improving software productivity.

Improvements in the overall software process increase software productivity by identifying and eliminating waste during the

software development and optimizing existing methods to reduce the software development effort. Recognizing the challenges in

software process improvements, some frameworks have emerged to help organizations improve their process. Some of them are

briefly described here.

 CMMI: Capability Maturity Model Integration (CMMI) is a framework introduced by SEI, CMU to assess and

improve overall software process for better productivity. Processes of projects/organizations are evaluated to know the

maturity level of an overall software process. Maturity levels, under CMMI framework, are classified into the

following five levels: Initial, Repeatable, Defined, Quantitatively Managed, and Optimized. Organizations improving

its CMMI maturity level by one have reduced their development effort resulting in productivity improvement.

Projects/Organizations certified with level 5 (optimized) rating are considered to have mature overall software

processes and strive for continuous quality/productivity improvement.

 ISO: International Organization for Standardization (ISO) determines the process and product capabilities and

improvements. Unlike CMMI that concentrates only on software processes, ISO is a generic platform used across

many industries for evaluation of both processes and products. Adopting the guidelines and standards of ISO in

software projects had improved quality and productivity

 DOI78: This framework is mainly used to assess avionics-related software. This framework first classifies the

avionics software into one of the five levels (based on the existence of bugs in the software): A, very critical and

causes damage to life; B, critical when immediate action is not taken; C creates panic when action is not taken; D to E,

non-critical. Further, according to the level of the software, this framework imposes various engineering and project

management practices in software development.

D) Backdrop of Agile Manufacturing

 The business dynamics in the manufacturing environment has changed drastically over the last two decades due to

rapid changes in manufacturing and information technology, changes in market conditions, increased customer requirements (i.e.

quick response, lower costs, greater customization etc.), product proliferation with shorter and uncertain life cycles, intensified

off-shoring and outsourcing strategies, and increased competition from local to global arena. Therefore, the survival and success

of a manufacturing organization has become even more difficult. It is crucial for any manufacturing organization to deal with the

changes much quickly; otherwise there is a threat to becoming extinct. Manufacturing organizations that refused to heed to the

changes have shut shop. The refusal to heed to the changing scenario usually stems from the fact that the organizations presume

what is their core competency will tide them over during the turbulent times. Change in technology, materials and processes

sometimes render these rigid decisions as failures. Many Iron and Steel industries that did not update their technologies/

processes, had to close down as high operation costs ASPLA them commercially unavailable.

Manufacturing organizations need to incorporate processes to deal with changes. There have been major shifts in the core

business principles it was a “manufacturer centric” in nature, where the business model was simple with least number of variables

and a lot of confidence about what the customer really wanted. The premise on which the business was conducted has become

obsolete. The socio-economic environment in which the manufacturing companies are expected to operate now, have become

unstable owing to multitude of factors viz. non-uniform local legislations, risk due to financial upheavals, paucity of resources,

vacillating loyalty of customers and suppliers, and a strong emphasis on “customer desires and satisfaction”. This has led to a

situation where the sustainability of a manufacturing company is directly related to its ability - to face the growing.

1.Agile Manufacturing Enablers

 Agile Manufacturing Enabler (AME) is the factor that has the capability to provide or enable or enhance the level of agility

in the agile manufacturing system. Many researchers have carried out research on AMEs and identified AMEs which may be

specific or generic in nature. The manufacturing organization focusing on AM should identify the AMEs and then define the

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907N23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 882

domain of each enabler so that right AMEs can be selected in a specific manufacturing environment. Although number of

enablers have impact directly or indirectly or both ways on the agility performance of a manufacturing system, it is not possible

for an organization to focus on all the enablers at a time in order to enhance agility performance level.

2. Agile Manufacturing Impediments

 The AM implementation process would most likely get delayed if root causes of Agile Manufacturing Impediments

(AMIs) are not identified and effectively addressed. These AMIs have deep roots along various tangible and intangible issues of

the organizations. Therefore, an organization needs to target the appropriate AMIs to enhance the agile development as putting

efforts on all AMIs is not feasible. But many a times organizations fail to identify the appropriate AMIs due to improper analysis.

