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Abstract :  The notion of a Reverse Derivation as an additive mapping from a ring R into itself satisfying 

𝑑(𝑥𝑦) = 𝑑(𝑦)𝑥 + 𝑦𝑑(𝑥) for all 𝑥, 𝑦 in R was introduced by Bresar and Vukman [3]. Samman and Alyamani 

studied the Reverse Derivations on Semi Prime Rings [17]. In this paper we have introduced a Prime Semi 

Near-ring which admits non-zero Reverse 𝜎-derivation satisfying certain conditions to be a Commutative ring. 

It is proved that a Prime Semi Near ring S together with d, a non-zero Reverse 𝜎-derivation of S is 

commutative when               𝑑([𝑥, 𝑦]) = [𝑥, 𝑑(𝑦)] for all 𝑥, 𝑦 in S and proved that for a Prime Semi Near ring 

S with d a non-zero Reverse 𝜎-derivation of S is commutative when [𝑥, 𝑑(𝑥)] = 0 for all 𝑥 in S. Also it is 

proved that S is commutative if [𝑑(𝑦)𝑑(𝑥)] = 0 for all 𝑥, 𝑦 in S. We have also showed that S is commutative 

if [𝑥, 𝑑(𝑦)] belongs to central elements where S is a Prime Semi Near ring and d is a non-zero Reverse 𝜎-

derivation of S , it is also proved that if [𝑑(𝑥), 𝑦] = 0 then we have 𝑑(𝑦) = 0 or 𝑦 belongs to central 

elements, where S is a prime semi near ring and d is a non-zero Reverse 𝜎-derivation of S. 

Key words:  Reverse derivation, Reverse 𝜎-derivation, commutative in semi near-rings, central elements, 

Prime near-ring. 

1.INTRODUCTION: 

 In 1987 H.E.Bell and G.Mason [2] initiated the study on commutativity of prime near-rings by using 

derivations. Later by generalizing some results of Bell and Mason, A.A.M.Kamal in 2001 [5] studied  the 

commutativity of 3-prime near-rings using 𝜎-derivation instead of usual derivation, where 𝜎 is an 

automorphism on the near-ring. [1] Afrah M.Ibraheem used the notion of reverse derivation on prime Γ- near 

ring M to study the commutativity conditions of M, when U be a non-zero invariant subset of M.Throughout 

the paper S will denote a zerosymmetric semi near-ring with multiplicative center Z. 

2.PRELIMINARY: 

Definition:2.1 

  A right near ring is a set N together with two binary operators ‘+” and ‘.’ such that  

(i) (N,+) is a group (not necessarily abelian) 

(ii) (N,.) is a semi group 

(iii) For all 𝑥, 𝑦, 𝑥 in N, (𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧 (right distributive law)  

Definition:2.2 

 A near ring N is called a prime near ring  if 𝑥𝑁𝑦 = 0 implies 𝑥 = 0 𝑜𝑟 𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝑁. 

Definition:2.3 

 A nonempty set S with two binary operators ‘+’ and ‘.’ is said to be semi near ring if (S,+) is a semi 

group and (S,.) is a semi group satisfying the right distributive law. 
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Definition:2.4 

 An additive mapping 𝑑: 𝑁 → 𝑁 is called derivation if 𝑑(𝑥𝑦) = 𝑥𝑑(𝑦) + 𝑑(𝑥)𝑦 or equivalently that 

𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 + 𝑥𝑑(𝑦) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑁. 

Definition:2.5 

 An additive mapping d from a ring R into itself satisfying 𝑑(𝑥𝑦) = 𝑑(𝑦)𝑥 + 𝑦𝑑(𝑥) for all 𝑥, 𝑦 ∈ 𝑅 is 

called reverse derivation. 

Definition:2.6 

 The symbol 𝑍(𝑁) will represent the multiplicative center of N,  that is,𝑍(𝑁) =
{𝑥 ∈ 𝑁|𝑥𝑦 = 𝑦𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑁}. 

Notation:2.7 

(i) The symbol [𝑥, 𝑦] will denote the commutator 𝑥𝑦 − 𝑦𝑥  for all 𝑥, 𝑦 ∈ 𝑁. 
(ii) [𝑥, 𝑦𝑧] = 𝑦[𝑥, 𝑧] + [𝑥, 𝑦]𝑧 and [𝑥𝑦, 𝑧] = 𝑥[𝑦, 𝑧] + [𝑥, 𝑧]𝑦 satisfied for all 𝑥, 𝑦, 𝑧 ∈ 𝑁. 

