Bi-domination in Graphs

V. Lavanya ${ }^{1}$ Dr. D.S.T. Ramesh ${ }^{2}$ and Dr. N. Meena ${ }^{3}$
${ }^{1}$ Research Scholar, Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai, Nazareth 628 617, Affiliated to Manonmaniam Sundaranar University, India.
${ }^{2}$ Associate Professor, Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai, Nazareth 628 617, Affiliated to Manonmaniam Sundaranar University, India.
${ }^{3}$ Associate Professor, Department of Mathematics, MDT Hindu College, Pettai, Tirunelveli

627004 Affiliated to Manonmaniam Sundaranar University, India.

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. A set $S \subseteq V(G)$ is a bi-dominating set if S is a dominating set of G and every vertex in S dominates exactly two vertices in V-S. The bi-domination number $\gamma_{b i}(G)$ of a graph G is the minimum cardinality of the minimal bi-dominating set. In this paper, bi-domination number for some standard graphs are determined. Bounds for bidomination number are obtained.

Key Words: Domination number, Bi-Domination number and Upper bi-domination number.
1.Introduction: Let $G(V, E)$ be a simple, connected graph where V is its vertex set and E is its edge set. The degree of any vertex v in G is the number of edges incident with v and is denoted by deg v , the minimum degree of a graph is denoted by $\delta(\mathrm{G})$ and the maximum degree of a graph G is denoted by $\Delta(G)$. A vertex of degree 0 is called an isolated vertex and a vertex of degree 1 is called a pendent vertex. A subdivision of an edge $u v$ is obtained by replacing the edge uv with the edges $u w$ and $v w$ with a new vertex w. A subset S of $\mathrm{V}(\mathrm{G})$ is called a dominating set of G if every vertex in $\mathrm{V}-\mathrm{S}$ is adjacent to at least one vertex in $\mathrm{S}[2-3]$. The domination number $\gamma(\mathrm{G})$ of G is the minimum cardinality of all dominating sets in G . In this paper, bi-domination number for some standard graphs are determined. Bounds for bi-domination number are obtained.For graph theoretic notations, Harary [1] is referred to.

Definition 1.1: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. Let $|\mathrm{V}(\mathrm{G})|=\mathrm{n}$. A vertex v is called a full degree vertex if degv $=\mathrm{n}-1$.
Definition 1.2: The graph $\mathrm{B}_{\mathrm{n}, \mathrm{n}}, \mathrm{n} \geq 2$ is a bistar obtained from two disjoint copies of $\mathrm{K}_{1, \mathrm{n}}$ by joining the centre vertices by an edge. It have $2 \mathrm{n}+2$ vertices and $2 \mathrm{n}+1$ edges.

Definition 1.3: A spider is a tree on $2 \mathrm{n}+1$ vertices obtained by subdividing each edge of a star. One or more (but not all) of the edges from this subdivision exempted results a wounded spider.[5]

2. Main Results:

Definition 2.1: A set $S \subseteq V(G)$ is a bi-dominating set if S is a dominating set of G and every vertex in S dominates exactly two vertices in V-S.

Remark 2.2: The bi-domination number $\gamma_{b i}(G)$ of a graph G is the minimum cardinality of all minimal bi-dominating sets. The maximum cardinality of a bi-dominating set of G is called the upper bi-domination number of G and it is denoted by $\Gamma_{b i}(\mathrm{G})$.

Example 2.3: Consider the following graph G in figure 2.1

Figure 2.1

Let $S_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{6}\right\}, \mathrm{S}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{7}\right\}, \mathrm{S}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}, \mathrm{S}_{4}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}$ and $\mathrm{S}_{5}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{7}\right\}$, every vertex of the set $\mathrm{S}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 5$ dominate exactly two vertices of $\mathrm{V}-\mathrm{S}_{\mathrm{i}}$. Hence $\mathrm{S}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 5$ are bi-dominating sets of G . Therefore $\gamma_{b i}(G) \leq 3$. $\left\{\mathrm{v}_{2}, \mathrm{v}_{5}\right\}$ is the unique minimum dominating set, $\gamma(\mathrm{G})=2$. It is not a bi-dominating set, since v_{5} dominates three vertices $\mathrm{v}_{4}, \mathrm{v}_{6}$ and 2. Therefore $\gamma_{b i}(G) \geq 3$. Hence $\gamma_{b i}(G)=3$.

