Bi-domination in Graphs

V. Lavanya¹ Dr. D. S. T. Ramesh² and Dr. N. Meena³

¹Research Scholar, Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai, Nazareth 628 617, Affiliated to Manonmaniam Sundaranar University, India.

²Associate Professor, Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai, Nazareth 628 617, Affiliated to Manonmaniam Sundaranar University, India.

³ Associate Professor, Department of Mathematics, MDT Hindu College, Pettai, Tirunelveli

627004 Affiliated to Manonmaniam Sundaranar University, India.

Abstract: Let G = (V, E) be a simple graph. A set $S \subseteq V(G)$ is a bi-dominating set if S is a dominating set of G and every vertex in S dominates exactly two vertices in V-S. The bi-domination number $\gamma_{bi}(G)$ of a graph G is the minimum cardinality of the minimal bi-dominating set. In this paper, bi-domination number for some standard graphs are determined. Bounds for bi-domination number are obtained.

Key Words: Domination number, Bi-Domination number and Upper bi-domination number.

1.Introduction: Let G(V,E) be a simple, connected graph where V is its vertex set and E is its edge set. The degree of any vertex v in G is the number of edges incident with v and is denoted by deg v, the minimum degree of a graph is denoted by $\delta(G)$ and the maximum degree of a graph G is denoted by $\Delta(G)$. A vertex of degree 0 is called an isolated vertex and a vertex of degree 1 is called a pendent vertex. A subdivision of an edge uv is obtained by replacing the edge uv with the edges uw and vw with a new vertex w. A subset S of V(G) is called a dominating set of G if every vertex in V – S is adjacent to at least one vertex in S [2-3]. The domination number $\gamma(G)$ of G is the minimum cardinality of all dominating sets in G. In this paper, bi-domination number for some standard graphs are determined. Bounds for bi-domination number are obtained. For graph theoretic notations, Harary [1] is referred to.

Definition 1.1: Let G = (V, E) be a simple graph. Let |V(G)| = n. A vertex v is called a full degree vertex if degv = n - 1.

Definition 1.2: The graph $B_{n,n}$, $n \ge 2$ is a bistar obtained from two disjoint copies of $K_{1,n}$ by joining the centre vertices by an edge. It have 2n + 2 vertices and 2n + 1 edges.

Definition 1.3: A spider is a tree on 2n + 1 vertices obtained by subdividing each edge of a star. One or more (but not all) of the edges from this subdivision exempted results a wounded spider.[5]

2. Main Results:

Definition 2.1: A set $S \subseteq V(G)$ is a bi-dominating set if S is a dominating set of G and every vertex in S dominates exactly two vertices in V-S.

Remark 2.2: The bi-domination number $\gamma_{bi}(G)$ of a graph G is the minimum cardinality of all minimal bi-dominating sets. The maximum cardinality of a bi-dominating set of G is called the upper bi-domination number of G and it is denoted by $\Gamma_{bi}(G)$.

Example 2.3: Consider the following graph G in figure 2.1

Figure 2.1

Let $S_1 = \{v_1, v_3, v_6\}$, $S_2 = \{v_1, v_3, v_7\}$, $S_3 = \{v_2, v_4, v_5\}$, $S_4 = \{v_2, v_4, v_6\}$ and $S_5 = \{v_2, v_4, v_7\}$, every vertex of the set S_i , $1 \le i \le 5$ dominate exactly two vertices of V - S_i . Hence S_i , $1 \le i \le 5$ are bi-dominating sets of G. Therefore $\gamma_{bi}(G) \le 3$. $\{v_2, v_5\}$ is the unique minimum dominating set, $\gamma(G) = 2$. It is not a bi-dominating set, since v_5 dominates three vertices v_4, v_6 and v_7 . Therefore $\gamma_{bi}(G) \ge 3$. Hence $\gamma_{bi}(G) = 3$.

