CONTRACTION MAPPING IN B-METRIC SPACE

Savita Patel
M.Phil. Scholar
Department of Mathematics
Dr. C.V. Raman University, Kota, Bilaspur.

Abstract

:

In this paper, we prove a fixed point theorem of contraction mapping in B-metric spaces.

\section*{Introduction:}

Some problems, particurarly the problem of the convergence of measurable functions with respects to measure lead to a generalization of notion of metric. Using this idea we shall present generalization of a fixed point theorems of Banach type.

DEFINITION (1.1) Let (x, d) be a metric space then a mapping $T: X \rightarrow X$ is called a contraction mapping on X if there exists $q \in(0,1)$ such that
$d(T x, T y) \leq q d(x, y)$ for all x, y is in X.
if $\mathrm{q}=1$ then a mapping contractive mapping such that it is also knopwn as a nopn expansive mapping because non expansive mappings are more general than contractive mappings.

b-Metric Space:

The idea of b-metric was initiated from the works of Bourbaki [1974] and Bakhtin [1989]. Czerwik [1993] gave an axiom which was weaker than the triangular inequality and formally defined a b-metric space with a view of generalizing the Banach contraction mapping theorem. Later on, Fagin et al. [1998] discussed some kind of relaxation in triangular inequality and called this new distance measure as nonlinear elastic mathing (NEM). All these applications intrigued and pushed us to introduce the concept of extended b-metric space. So that the results obtained for such rich spaces become more viable in different directions of applications.

Lex X be a space and let R_{+}denotes the set of all nonnegative numbers. A function
$d: X \times X \rightarrow R+$ is said to be an b-metric iff for all $x, y, z \in X$ and all $r>0$ the following conditions are satisfacted:

$$
\begin{equation*}
d\{x, y)=0 \text { iff } x=y \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
d\{x, y)=d\{y, x) \tag{2}
\end{equation*}
$$

$\mathrm{d}\{\mathrm{x}, \mathrm{y})<\mathrm{r}$ and $\mathrm{d}\{\mathrm{x}, \mathrm{z})<\mathrm{r}$ imply $\mathrm{d}\{\mathrm{y}, \mathrm{z})<2 \mathrm{r}$.
A pair $\{X, d)$ is called an b-metric space.

Definition 1. Let X be a non empty set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow[0, \infty)$ is called b-metric (Bakhtin [1989], Czrerwik [1993]) if it satisfies the following properties for each $x, y, z \in$ X. (b1): $d(x, y)=0 \Leftrightarrow x=y$; (b2): $d(x, y)=d(y, x) ;(b 3): d(x, z) \leq s[d(x, y)+d(y, z)]$. The pair (X, d) is called a b-metric space.

2. Main Results:

The following results, which we will generalize and extend the results of B - Metric Space:-

Theorem Let (\mathbf{X}, \mathbf{d}) be a complete b -metric space with constant $\mathrm{s} \geq 1$ and suppose that $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ satisfies

$$
\begin{equation*}
\mathrm{d}(\mathrm{Tx}, \mathrm{Ty}) \leq \varphi(\mathrm{d}(\mathrm{x}, \mathrm{y})) \tag{2.1}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is increasing an
for each $t \geq 0$. Then T has a unique fixed point $x * \in X$ and $\operatorname{limn} \rightarrow \infty T n(x)=x^{*}$ for each $x \in X$.
In define upon theorem I recall the notion of b-metric spaces, the statement of Theorem 2.1 in [Kajanto, S. 2018] and I present extend in theorem.

Theorem : Let (x, d) be a complete b -matric space with the confficient $\mathrm{s} \geq 1$. Sappose that the mapping $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ satisfies the Condition :
$\mathrm{d}(\mathrm{Tx}, \mathrm{Ty}) \leq \propto d(x, y)+\beta \frac{[1+\mathrm{d}(x, \mathrm{~T} x)] d(y, T y)}{[1+d(x, y)]}$

$$
\begin{equation*}
+Y[d(x, T x)+d(y, T y)]+\delta[d(x, T y)+d(y, T x)] \tag{2.2}
\end{equation*}
$$

for all $x, y \in \mathrm{X}$, when $\alpha, \beta, \mathrm{r}, \delta$ are nonnegative reals with $\alpha+\beta+2 \mathrm{r}+2 \mathrm{~s} \delta<1$. then T has a unique fixed point in X.