Example 2.4: Consider the following graph G in figure 2.2

Figure 2.2
Let $S_{1}=\{a, d\}, S_{2}=\{e, c, f\}, S_{3}=\{b, f, d\}$. Every vertex of the set $S_{i} 1 \leq i \leq 3$ dominates exactly two vertices in $V-S_{i}$. Hence S_{i} $1 \leq \mathrm{i} \leq 3$ are bi-dominating sets of G . Hence $\gamma_{b i}(G) \leq 2$, Since there is no full degree vertex in $\mathrm{G}, \gamma(\mathrm{G}) \geq 2$. Therefore $\gamma_{b i}(G) \geq 2$. Also it is verified that no set with four vertices is a bi-dominating set. Hence S_{1} is the minimum bi-dominating set and S_{2} and S_{3} are maximum bi-dominating sets. Hence $\gamma_{b i}(G)=2$ and

$$
\Gamma_{b i}(\mathrm{G})=3 .
$$

Remark 2.5: Any bi-dominating set does not contain pendent vertices.
Example 2.6: Graph G without bi-dominating set is given in the following figure 2.3

Figure 2.3
Suppose G has bi-dominating set S . Since there is no full degree vertex in $\mathrm{G}, \gamma(\mathrm{G}) \geq 2$. Hence $\gamma_{b i}(G) \geq 2$. Since every vertex in S dominates exactly two vertices in V-S,$\gamma_{b i}(G) \leq 3$. Since e does not belong to S, d must belong to S. Let $S_{1}=\{a, d\}, S_{2}=\{c, d\}$ and $S_{3}=\{b, d\}$. In S_{1}, d dominates three vertices b, c and e of $V-S_{1}$ of G. Hence S_{1} is not a bi-dominating set of G. In S_{2}, c dominates only one vertex a of $V-S_{2}$ of G. Hence S_{2} is not a bi-dominating set of G.
In S_{3}, b dominates only one vertex a of $\mathrm{V}-\mathrm{S}_{3}$ of G . Hence S_{3} is not a bi-dominating set of G . Therefore no set with two elements is a bi-dominating set. In the set $S_{4}=\{a, b, d\}$, the vertices a and b do not dominate two elements of $V-S_{4}$ of G. In the set $S_{5}=\{a, c$, $d\}$, the vertices a and c do not dominate two elements of $V-S_{5}$ of G. In the set $S_{6}=\{c, b, d\}$, no element dominate two vertices of $\mathrm{V}-\mathrm{S}_{6}$ of G . Therefore no sets with three elements is a bi-dominating set of G. Hence bi-dominating set does not exist.

Observation 2.6: For any connected graph G with p vertices, $\gamma_{b i}(G)=1$ if and only if
$G \cong P_{3}$ or K_{3}.
Remark 2.7: $\gamma(\mathrm{G}) \leq \gamma_{b i}(G)$, since every bi-dominating set is a dominating set.
Example 2.8: Consider a graph G given in example 2. $\gamma(\mathrm{G})=2$ and $\gamma_{b i}(G)=3$. Therefore $\gamma(\mathrm{G})<\gamma_{b i}(G)$.
Example 2.9: For the Graph G given in figure 2.4, $\gamma_{b i}(G)=\gamma(\mathrm{G})$

Figure 2.4
There is no full degree vertex in G . Therefore $\gamma(\mathrm{G}) \geq 2$. Let $\mathrm{S}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\}$,
$\mathrm{S}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{5}\right\}$ and $\mathrm{S}_{3}=\left\{\mathrm{v}_{3}, \mathrm{v}_{5}\right\}$, Every vertex of the set $\mathrm{S}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 3$ dominates exactly two vertices of $\mathrm{V}-\mathrm{S}_{\mathrm{i}}$. Hence $\mathrm{S}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq 3$ are bidominating sets of G . Therefore $\gamma(\mathrm{G}) \leq 2$ and $\gamma_{b i}(G) \leq 2$. Hence $\gamma(\mathrm{G})=2$. Since G is not either P_{3} or $\mathrm{K}_{3}, \gamma_{b i}(G)=2$. Hence $\gamma_{b i}(G)$ $=2=\gamma(\mathrm{G})$