Definition:2.8 

 A semi near ring S is said to have an absorbing zero if 𝑎 + 0 = 0 + 𝑎 = 𝑎 and𝑎. 0 = 0 = 0. 𝑎 for all 

𝑎 ∈ 𝑆. 

Definition:2.9 

 Let Nbe a near ring, and 𝜎 is an automorphism on N. An additive mapping d from N into itself is called 

a reverse 𝜎-derivation  on N if satisfying 𝑑(𝑥𝑦) = 𝑑(𝑦)𝑥 + 𝜎(𝑦)𝑑(𝑥) for all 𝑥, 𝑦 ∈ 𝑁. 

3.ON PRIME SEMI NEAR RINGS 

 Definition:3.1 

 A Semi near ring S is called prime semi near ring if 𝑥𝑆𝑦 = 0 implies 𝑥 = 0 or 𝑦 = 0 for   all 𝑥, 𝑦 ∈ 𝑆. 

Definition:3.2 

 Let S  be a semi near ring, and 𝜎 is an automorphism on S. An additive mapping d from S into itself is 

called a reverse 𝜎-derivation on S if satisfying 𝑑(𝑥𝑦) = 𝑑(𝑦)𝑥 + 𝜎(𝑦)𝑑(𝑥) for all 𝑥, 𝑦 ∈ 𝑆. 

Lemma:3.3 

 Let d be an arbitrary additive automorphism of S. Then 𝑑(𝑥𝑦) = 𝜎(𝑦)𝑑(𝑥) + 𝑑(𝑦)𝑥 for all 𝑥, 𝑦 ∈ 𝑆 if 

and only if 𝑑(𝑥𝑦) = 𝑑(𝑦)𝑥 + 𝜎(𝑦)𝑑(𝑥) for all 𝑥, 𝑦 ∈ 𝑆. Therefore, d is a reverse 𝜎-derivation if and only if 

𝑑(𝑥𝑦) = 𝑑(𝑦)𝑥 + 𝜎(𝑦)𝑑(𝑥). 

Proof: 

Suppose, 𝑑(𝑥𝑦) = 𝜎(𝑦)𝑑(𝑥)𝑑(𝑦)𝑥 for all 𝑥, 𝑦 ∈ 𝑆.Since (𝑥 + 𝑥)𝑦 = 𝑥𝑦 + 𝑥𝑦, 𝑑((𝑥 + 𝑥)𝑦) = 𝑑(𝑥𝑦 +

𝑥𝑦) ⇒ 𝑑((𝑥 + 𝑥)𝑦) = 𝜎(𝑦)𝑑(𝑥 + 𝑥) + 𝑑(𝑦)(𝑥 + 𝑥)= 𝜎(𝑦)𝑑(𝑥) + 𝜎(𝑦)𝑑(𝑥) + 𝑑(𝑦)𝑥 + 𝑑(𝑦)𝑥 ⋯ ⋯ ⋯ (1) 

for all 𝑥, 𝑦 ∈ 𝑆.And, 𝑑(𝑥𝑦 + 𝑥𝑦) = 𝑑(𝑥𝑦) + 𝑑(𝑥𝑦) = 𝜎(𝑦)𝑑(𝑥) + 𝑑(𝑦)𝑥 + 𝜎(𝑦)𝑑(𝑥) + 𝑑(𝑦)𝑥 ⋯ ⋯ ⋯ (2) 

for all 𝑥, 𝑦 ∈ 𝑆.From (1) and (2) we get, 𝜎(𝑦)𝑑(𝑥) + 𝑑(𝑦)𝑥 = 𝑑(𝑦)𝑥 + 𝜎(𝑦)𝑑(𝑥)So, 𝑑(𝑥𝑦) = 𝑑(𝑦)𝑥 +
𝜎(𝑦)𝑑(𝑥) for all 𝑥, 𝑦 ∈ 𝑆.The converse of the proof is similar. Hence the result. 
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Lemma:3.4  

 Let S be  a prime semi near ring, and d be a non-zero reverse 𝜎-derivation of S. If 𝑑(𝑆) ⊂ 𝑍(𝑆), then S 

is a commutative ring. 