Thus, considering all the aforementioned issues, this study proposed an approach to identify the appropriate impediments for

monitoring the smooth implementation of AM in specific environment.

3.Data Analysis Techniques

 The data that are collected from the Models are statistically analyzed to validate the hypotheses formulated to investigate

the research questions under consideration. The summarize below some of the statistical analysis methodologies the have used.

Descriptive statistical methods will be used for data exploration to gain an overall understanding of the nature of the data

collected. The inter-question reliability will be tested using Cronbach’s alpha test. This will help us to understand whether the

responses to the different questionnaire items show high inter-question correlation. Correlation and regression analyses will be

performed to understand the relationships between the dependent and independent variables.

Fig. 2: Quality/Time/Cost Tradeoff Triangle in Software Development

Jim High smith, in his popular book, “Agile Project Management” lists five business objectives of exploration processes, i.e.,

processes that are capable of operating in uncertain environments.

1.Continuous Innovation: This requires delivering products and services according to current customer needs and requirements.

These needs are requirements that do not stem out of structured, plan driven environments. Continuous innovation is supported by

adaptive organizational culture involving self-organization and self-discipline. It is measured by how a project an deliver

customer value today.

2.Product Adaptability. This requires delivering products according to changing customer requirements. These changes may

happen within the duration of few weeks to few years. The product should be adaptable to the changing requirements. Ideally,

such changes should be efficient and cost-effective.

3.Reduced Delivery Schedules: This requires reducing delivery schedules to meet the market requirements. Reducing delivery

schedule should be accompanied by increasing return on investment (ROI). Careful attention is given to delivering primarily

those features that are important to the customer. Marginally beneficial features are considered secondary.

4.People and Process Adaptability: This requires being dynamic with the changes in the business and the product. Similar to the

adaptability of product, the people and the process need to adapt to the changes in the time-varying nature of the market. Instead

of viewing changes with a resistive attitude, they should be ASPLA part and parcel of the businesses.

5.Reliable Results: Traditionally, good traditional/plan-driven (predictable) processes required delivering products using

processes having repeatable outcome, i.e., processes that would deliver the same even when undertaken after a lapse of time.

These processes resulted in predictable outcome within the specified time and budget. However, for exploration processes, what

is important is whether the project was able to deliver a valuable product to the customer within the specified time and budget. In

exploration processes, although the outcome is not repeatable, innovative results are delivered to the customers in line with their

vision.

E) Agile Software Product Lines in Automotive

It analyzes the combination of agile and plan-driven processes. This combination could be seen as a typical characteristic

of current automotive software development. They emphasize that a combination is beneficial under certain conditions, such as

rigid quality and safety requirements.

Adopting agile software development in the automotive typically concentrates only on selected agile practices such as

Continuous Integration or Pair Programming. The published literature does not show any recommendations to use a

comprehensive set of agile elements and practices together in the automotive domain.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907N23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 883

 The majority of the suggests that agile models and processes should get customized to the specifics of the automotive

domain before they are implemented in practice. – Agile models and processes that are already customized to the specifics of the

automotive domain are proposed in the published literature. An example is the Feedback Loop Model that especially considers the

collaboration between different organizations (such as OEMs and suppliers). – Combination approaches include interesting new

concepts such as virtual integration on the system level.

1.Agile Principles

The Agile Alliance also documented the principles that underlie the manifesto. Agile methods are principle-based, rather

than rule-based and have predefined rules regarding the roles, relationships, and activities. The principles that guide the software

developers comprising the team and project manager include:

1) Customer satisfaction through early and continuous delivery of valuable software is the highest priority.

2) Agile processes harness change for the customer's competitive advantage and hence are open to changing requirements, even

late in the development process.

3) Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter

timescale.

4) Necessarily involve business people and developers so as to work together on a daily basis all through the project.

5) Build projects with motivated individuals. Provide them the necessary setting and support they need, and have confidence in

them to get the task done.

6) Convey information in the most proficient and effective method to and within a development team preferably through face-

to-face conversation.