Example 2.4: Consider the following graph G in figure 2.2

Let $S_1 = \{a, d\}, S_2 = \{e, c, f\}, S_3 = \{b, f, d\}$. Every vertex of the set $S_i \ 1 \le i \le 3$ dominates exactly two vertices in $V - S_i$. Hence $S_i \ 1 \le i \le 3$ are bi-dominating sets of G. Hence $\gamma_{bi}(G) \le 2$, Since there is no full degree vertex in G, $\gamma(G) \ge 2$. Therefore $\gamma_{bi}(G) \ge 2$. Also it is verified that no set with four vertices is a bi-dominating set. Hence S_1 is the minimum bi-dominating set and S_2 and S_3 are maximum bi-dominating sets. Hence $\gamma_{bi}(G) = 2$ and

 $\Gamma_{bi}(\mathbf{G}) = 3.$

Remark 2.5: Any bi-dominating set does not contain pendent vertices.

Example 2.6: Graph G without bi-dominating set is given in the following figure 2.3

Suppose G has bi-dominating set S. Since there is no full degree vertex in G, $\gamma(G) \ge 2$. Hence $\gamma_{bi}(G) \ge 2$. Since every vertex in S dominates exactly two vertices in V-S, $\gamma_{bi}(G) \le 3$. Since e does not belong to S, d must belong to S. Let $S_1 = \{a, d\}, S_2 = \{c, d\}$ and $S_3 = \{b, d\}$. In S_1 , d dominates three vertices b, c and e of V - S_1 of G. Hence S_1 is not a bi-dominating set of G. In S_2 , c dominates only one vertex a of V - S_2 of G. Hence S_2 is not a bi-dominating set of G.

In S₃, b dominates only one vertex a of $V - S_3$ of G. Hence S₃ is not a bi-dominating set of G. Therefore no set with two elements is a bi-dominating set. In the set S₄ = {a, b, d}, the vertices a and b do not dominate two elements of $V - S_4$ of G. In the set S₅ = {a, c, d}, the vertices a and c do not dominate two elements of $V - S_5$ of G. In the set S₆ = {c, b, d}, no element dominate two vertices of $V - S_6$ of G. Therefore no sets with three elements is a bi-dominating set of G. Hence bi-dominating set does not exist.

Observation 2.6: For any connected graph G with p vertices, $\gamma_{bi}(G) = 1$ if and only if $G \cong P_3$ or K_3 .

Remark 2.7: $\gamma(G) \leq \gamma_{bi}(G)$, since every bi-dominating set is a dominating set.

Example 2.8: Consider a graph G given in example 2. $\gamma(G) = 2$ and $\gamma_{bi}(G) = 3$. Therefore $\gamma(G) < \gamma_{bi}(G)$.

Example 2.9: For the Graph G given in figure 2.4, $\gamma_{bi}(G) = \gamma(G)$

Figure 2.4 There is no full degree vertex in G. Therefore $\gamma(G) \ge 2$. Let $S_1 = \{v_1, v_4\}$, $S_2 = \{v_2, v_5\}$ and $S_3 = \{v_3, v_5\}$, Every vertex of the set S_i , $1 \le i \le 3$ dominates exactly two vertices of V - S_i. Hence S_i , $1 \le i \le 3$ are bidominating sets of G. Therefore $\gamma(G) \le 2$ and $\gamma_{bi}(G) \le 2$. Hence $\gamma(G) = 2$. Since G is not either P₃ or K₃, $\gamma_{bi}(G) = 2$. Hence $\gamma_{bi}(G)$ $= 2 = \gamma(G)$

Theorem 2.10: Let P be a path of length n, then $\gamma_{bi}(P_n) = \lceil \frac{n}{3} \rceil$, $n \ge 3$, $n \ne 2$, 4.

Proof: case (i): Let $n = 3m, m \ge 1$. { $v_2, v_8, ..., v_{3m-1}$ } is the unique bi-dominating set of P_{3m} . Therefore $\gamma_{bi}(P_n) = \frac{n}{2}$.