Proof: 

Let 𝑑(𝑥) ∈ 𝑍(𝑆), for all 𝑥 ∈ 𝑆. Then𝑑(𝑥)𝑧 = 𝑧𝑑(𝑥) ⋯ ⋯ ⋯ (1)Replacing 𝑥 by 𝑥𝑦 in (1) we have 𝑑(𝑥𝑦)𝑧 =

𝑧𝑑(𝑥𝑦) ⇒ (𝑑(𝑦)𝑥 + 𝜎(𝑦)𝑑(𝑥))𝑧 = 𝑧(𝑑(𝑦)𝑥 + 𝜎(𝑦)𝑑(𝑥)).Then, 𝜎(𝑦)𝑑(𝑥)𝑧 − 𝑧𝜎(𝑦)𝑑(𝑥) = −𝑑(𝑦)𝑥𝑧 +

𝑧𝑑(𝑦)𝑥 = −𝑑(𝑦)𝑥𝑧 + 𝑑(𝑦)𝑧𝑥 ⋯ ⋯ ⋯ (2) for all 𝑥, 𝑦 ∈ 𝑆.Replacing 𝜎(𝑦) by 𝑑(𝑥) in (2) and using (1) we 

have 𝑑(𝑥)𝑑(𝑥)𝑧 − 𝑧𝑑(𝑥)𝑑(𝑥) = 𝑑(𝑦)[−𝑥𝑧 + 𝑧𝑥] ⇒ 𝑑(𝑦)[𝑧, 𝑥] = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑆. ⋯ ⋯ ⋯ (3). Replacing 

𝑧 by 𝑧𝑦 in (3) and using (3) we get, 𝑑(𝑦)𝑧[𝑦, 𝑥] = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ 𝑆.Since S is prime, and 𝑑(𝑦) ≠ 0,we 

have [𝑦, 𝑥] = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑆.Therefore S is  commutative. Hence Proved. 

Lemma:3.5 

 Let S be a prime semi near ring with center Z, and let d be a non-zero reverse 𝜎-derivation of S, then 

𝑑(𝑍) ⊂ 𝑍. 

Proof: 

For any 𝑧 ∈ 𝑍 and 𝑥 ∈ 𝑆, we have 𝑑(𝑥𝑧) = 𝑑(𝑧𝑥) = 𝑑(𝑧)𝑥 + 𝜎(𝑧)𝑑(𝑥) = 𝜎(𝑧)𝑑(𝑥) + 𝑑(𝑧)𝑥(by 

lemma:3.3) .If we replace 𝜎(𝑧)𝑏𝑦 𝑧, we get,𝑑(𝑥𝑧) = 𝑧𝑑(𝑥) + 𝑑(𝑧)𝑥 ⋯ ⋯ ⋯ (1) for all 𝑥, 𝑧 ∈ 𝑆 ⇒ 𝑑(𝑧𝑥) =
𝑑(𝑥)𝑧 + 𝜎(𝑥)𝑑(𝑧) ⋯ ⋯ ⋯ (2) for all 𝑥, 𝑧 ∈ 𝑆. From (1) and (2) we get,𝑑(𝑧)𝑥 = 𝜎(𝑥)𝑑(𝑧) and since 𝜎 is 

automorphism, we have 𝑑(𝑧)𝑥 = 𝑥𝑑(𝑧)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑧 ∈ 𝑆. Therefore,𝑑(𝑧) ∈ 𝑍. Hence the proof. 

Lemma:3.6 

 Let d be a non-zero reverse 𝜎-derivation of a prime semi near ring S, and 𝑥 ∈ 𝑆. If 𝑥𝑑(𝑆) = 0 or 

𝑑(𝑆)𝑥 = 0 , then 𝑥 = 0. 

Proof: 

 Let us assume that, 𝑥𝑑(𝑠) = 0 ⋯ ⋯ ⋯ (1) for all 𝑠 ∈ 𝑆. Replacing s  by ms in (1), we have 𝑥𝑑(𝑚𝑠) =
0 ⇒ 𝑥𝑑(𝑠)𝑚 + 𝑥𝜎(𝑠)𝑑(𝑚) = 0 ⋯ ⋯ ⋯ (2) for all 𝑥, 𝑚, 𝑠 ∈ 𝑆. By using (1) in (2) we get, 𝑥𝜎(𝑠)𝑑(𝑚) = 0. 
Also since 𝜎 is automorphism, we have 𝑥𝑆𝑑(𝑚) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑚 ∈ 𝑆. And, since S is prime and 𝑑(𝑠) ≠ 0, 
we have 𝑥 = 0.Similarly, we can prove the case when 𝑑(𝑠)𝑥 = 0 for all 𝑠 ∈ 𝑆. Hence proved. 

Theorem:3.7 

 For a prime semi near ring S, let d be a non-zero reverse 𝜎- derivation of S, such that [𝑥, 𝑑(𝑥)] = 0, 
for all 𝑥 ∈ 𝑆,  then S is commutative. 