Proof. Choose $\mathrm{x}_{\mathrm{o}} \in \mathrm{X}$. we construct the iteratine sequence $\left\{\mathrm{x}_{n}\right\}$, where $\mathrm{x}_{n}=T \mathrm{x}_{n-1}, n \geq 1$, that in $\mathrm{x}_{n+1}=\mathrm{Tx}_{n}=\mathrm{T}^{n+1} x_{o}$ from (1.1) me have $d\left(x_{n}, \mathrm{x}_{n+1}\right)=\left(T \mathrm{x}_{n-1}, T \mathrm{x}_{n}\right)$
$\leq \alpha d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right)+\beta \frac{\left[1+d\left(\mathrm{x}_{n-1}, T \mathrm{x}_{n-1}\right)\right] d\left(\mathrm{x}_{n}, T \mathrm{x}_{n}\right)}{\left[1+d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right)\right]}$

$$
\begin{aligned}
& +r\left[d\left(\mathrm{x}_{n-1}, T \mathrm{x}_{n-1}\right)+d\left(\mathrm{x}_{n}, T \mathrm{x}_{n}\right)\right] \\
& +\delta\left[d\left(\mathrm{x}_{n-1}, T \mathrm{x}_{n}\right)+d\left(\mathrm{x}_{n}, T \mathrm{x}_{n-1}\right)\right] \\
& =\alpha d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right)+\beta \frac{\left[1+d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right)\right] d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)}{\left[1+d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right)\right]} \\
& +r\left[d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right)+d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)\right] \\
& +\delta\left[d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n+1}\right)+d\left(\mathrm{x}_{n}, \mathrm{x}_{n}\right)\right] \\
& \leq \alpha d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right)+\beta d\left(\mathrm{x}_{n}, \mathrm{x}_{n-1}\right) \\
& +s \delta\left[d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right)+d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)\right] \\
& =(\alpha+\gamma+s \delta) d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right)+(\beta+\gamma+s \delta) d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)
\end{aligned}
$$

Which implies that

$$
\begin{align*}
d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right) \leq & \left(\frac{\alpha+\gamma+s \delta}{1-\beta-\gamma-s \delta}\right) d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right) \\
& =\mu d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n}\right) \ldots \ldots \ldots \ldots \ldots \ldots \tag{2.3}
\end{align*}
$$

Where

$$
\mu=\left(\frac{\alpha+\gamma+s \delta}{1-\beta-\gamma-s \delta}\right)
$$

Since $\alpha+\beta+2 \gamma+2 s \delta<1$, it follows that $0<\mu<1$. By induction, we have
$d\left(\mathrm{x}_{n+1}, \mathrm{x}_{n}\right) \leq \mu d\left(\mathrm{x}_{n}, \mathrm{x}_{n-1}\right) \leq \mu^{2} d\left(\mathrm{x}_{n-1}, \mathrm{x}_{n-2}\right) \leq \mu^{n} d\left(\mathrm{x}_{1}, \mathrm{x}_{0}\right)$
Let, $A n=\mu^{n} A_{o}$

Hence, for any $m, n \geq 1$ and $m>n$, we have

$$
\begin{aligned}
& d\left(\mathrm{x}_{n}, \mathrm{x}_{m}\right) \leq s\left[d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)+d\left(\mathrm{x}_{n+1}, \mathrm{x}_{m}\right)\right] \\
& \quad=s d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)+s d\left(\mathrm{x}_{n+1}, \mathrm{x}_{m}\right) \\
& \leq s d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)+s^{2}\left[d\left(\mathrm{x}_{n+1}, \mathrm{x}_{n+2}\right)+d\left(\mathrm{x}_{n+2}, \mathrm{x}_{m}\right)\right] \\
& =s d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)+s^{2} d\left(\mathrm{x}_{n+1}, \mathrm{x}_{n+2}\right)+s^{2} d\left(\mathrm{x}_{n+2}, \mathrm{x}_{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq s d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)+s^{2} d\left(\mathrm{x}_{n+1}, \mathrm{x}_{n+2}\right)+s^{3} d\left(\mathrm{x}_{n+2}, \mathrm{x}_{n+3}\right)+\cdots \ldots \ldots .+s^{n+m-1} d\left(\mathrm{x}_{n+m-1}, \mathrm{x}_{m}\right) \\
& \leq\left[s \mu^{n}+s^{2} \mu^{n+1}+s^{3} \mu^{n+2}+\cdots \ldots \ldots+s^{m} \mu^{n+m-1}\right] A_{o} \\
& =s \mu^{n}\left[1+s \mu+s^{2} \mu^{2}+s^{2} \mu^{2}+\cdots \ldots \ldots+(s \mu)^{m-1}\right] A_{o} \\
& \leq\left[\frac{s \mu^{n}}{1-s \mu}\right] A_{o}
\end{aligned}
$$