7) Working software is the primary measure of progress.

8) Agile processes encourage sustainable development. The sponsors, developers, and users should be able to keep up an

unvarying tempo forever.

9) Continuous attention to technical quality and superior design enhances agility.

10) Simplicity, the art of maximizing the amount of work not done is essential.

11) To achieve best architectures, requirements, and designs from self-organizing teams.

12) On a regular basis, preferably at fixed intervals, the team reflects on how to develop into a more effective team then regulates

and adjusts its activities consequently.

2.Agile Methodologies

Several Agile techniques have been proposed and used by researchers in difference domains. These Agile methodologies

share common principles among themselves but differ in practices. This section identifies some of the well-known existing Agile

software development methods and their objectives.

These are described in detail below:

1) Extreme Programming (XP)

2) Scrum

3) Lean Software Development (LSD)

4) Kanban

5) Adaptive Software Development (ASD)

6) Feature Driven Development (FDD)

7) Dynamic System Development Method

8) (DSDM)

9) Agile Modeling (AM)

10) Crystal

11) Agile Unified Process (AUP)

F) Extreme Programming (XP)

 Extreme Programming (XP) is a well-known and a light weight discipline of software development that focuses on

engineering practices. XP seeks to enable successful software development regardless of ambiguous or continuously changing

software requirements. It is a system of practices which is intended to improve software quality and quickly addresses the

changing customer requirements to meet business needs. It comprises collection of informal requirements from on-site clients,

arranges teams of pair programmers, developing simple designs, continuous refactoring, and continuous integration and testing;

and advocates frequent releases in short development cycles that improves productivity as well as introduces checkpoints where

new customer requirements can be embraced.

Scope

 XP is best suited for projects that require collocated teams of small to medium size team. On the project side XP is meant for

assignments where the requirements are unstable and unpredictable.

Advantages

 Communication: It is definitely a key factor to the success of any project as most projects fail because of poor

communication. It is achieved by combined and co-located workspaces and development and business spaces, paired

development, recurrently changing pair partners, often changing assignments, public status displays, short stand-up

meetings and unit tests, demos and oral communication, not documentation.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907N23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 884

 Simplicity: This refers to developing the simplest product that meets the customer’s needs. It supports delivering the

simplest functionality that meets business requirements, designing the simplest software that supports the needed

functionality, building for today and not for tomorrow and writing code that is simple to read, comprehend, maintain and

amend.

 Feedback: It means that developers must obtain and value feedback from the customer, from the system, and from each

other. It is provided by aggressive iterative and incremental releases, frequent releases to end users, co-location with end

users, automated unit tests, automated functional tests.

XP Activities : Coding, Testing, Listening, Designing

XP Practices : It is based on following 12 practices

 Planning Game: It is collaboration between a customer and the developers where iteration planning for next release is

performed, customers provide user stories followed by determining budget and schedule estimates.

 Small Releases: It supports the planning game. Working software is delivered in small and frequent releases and is

determined in terms of functionality.

 System Metaphor: XP teams develop a common vision of how the program works which is called metaphor. It is the oral

architecture of the system which describes how the program works.

 Simple Design: Do as little as needed and provide simplest possible design to get job done. The requirements will

change tomorrow, so only do what’s needed to meet today’s requirements.

 Test Driven Development: Extreme programming supports verifying and validating the software throughout the entire

project development lifecycle. Developers start by writing test cases first and then write codes as reflected in test

requirements followed by user acceptance test and customer approval.

 Refactoring: XP development teams enhance the design of the software all through the whole development lifecycle

which is done by refactoring out any duplicate code produced in a coding session. Refactoring is simplified by using

automated test cases comprehensively.

 Continuous Integration: New features and changes are incorporated into the system instantly. The development team

focuses on continuous integration of the software by verification and validation of the software throughout the product

development lifecycle.

 Collective Code Ownership: This suggests that developers own their code and facilitates refactoring.

 Pair Programming: XP Programmers write all production in pairs, two programmers working together at one machine.