Case (ii): Let n = 3m + 1, $m \ge 2$. { v_2 , v_5 , v_8 , ..., v_{3m-4} , v_{3m-2} , v_{3m} } is a bi-dominating set of P_{3m+1} . Therefore $\gamma_{bi}(P_n) = m + 1 = \lceil \frac{n}{3} \rceil$. **Case (iii):** Let n = 3m + 2, $m \ge 1$. { v_2 , v_4 , v_7 , v_{10} , ..., v_{3m+1} } are some bi-dominating set of P_{3m+2} . Therefore $\gamma_{bi}(P_n) = m + 1 = \lceil \frac{n}{3} \rceil$. **Case (iv):** when n = 2. { v_1 } and { v_2 } are dominating sets and it dominates exactly one vertex. Hence it is not a bi-dominating set. **Case (v):** $S_1 = \{v_1, v_4\}$, $S_2 = \{v_1, v_3\}$, $S_3 = \{v_2, v_3\}$ and $S_4 = \{v_2, v_4\}$ are dominating sets of P_4 . No vertices in S_1 and S_3 dominates exactly two vertices. V- S_1 and $V - S_3$ respectively v_1 in S_2 and v_4 in S_4 do not dominate exactly two vertices in $V - S_2$ and $V - S_4$.

Theorem 2.11: Let C be a cycle of length n, then $\gamma_{bi}(C_n) = \lceil \frac{n}{2} \rceil$, $n \ge 3$.

Proof: Case (i): Let $n = 3m, m \ge 1$. { $v_2, v_5, v_8, ..., v_{3m-1}$ } is the bi-dominating set of C_{3m} . Therefore $\gamma_{bi}(C_n) = \frac{n}{3}$. **Case (ii):** Let $n = 3m + 1, m \ge 2$. { $v_2, v_5, v_8, ..., v_{3m-4}, v_{3m-2}, v_{3m}$ } is a bi-dominating set of C_{3m+1} . Therefore $\gamma_{bi}(C_n) = m + 1 = \lceil \frac{n}{3} \rceil$. **Case (iii):** Let $n = 3m + 2, m \ge 1$. { $v_2, v_4, v_7, v_{10}, ..., v_{3m+1}$ } are some bi-dominating set of C_{3m+2} . Therefore $\gamma_{bi}(C_n) = m + 1 = \lceil \frac{n}{3} \rceil$. **Case (iv):** when n = 4. The antipodal vertices { v_1, v_2 } or { v_3, v_4 } is a bi-dominating set of C_4 .

Theorem 2.12: Let *G* be a connected graph, If $G = K_n$ then $\gamma_{bi}(G) = n - 2$.

Proof: Let $G = K_n$ be a connected graph $\{v_1, v_2, ..., v_n\}$ be the vertex set of G. Since G is complete and degree of every vertex in G is n - 1, clearly by definition the vertices $v_1, v_2, ..., v_{n-2}$ dominate exactly two vertices. Hence $\gamma_{bi}(G) = n - 2$.

Theorem 2.13: Let G be a complete bi-partite graph $K_{m,n}$ and $m, n \ge 3$. Then $\gamma_{bi} \left(G = K_{m,n} \right) = m + n - 4$.

Proof: Let $U = \{u_1, u_2, \dots, u_m\}$ and $W = \{w_1, w_2, \dots, w_n\}$ be a bi-partition of G. Every $u_i \in U$ dominates all the vertices in W. As each vertex can dominate exactly two vertices except two $w_{i'}$'s all other $w_{i'}$'s are in S, the bi dominating set. Similarly all $u_{i'}$'s except two are in S. Hence $\gamma_{bi}(G) = m-2 + n-2 = m + n - 4$.

Theorem 2.14: For a star $G = K_{1,k}$, $k \neq 2$ dominating set exist, $\gamma(G) = 1$ but bi-dominating set does not exits.**Proof:** Let $K_{1,k}$ be a star with *k* pendant vertices. Let *v* be a vertex with maximum degree and $v_1, v_2, ..., v_k$ be the pendant vertices of $K_{1,k}$. The vertex v can dominate $v_1, v_2, ..., v_k$ vertices and the vertices $v_1, v_2, ..., v_k$ dominate exactly one vertex v. Hence $\{v\}$ is the minimum dominating set and $\gamma(G) = 1$. The vertex v dominates more than two vertices but not exactly two. Clearly $\{v\}$ is a dominating set but not bi-dominating. Therefore bi-dominating set does not exist for $K_{1,k}$.