Proof: 

Let [𝑥, 𝑑(𝑥)] = 0 ⋯ ⋯ ⋯ (1) for all 𝑥 ∈ 𝑆. Replacing 𝑑(𝑥) by 𝑦𝑑(𝑥) in (1) and using (1) again, [𝑥, 𝑦𝑑(𝑥)] =
0 we get [𝑥, 𝑦]𝑑(𝑥) = 0 ⋯ ⋯ ⋯ (2) for all 𝑥, 𝑦 ∈ 𝑆. Replace 𝑦 by 𝑧𝑦 in (2) and using (2), we get 

[𝑥, 𝑧𝑦]𝑑(𝑥) = 0 we get [𝑥, 𝑧]𝑦𝑑(𝑥) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑆. Since S is prime, we have either [𝑥, 𝑧] =
0 𝑜𝑟 𝑑(𝑥) = 0. Since 𝑑(𝑥) ≠ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑆, then [𝑥, 𝑧] = 0 it follows that 𝑥 ∈ 𝑍(𝑆) for each fixed 𝑥 ∈ 𝑆 

and by lemma:3.3, we get 𝑑(𝑥) ∈ 𝑍(𝑆) , that is 𝑑(𝑆) ⊂ 𝑍(𝑆). By lemma:3.4, we get S is commutative. 

Theorem:3.8 

 Let S be a prime semi near ring, and d be a non-zero reverse 𝜎-derivation of S. If [𝑑(𝑦), 𝑑(𝑥)] =
0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑆, then S is commutative. 
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Proof: 

 Given that [𝑑(𝑦), 𝑑(𝑥)] = 0 ⋯ ⋯ ⋯ (1) for all 𝑥, 𝑦 ∈ 𝑆. Replacing 𝑦 by 𝑦𝑥 in (1) we get [𝑑(𝑥)𝑦 +
𝜎(𝑥)𝑑(𝑦), 𝑑(𝑥)] = 0. By using (1) again, we get,𝑑(𝑥)[𝑦, 𝑑(𝑥)] + [𝜎(𝑥), 𝑑(𝑥)]𝑑(𝑦) =
0 ⋯ ⋯ ⋯ (2)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑆. Replacing 𝑦 by 𝑧𝑦, where 𝑧 ∈ 𝑍(𝑆) in (2) we get,𝑑(𝑥)𝑧[𝑦, 𝑑(𝑥)] +
𝑑(𝑥)[𝑧, 𝑑(𝑥)]𝑦 + [𝜎(𝑥), 𝑑(𝑥)]𝑑(𝑦)𝑧 + [𝜎(𝑥), 𝑑(𝑥)]𝜎(𝑦)𝑑(𝑧) = 0 ⋯ ⋯ ⋯ (3)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ 𝑆. Since 𝜎 is 

automorphism and by using (2) in (3) we get, [𝜎(𝑥), 𝑑(𝑥)]𝑦𝑑(𝑧) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ 𝑆. Since 𝑆 is prime, we 

have either [𝜎(𝑥), 𝑑(𝑥)] = 0 or 𝑑(𝑥) = 0. Since 𝑑(𝑧) ≠ 0, we have [𝜎(𝑥), 𝑑(𝑥)] = 0 ⋯ ⋯ ⋯ (4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈
𝑆. Replacing 𝜎(𝑥) by 𝑥 in (4) and by using Theorem:3.7 we get, S  is commutative. 

Theorem:3.9 

 Let S be a prime semi near ring, and d be a non-zero reverse 𝜎-derivation of S. If [𝑥, 𝑑(𝑦)] ∈ 𝑍(𝑆) , 

for all 𝑥, 𝑦 ∈ 𝑆, then S is commutative. 

 

Proof: 

 Assume that [𝑥, 𝑑(𝑦)] ∈ 𝑍(𝑁) for all 𝑥, 𝑦 ∈ 𝑆. Hence for all 𝑠 ∈ 𝑆, [[𝑥, 𝑑(𝑦)], 𝑠] = 0 ⋯ (1) . 