XP Roles and Responsibilities

 XP Coach: Guides team to follow XP process

 XP Customer: Writes stories, functional tests and sets implementation priority

 XP Administrator: Setup programmer environment and acts as local administrator

 XP Programmer: Writes tests cases and code

 XP Tracker: Tracks iterations and provides feedback on accuracy of estimates

 XP Tester: Helps customer write, run functional tests and maintains testing tools

 XP Consultant: An external member who guides the team to solve problems

Limitations

 XP is not suitable for large, difficult or complex projects.

 It requires great amount of coordination between the programmers while doing pair programming and any small conflict

may damage the objective of collective score ownership and hence impact the iterations.

 Development of ‘metaphor’ is required to be shared within team carefully to ensure the common understanding of the

terminology.

 Pair programming is a noteworthy practice in XP; in which two developers work on the same machine at the same time

and hence it cannot be applied projects with only one developer. Since the testing and coding is done by the same

developer, all the probable problems may not be identified as developers test from the same insight the software is

created.

Objectives

The research gaps have been identified based on the literature reviews of the individual studies. Following research

objective(s) were outlined that commences with understanding of honeycomb application process in detail and also includes

various honeycomb application characteristics, issues and challenges, and best practices adopted by honeycomb development

community for a successful honeycomb application development process.

a. To study the honeycomb application development process using Agile software development methodologies, such as

XP, ASPLA and Automotive assessment models. Each of these Agile approaches is focused on different aspect and

comparing these methodologies is imperative.

b. To conduct a technical Model for gaining a better understanding of prevalent development practices for honeycomb

applications thereby identifying the problems and challenges faced by the honeycomb professionals related to

application development.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907N23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 885

c. To investigate and implement a robust approach for each phase of honeycomb software engineering process using

various Agile methodologies; identifying various challenges faced by honeycomb developers and best practices followed

to build and deliver a successful honeycomb applications.

d. To identify the best fitting Agile approach and integrating specific Agile practices, to meet the needs of volatile

honeycomb projects and to assist honeycomb developers and managers during the honeycomb application

development process.

III LITERATURE SURVEY

 The current situation and future scenarios of the automotive domain require a new strategy to develop high quality

software in a fast space. In the automotive domain, it is assumed that a combination of agile development practices and software

product lines is beneficial, in order to be capable to handle high frequency of improvements. This assumption is based on the

understanding that agile methods introduce more flexibility in short development intervals. Software product lines help to manage

the high amount of variants and to improve quality by reuse of software for long term development.[12] [24]Software reuse

enables developers to leverage past accomplishments and facilitates significant improvements in software productivity and

quality. The contribution of this paper is a recommended process model for the implementation of software reuse effectively. A

critical problem in today’s practice of software reuse is the lack of a standard process model which describes the necessary details

to support reuse based software development and evolution. Our research thesis is that software development based upon a reuse-

based process model improves quality of products and productivity of processes. A quantitative survey of 100 software

organizations is used to test the new process model and the hypothesis of the study. The process model presented in this paper

identifies process level, organizational and technical aspects which have to be improved to achieve success in the reuse world. [9]

In modern cars, most of the functionalities are controlled by software. The increased significance of software-based functionality

has resulted in various challenges for automotive industry, which is slowly transitioning to-wards being a software centric

industry. Challenges include the definition of key competencies, processes, methods, tools, and organization settings to

accommodate combined development of software and hardware. Based on qualitative research, this paper aims at understanding

the applicability of agile methods to automotive software development. The explorative case study with one of the development

sections at Volvo Car Cooperation identified challenges in their software development process related to process perception and

reactive mode, multi-tasking and frequent task switching, individualism and lack of complete knowledge, as well as long

communication chains and low cross-function mind set. Moreover it prepares a transition of software development at this

multinational automotive company towards agile by relating agile principles and practices to automotive software process

challenges.

IV RESULT AND ANALYSIS

The Elements in the ASPLA model are mapped to parts of relevant and current automotive domain standards. A

complete list of all issues can be found in. The focus on the specific issues of (1) Measurement and tracking, (2) Traceability, and

(3) Verification and validation.