Since $0<s \mu<1$, therefore taking limit $\mathrm{m}, \mathrm{n} \rightarrow \infty$, we have

$$
\lim _{m, n \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0
$$

Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in complete b-matric space X, is complete. So there exists $q \in X$ such that $\lim _{m, n \rightarrow \infty} x_{n}=\mathrm{q}$. Now, we have to show that q is a fixed point of T. we have

$$
\begin{aligned}
& d\left(\mathrm{x}_{n+1}, \mathrm{~T}_{q}\right)=d\left(\mathrm{~T}_{n}, \mathrm{~T}_{q}\right) \\
& \leq \alpha d\left(\mathrm{x}_{n}, q\right)+\beta \frac{\left[1+d\left(\mathrm{x}_{n}, \mathrm{Tx}_{n}\right)\right] d(q, T q)}{\left[1+d\left(\mathrm{x}_{n}, q\right)\right]} \\
& +\gamma\left[d\left(\mathrm{x}_{n}, \mathrm{~T} \mathrm{x}_{n}\right)+d(q, T q)\right] \\
& +\delta\left[d\left(\mathrm{x}_{n}, T q\right)+d\left(q, \mathrm{~T} \mathrm{x}_{n}\right)\right] \\
& =\alpha d\left(\mathrm{x}_{n}, q\right)+\beta \frac{\left[1+d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)\right] d(q, T q)}{\left[1+d\left(\mathrm{x}_{n}, q\right)\right]} \\
& +\gamma\left[d\left(\mathrm{x}_{n}, \mathrm{x}_{n+1}\right)+d(q, T q)\right] \\
& +\delta\left[d\left(\mathrm{x}_{n}, T q\right)+d\left(q, \mathrm{x}_{n+1}\right)\right]
\end{aligned}
$$

Taking limit $n \rightarrow \infty$, we have
$d(q, T q) \leq(\beta+\gamma+\delta) d(q, T q)$.

The above inequality in true only if $d(q, T q)=0$ and so $T q=q$. Thus q is a fixed point of T .

Now, we show the uniqueness of T . for this, let q , be another fixed point of T , that is $T q=q_{1}$, such that $q \neq q_{1}$, from (1.1), we have
$d\left(q, q_{1}\right)=d\left(T q, T q_{1}\right)$.
$\leq \alpha d\left(q, q_{1}\right)+\beta \frac{[1+d(q, T q)] d\left(q_{1}, T q_{1}\right)}{\left[1+d\left(q, q_{1}\right)\right]}$
$+\gamma\left[d(q, T q)+d\left(q_{1}, T q_{1}\right)\right]$
$+\delta\left[d\left(q, T q_{1}\right)+d\left(q_{1}, T q\right)\right]$
$=(\alpha, 2 \delta) d\left(q, q_{1}\right)$.

The above inequality is possible only if $d\left(q, q_{1}\right)=0$ and so $\mathrm{q}=\mathrm{q}_{1}$. Thus q is a unique fixed point of T . This completes the proof.

Reference:

- Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26-37.
- Bourbaki, N. Topologie Generale; Herman: Paris, France, 1974.
- C. Bessaga, On the Converse of the Banach Fixed-point Principle, Colloq. Math. 7 (1959), 41-43.
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 511.
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 46(2), 263-276 (1998)
- Fagin, R.; Stockmeyer, L. Relaxing the triangle inequality in pattern matching. Int. J. Comput. Vis. 1998, 30, 219-231
- Kajanto, S. A note on the paper "Contraction mappings in b-metric spaces" by Czerwik Acta Univ. Sapientiae, Mathematica, 10, 1 (2018) 85-89
- M. Freeman, The Inverse as a Fixed Point in Function Space, Amer. Math. Monthly 83 (1976), 344-348.
- T.Suzuki, Subrahmanyam's fixed point theorem, Nonlinear Analysis, 71(2009)1678-1683
- W. Rudin, Principles of Mathematical Analysis," 3rd ed., McGraw\{Hill, New York, 1976.