Theorem 2.10: Let P be a path of length n , then $\gamma_{\mathrm{bi}}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\lceil\frac{n}{3}\right\rceil, \mathrm{n} \geq 3, \mathrm{n} \neq 2,4$.
Proof: case (i): Let $n=3 m, m \geq 1 .\left\{\mathrm{v}_{2}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{3 \mathrm{~m}-1}\right\}$ is the unique bi-dominating set of $\mathrm{P}_{3 \mathrm{~m}}$. Therefore $\gamma_{\mathrm{bi}}\left(\mathrm{P}_{\mathrm{n}}\right)=\frac{n}{3}$.
Case (ii): Let $\mathrm{n}=3 \mathrm{~m}+1, \mathrm{~m} \geq 2 .\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{3 \mathrm{~m}-4}, \mathrm{v}_{3 \mathrm{~m}-2}, \mathrm{v}_{3 \mathrm{~m}}\right\}$ is a bi-dominating set of $\mathrm{P}_{3 \mathrm{~m}+1}$. Therefore $\gamma_{\mathrm{bi}}\left(\mathrm{P}_{\mathrm{n}}\right)=\mathrm{m}+1=\left\lceil\frac{n}{3}\right\rceil$.
Case (iii): Let $n=3 m+2, m \geq 1 .\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{7}, \mathrm{v}_{10}, \ldots, \mathrm{v}_{3 \mathrm{~m}+1}\right\}$ are some bi-dominating set of $\mathrm{P}_{3 \mathrm{~m}+2}$. Therefore $\gamma_{\mathrm{bi}}\left(\mathrm{P}_{\mathrm{n}}\right)=m+1=\left\lceil\frac{n}{3}\right\rceil$.
Case (iv): when $n=2 .\left\{\mathrm{v}_{1}\right\}$ and $\left\{\mathrm{v}_{2}\right\}$ are dominating sets and it dominates exactly one vertex. Hence it is not a bi-dominating set.
Case (v): $S_{1}=\left\{v_{1}, v_{4}\right\}, S_{2}=\left\{v_{1}, v_{3}\right\}, S_{3}=\left\{v_{2}, v_{3}\right\}$ and $S_{4}=\left\{v_{2}, v_{4}\right\}$ are dominating sets of P_{4}. No vertices in S_{1} and S_{3} dominates exactly two vertices. $V-S_{1}$ and $V-S_{3}$ respectively v_{1} in S_{2} and v_{4} in S_{4} do not dominate exactly two vertices in $V-S_{2}$ and $V-S_{4}$.

Theorem 2.11: Let C be a cycle of length n , then $\gamma_{\mathrm{bi}}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\lceil\frac{n}{3}\right\rceil, \mathrm{n} \geq 3$.
Proof: Case (i): Let $n=3 m, m \geq 1 .\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{3 \mathrm{~m}-1}\right\}$ is the bi-dominating set of $\mathrm{C}_{3 \mathrm{~m}}$. Therefore $\gamma_{\mathrm{bi}}\left(\mathrm{C}_{\mathrm{n}}\right)=\frac{n}{3}$.
Case (ii): Let $n=3 m+1, m \geq 2 .\left\{\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{3 \mathrm{~m}-4}, \mathrm{v}_{3 \mathrm{~m}-2}, \mathrm{v}_{3 \mathrm{~m}}\right\}$ is a bi-dominating set of $\mathrm{C}_{3 \mathrm{~m}+1}$. Therefore $\gamma_{\mathrm{bi}}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{m}+1=\left\lceil\frac{n}{3}\right\rceil$.
Case (iii): Let $\mathrm{n}=3 \mathrm{~m}+2, \mathrm{~m} \geq 1 .\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{7}, \mathrm{v}_{10}, \ldots, \mathrm{v}_{3 \mathrm{~m}+1}\right\}$ are some bi-dominating set of $\mathrm{C}_{3 \mathrm{~m}+2}$. Therefore $\gamma_{\mathrm{bi}}\left(\mathrm{C}_{\mathrm{n}}\right)=\mathrm{m}+1=\left\lceil\frac{n}{3}\right\rceil$.
Case (iv): when $\mathrm{n}=4$. The antipodal vertices $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ or $\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ is a bi-dominating set of C_{4}.
Theorem 2.12: Let G be a connected graph, If $G=K_{n}$ then $\gamma_{b i}(G)=\mathrm{n}-2$.
Proof: Let $G=K_{n}$ be a connected graph $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of Gince G is complete and degree of every vertex in G is $\mathrm{n}-1$, clearly by definition the vertices $v_{1}, v_{2}, \ldots, v_{n-2}$ dominate exactly two vertices. Hence $\gamma_{b i}(G)=\mathrm{n}-2$.

Theorem 2.13: Let G be a complete bi-partite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ and $m, n \geq 3$. Then $\gamma_{b i}\left(G=K_{m, n}\right)=m+n-4$.
Proof: Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a bi-partition of G. Every $u_{i} \in U$ dominates all the vertices in W. As each vertex can dominate exactly two vertices except two w_{i} 's all other w_{i} 's are in S , the bi dominating set. Similarly all u_{i} 's except two are in S. Hence $\gamma_{\mathrm{bi}}(\mathrm{G})=\mathrm{m}-2+\mathrm{n}-2=\mathrm{m}+\mathrm{n}-4$.

Theorem 2.14: For a star $\mathrm{G}=K_{1, k}, \mathrm{k} \neq 2$ dominating set exist, $\gamma(G)=1$ but bi-dominating set does not exits. Proof: Let $K_{1, k}$ be a star with k pendant vertices. Let v be a vertex with maximum degree and $v_{1}, v_{2}, \ldots, v_{k}$ be the pendant vertices of $K_{1, k}$. The vertex v can dominate $v_{1}, v_{2}, \ldots, v_{k}$ vertices and the vertices $v_{1}, v_{2}, \ldots, v_{k}$ dominate exactly one vertex v . Hence $\{\mathrm{v}\}$ is the minimum dominating set and $\gamma(G)=1$. The vertex v dominates more than two vertices but not exactly two. Clearly $\{\mathrm{v}\}$ is a dominating set but not bi-dominating. Therefore bi-dominating set does not exist for $K_{1, k}$.