(1)Measurement and Tracking: Measurement tasks in product line engineering and the management of the product line

itself, are complex. Due to the separation of domain engineering and application engineering life cycles, the data collection,

the measurement and tracking needs to be synchronized. Furthermore, the organizational and technical management of the

product line needs to be considered to receive a proper measurement result.

a.

Fig. 3:Measurement and Tracking

(2) Traceability: The development in a software product line is typically knowledge-intensive and a lot of collaboration

and coordination. It is important to trace and manage the knowledge to control the complexity of the overall soft- ware

product line and the development of single variants. Traceability helps to keep track of decisions regarding the

development.

Fig. 4: Traceability

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907N23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 886

(3) Verification and Validation: Verification and validation confirms that the requirements for all domain assets and

member products are fulfilled. Verification and validation in product line context must consider all software variants and

are therefore fundamentally different from the single-system engineering context. summarizes the coverage of the ISO

26550 process specific issues and presents a mapping to the presented outcomes.

Fig. 5: Verification and Validation

A)Comparison between the performance Changes on Testing

The Elements in the ASPLA model are mapped to parts of relevant and current automotive domain standards. A

complete list of all issues can be found in. The focus on the specific issues are comparison between the performance Changes on

testing to be proved.

 Unit Test

Unit Testing is a level of individual units/ components of a software are tested. The purpose is to validate that each unit

of the software performs as designed. A unit is the smallest testable part of any software. It usually has one or a few inputs and

usually a single output.

System Test

System Testing is a level of software testing where a complete and integrated software is tested. The purpose of this test

is to evaluate the system's compliance with the specified requirements. That tasks in product line engineering and the

management of the product line itself, are complex. Due to the separation of domain engineering and application engineering life

cycles, the data collection, the measurement and tracking needs to be synchronized. Furthermore, the organizational and technical

management of the product line needs to be considered to receive a proper measurement result. The development in a software

product line is typically knowledge-intensive and a lot of collaboration and coordination. It is important to trace and manage the

knowledge to control the complexity of the overall software product line and the development of single variants. Traceability

helps to keep track of decisions regarding the development.

Fig. 6:The Performance Improvement on Before Validation

 Verification and validation confirms that the requirements for all domain assets and member products are fulfilled.

Verification and validation in product line context must consider all software variants and are therefore fundamentally different

from the single-system engineering context. summarizes the coverage of the ISO 26550 process specific issues and presents a

mapping to the presented outcomes.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907N23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 887

Fig. 7: Testing on Measurement Tracking, Traceability, Verification and Validation

Fig. 8: The Performance Improvements on After Validation

A)Support and Maintenance

 Most of the survey participants highly emphasized the necessity to capture the defects based upon user-

market feedbacks, through memory optimization, automated crash reports, and change requests from users. They highly

recommended that product maintenance (support) and product improvement (upgrade) should be done in frequent iterative

releases with bug fixes via app store or enterprise deployment, This support should be improving the app with platform updates,

new features, and functionalities

PHASE STAGE DESCRIPTION

Step 1
Envision

Analysis

Initial requirements envisioning (Identify

potential projects, Gather

Precise business requirements, Functional and

Systems Engineering Specification)

Identify a “PROBLEM/PURPOSE” for which

App will be developed and Address the exact

services the app will offer to the business and

decide the features of the app Requirement

Analysis and Finalization

Identify a “PROBLEM/PURPOSE” for which

App will be developed and Address the exact

services the app will offer to the business and

decide the features of the app Requirement

Analysis and Finalization

Step 2

Solution

Design

Design Specification (Detailed Module Level

Design Specification, Create user interface

steps model, Create security model) integrated,

Finalize UI design and make wireframes)

Create a Test Plan (Write story cards. test plan

and test code)

 Step 3

Quality

Assurance

Testing

 Defining Test Cases (Module Stand Alone Test

Spec, Integrated and System Test Specification)