Note 2.15: If $G = K_{1,2}$ then $\gamma(G) = \gamma_{bi}(G) = 1$.

Proof: Let $G = K_{1,2}$. Let *v* be a vertex with maximum degree 2 and v_1 and v_2 be the pendant vertices of $K_{1,2}$. Since degree of v is 2 and it dominate other vertices v_1 and v_2 . Hence $\{v\}$ is the minimum dominating set and it dominate exactly two vertices and it also a bi-dominating set. Therefore $\gamma(G) = \gamma_{bi}(G) = 1$.

Remark 2.16: For any connected graph G with n vertices, $1 \le \gamma_{bi}(G) \le n-2$.

Theorem 2.18: A bi-dominating set does not exist for a graph G in which a vertex adjacent with more than two pendent vertices.

Proof: Let $u_1, u_2, \ldots, u_m, m \ge 3$ be the pendent vertices adjacent with a vertex v in G. Suppose S is a bi-dominating set of G. Since pendent vertices do not belong to S, the vertex v must belong to S to dominate $u_1, u_2, \ldots, u_m, m \ge 3$. Then v dominate more than two vertices of V – S, a contradiction. Hence bi-dominating set does not exist in G.

Observation2.19: For a bistar, $B_{m,n}$, m and $n \neq 2$ bi-dominating set does not exist.

Theorem 2.20: For B_{2,2} a bi-star, $\gamma(G) = \gamma_{bi}(G) = 2$

Proof: Let u and v be the central vertices of B_{2,2}. Let u₁, u₂ and v₁, v₂ be the vertices adjacent with u and v respectively. Since {u, v} is the unique minimum dominating set of B_{m,n}and $\gamma(G) = 2$. Clearly u dominate exactly two vertices u₁ and u₂and v dominate exactly two verticesv₁ and u₂and v dominate exactly two verticesv₁ and v₂. Hence {u, v} is unique bi-dominating set and $\gamma_{bi}(G) = 2$. Therefore $\gamma(G) = \gamma_{bi}(G) = 2$.

Theorem2.21: For a wounded spider with at least one leg, bi-dominating set does not exist. **Proof:** Consider the following wounded spider $K^*_{1,t}$, where *k* edges are subdivided and *k*<*t*.

Let *u* be the central vertex. Take $D = \{u_i\}, 1 \le i \le t$ is a unique minimum dominating set, since the vertices $u_{k+1}, ..., u_t$ has only one neighbourhood u. Hence the set D is dominating set but not a bi-dominating set. Therefore bi-dominating set does not exist for wounded spider.

Remark 2.22: Complement of S a bi-dominating set of a graph G need not be a bi-dominating set . Consider the following graph P₅

Here $\{v_2, v_4\}$ is the unique bi-dominating set of P₅. V – S is a dominating set but not a bi-dominating set of P₅

Theorem 2.23: Let G be a connected graph with n edges. Then $\gamma_{bi}(S(G)) = n$.

Proof: Let G be a simple graph with n edges. Let H = S(G) and |E(H)| = 2n. let the edges of G subdivided by the new vertices u_1 , $u_2, ..., u_n$. { $u_1, u_2, ..., u_n$ } is the unique bi-dominating set of H. Therefore $\gamma_{bi}(H) = n$.

References:

[1] Harary.F, Graph theory, Addison-Wesley Publishing Company Reading,

Mass (1972).

[2] Teresa W.Haynes, Stephen T. Hedetniemi, Peter J.Slater, Fundamentals of

Domination in graphs, Marcel Dekker, Inc(1998).

[3] Teresa W.Haynes, Routlege , Domination in graphs: Volume 2: Advanced Topics,(2017)

[4] John Adrian Bondy, Murty U.S.R., Graph Theory, Springer, 2008.

[5] Selvam Avadayappan¹, M.Bhuvaneshwari², R. Iswarya³, International Journal for Research in Applied Science and engineering Technology, Volume 4 Issue III, March 2016.