Note 2.15: If $G=K_{1,2}$ then $\gamma(G)=\gamma_{b i}(G)=1$.
Proof: Let $\mathrm{G}=K_{1,2}$. Let v be a vertex with maximum degree 2 and v_{1} and v_{2} be the pendant vertices of $K_{1,2}$. Since degree of v is 2 and it dominate other vertices v_{1} and v_{2}. Hence $\{\mathrm{v}\}$ is the minimum dominating set and it dominate exactly two vertices and it also a bi-dominating set. Therefore $\gamma(G)=\gamma_{b i}(G)=1$.
Remark 2.16: For any connected graph G with n vertices, $1 \leq \gamma_{b i}(G) \leq \mathrm{n}-2$.
Theorem 2.18: A bi-dominating set does not exist for a graph G in which a vertex adjacent with more than two pendent vertices.

Proof: Let $u_{1}, u_{2}, \ldots, u_{m}, m \geq 3$ be the pendent vertices adjacent with a vertex v in G. Suppose S is a bi-dominating set of G. Since pendent vertices do not belong to S, the vertex v must belong to S to dominate $u_{1}, u_{2}, \ldots, u_{m}, m \geq 3$. Then v dominate more than two vertices of $\mathrm{V}-\mathrm{S}$, a contradiction. Hence bi-dominating set does not exist in G .

Observation2.19: For a bistar, $\mathrm{B}_{\mathrm{m}, \mathrm{n}}, \mathrm{m}$ and $\mathrm{n} \neq 2$ bi-dominating set does not exist.
Theorem 2.20: For $\mathrm{B}_{2,2}$ a bi-star, $\gamma(G)=\gamma_{b i}(G)=2$
Proof: Let u and v be the central vertices of $B_{2,2}$. Let u_{1}, u_{2} and v_{1}, v_{2} be the vertices adjacent with u and v respectively. Since $\{u, v\}$ is the unique minimum dominating set of $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$ and $\gamma(G)=2$. Clearly u dominate exactly two vertices u_{1} and u_{2} and v dominate exactly two verticesv v_{1} and v_{2}. Hence $\{\mathrm{u}, \mathrm{v}\}$ is unique bi-dominating set and $\gamma_{b i}(G)=2$. Therefore $\gamma(G)=\gamma_{b i}(G)=2$.

Theorem2.21: For a wounded spider with at least one leg, bi-dominating set does not exist.
Proof: Consider the following wounded spider $K_{1, t}^{*}$, where k edges are subdivided and $k<t$.

Let u be the central vertex. Take $\mathrm{D}=\left\{\mathrm{u}_{\mathrm{i}}\right\}, 1 \leq \mathrm{i} \leq \mathrm{t}$ is a unique minimum dominating set, since the vertices $\mathrm{u}_{k+1}, \ldots, \mathrm{u}_{\mathrm{t}}$ has only one neighbourhood u. Hence the set D is dominating set but not a bi-dominating set. Therefore bi-dominating set does not exist for wounded spider.

Remark 2.22: Complement of S a bi-dominating set of a graph G need not be a bi-dominating set. Consider the following graph P_{5}

Figure 2.6
Here $\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\}$ is the unique bi-dominating set of $\mathrm{P}_{5} . \mathrm{V}-\mathrm{S}$ is a dominating set but not a bi-dominating set of P_{5}
Theorem 2.23: Let G be a connected graph with n edges. Then $\gamma_{b i}(S(G))=\mathrm{n}$.
Proof: Let G be a simple graph with n edges. Let $H=S(G)$ and $|E(H)|=2 n$. let the edges of G subdivided by the new vertices u_{1}, $\mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}} .\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ is the unique bi-dominating set of \mathbf{H}. Therefore $\gamma_{b i}(H)=n$.

References:

[1] Harary.F, Graph theory, Addison-Wesley Publishing Company Reading,
Mass (1972).
[2] Teresa W.Haynes, Stephen T. Hedetniemi, Peter J.Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc(1998).
[3] Teresa W.Haynes, Routlege , Domination in graphs: Volume 2: Advanced Topics,(2017)
[4] John Adrian Bondy, Murty U.S.R., Graph Theory, Springer, 2008.
[5] Selvam Avadayappan ${ }^{1}$, M.Bhuvaneshwari ${ }^{2}$, R. Iswarya ${ }^{3}$, International Journal for Research in Applied Science and engineering Technology, Volume 4 Issue III, March 2016.