Testing (Write Unit Test Code, Automated

Testing, Regression Testing,

Unit testing, Implementation and user testing

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907N23 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 888

and Acceptance Testing

Testing on Emulator and over wide variety of

devices for Usability, Functionality,

Compatibility, Performance, Interoperability,

Security, Localization, Connectively, Test

Documentation)

Table 1:Maintenance of ASPLA Model

The identify the need for an automotive specific assessment model in previous research the examine the aspects that need to be

considered for an adjusted assessment model that assess an organization’s current situation regarding agile software development

and software product lines several assessment models use. However, the assessment models do not focus on agile practices in

detail. The address these insufficient assessment models with the definition of the ASPLA Model. The ASPLA Model comprises

the results from an Application. The experimental result show that the software product Measure the tracking, traceability and

validation and verification for the ASPLA and ASM model the presented assessment model is the only possible way to introduce

an improvement.

V CONCLUSION AND FUTURE WORK

A)CONCLUSION

 The combination of agile software development and software product lines in the automotive domain is seen as a

promising approach. With this approach, a shorter time to market and a faster learning loop about the maturity of the

software could be achieved. However, the literature often recommends to introduce single agile practices into plan-driven

processes in one particular context. A holistic approach to combine agile software development and software product lines in the

automotive.

 The current status on the agile adoption within software product line is hard to define. The identify the need for

an automotive specific assessment model in previous research the examine the aspects that need to be considered for

testing process. Communication is another important field to consider. The ASPLA Model recommends a close customer contact.

Breaking down the “knowledge silos” and establish an open communication is recommended by the ASPLA Model.

 The ASPLA Model can be used a guideline in an assessment to identify Honeycomb which need to be

considered. Due to the adaption to the context of agile software product lines in automotive, it foster an agile introduction more

than other assessment model. Furthermore, it is based on best practices what leads to an acceptance of the model. The model was

primarily designed for the automotive domain and may not be generalized for other domains. Furthermore, it cannot be guaranteed

that the presented assessment model is the only possible way to introduce an improvement.

B)FUTURE WORK

 For Future Work, plan to evaluate the different types of models, further validation, evaluate the different model

identifiers and represent the current state of the team under assessment regarding the combination of agile software product line in

the automotive domain.

REFERENCES

1. T. J¨ulicher and M. Delisle, “Step into the circle-a close look at wearables and quantified self,” in Big Data in Context:

Legal, Social and Technological Insights, T. Hoeren and B. Kolany-Raiser, Eds. Cham: Springer International

Publishing, 2018, pp. 81–91. [Online]. Available: https://doi.org/10.1007/978-3-319-62461-7 10

2. D. Thomas, “Cellphone addiction and academic stress among university students in thailand,” INTERNATIONAL

FORUM JOURNAL, vol. 19, no. 2, pp. 80–96, url = http://ojs.aiias.edu/index.php/ojs/article/view/187, 2017.

3. Leitner, R. Mader, C. Kreiner, C. Steger, and R. Weiß, “A development methodology for variant-rich automotive

software architectures,” e &iElektrotechnik und Informationstechnik, vol. 128, no. 6, pp. 222–227, 2011.

4. S. Thiel, M. A. Babar, G. Botterweck, and L. O’Brien, “Software product lines in automotive systems engineering,” SAE

International Journal of Passenger Cars - Electronic and Electrical Systems, vol. 1, no. 1, pp. 531–543, 2009.

5. L. Wozniak and P. Clements, “How automotive engineering is taking product line engineering to the extreme,” in the

19th International Conference, pp. 327–336.

6. M. Galster and P. Avgeriou, “Supporting variability through agility to achieve adaptable architectures,” in Agile

Software Architecture, 2014, pp. 139–159.

7. J. Bosch and P. M. Bosch-Sijtsema, “Introducing agile customercentered development in a legacy software product

line,” Software: Practice and Experience, vol. 41, no. 8, pp. 871–882, 2011.

8. U. Eliasson, R. Heldal, J. Lantz, and C. Berger, “Agile model-driven engineering in mechatronic systems - an industrial

case study,” in Model-Driven Engineering Languages and Systems, 2014, vol. 8767, pp. 433–449.

http://www.jetir.org/