Replacing 𝑥 by 𝑥𝑑(𝑦) in (1), and using (1) again, we get[𝑥, 𝑑(𝑦)][𝑑(𝑦), 𝑠] = 0 ⋯ ⋯ (2) for all 𝑥, 𝑦, 𝑠 ∈ 𝑆. 
Replacing 𝑥 by 𝑠𝑥 in (2), and using (2) again, we get[𝑠, 𝑑(𝑦)]𝑥[𝑑(𝑦), 𝑠] = 0 ⋯ ⋯ ⋯ (3) for all 𝑥, 𝑦, 𝑠 ∈ 𝑆. 
Since S is prime, we have either [𝑠, 𝑑(𝑦)] = 0 ⋯ ⋯ (4) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠, 𝑦 ∈ 𝑆 𝑜𝑟 [𝑑(𝑦), 𝑠] =
0 ⋯ ⋯ (5)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦, 𝑠 ∈ 𝑆. If we replace 𝑑(𝑦) by 𝑚𝑑(𝑦) in (4) and (5) we get, [𝑠, 𝑚𝑑(𝑦)] = 𝑚[𝑠, 𝑑(𝑦)] +
[𝑛, 𝑚]𝑑(𝑦) = 0 ⇒ [𝑠, 𝑚]𝑑(𝑦) = 0. Also, [𝑚𝑑(𝑦), 𝑠] = 0 ⇒ 𝑚[𝑑(𝑦), 𝑠] + [𝑚, 𝑠]𝑑(𝑦) = 0 ⇒ [𝑚, 𝑠]𝑑(𝑦) =
0 for all 𝑠, 𝑚, 𝑦 ∈ 𝑆. By using lemma:3.6 in two cases we have [𝑠, 𝑚] = 0 and [𝑚, 𝑠] = 0 for all 𝑠, 𝑚 ∈ 𝑁. 
Therefore, S is commutative. 

Theorem:3.10 

 Let S be a prime semi near ring, d be a non-zero reverse 𝜎-derivation of S, and 𝑦 ∈ 𝑆. If [𝑑(𝑥), 𝑦] = 0 

then 𝑑(𝑦) = 0 or 𝑦 ∈ 𝑍(𝑆). 

Proof: 

 Let [𝑥, 𝑑(𝑥)] = 0 ⋯ ⋯ ⋯ (1) for all 𝑥 ∈ 𝑆. Replacing 𝑑(𝑥) by 𝑦𝑑(𝑥) in (1) and using (1) again, 
[𝑥, 𝑦𝑑(𝑥)] = 0 ⇒ [𝑥, 𝑦]𝑑(𝑥) = 0 ⋯ ⋯ ⋯ (2) for all 𝑥, 𝑦 ∈ 𝑆. Replace 𝑦  by 𝑧𝑦 in (2) and using (2), we get 
[𝑥, 𝑧𝑦]𝑑(𝑥) = 0 we get [𝑥, 𝑧]𝑦𝑑(𝑥) = 0 for all 𝑥, 𝑦, 𝑧 ∈ 𝑆. Since S is prime, we have either [𝑥, 𝑧] = 0 or 

𝑑(𝑥) = 0. Since 𝑑(𝑥) ≠ 0, for all 𝑥 ∈ 𝑆, then we have [𝑥, 𝑧] = 0, it follows that 𝑥 ∈ 𝑍(𝑆) for each fixed 𝑥 ∈
𝑆, and by lemma:3.5, we get 𝑑(𝑥) ∈ 𝑍(𝑆), that is 𝑑(𝑆) ⊂ 𝑍(𝑆). Then by lemma :3.4 , we get S is 

commutative. 

Theroem:3.11 

 .Let S be a prime semi near ring, and d be a non-zero reverse 𝜎-derivation of S, such that 𝑑([𝑥, 𝑦]) =
[𝑥, 𝑑(𝑦)] for all 𝑥, 𝑦 ∈ 𝑆, then S  is commutative 

Proof: 

 Given that 𝑑([𝑥, 𝑦]) = [𝑥, 𝑑(𝑦)] ⋯ ⋯ (1) for all 𝑥, 𝑦 ∈ 𝑆. Replacing 𝑦 by 𝑦𝑥 in (1) and using (1), we 

get, [𝑥, 𝑑(𝑥)]𝑦 + [𝑥, 𝜎(𝑥)]𝑑(𝑦) = 0 ⋯ ⋯ (2) for all 𝑥, 𝑦 ∈ 𝑆. If we replace 𝜎(𝑥) by x in (2) [𝑥, 𝑑(𝑥)]𝑦 =
0 ⋯ ⋯ ⋯ (3)for all 𝑥, 𝑦 ∈ 𝑆. Replacing 𝑦 by 𝑦𝑑(𝑥) in (3), we get, [𝑥, 𝑑(𝑥)]𝑦𝑑(𝑥) = 0. Since S is prime, 

𝑑(𝑥) ≠ 0 we have, [𝑥, 𝑑(𝑥)] = 0 for all 𝑥 ∈ 𝑆. Then by Theorem:3.7 we get S is commutative. Hence proved. 
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4. CONCLUSION: 

 We have studied in this paper, the commutativity of S, where S is a semi near ring and S has a non-zero 

reverse 𝜎-derivation d, where d is an additive mapping from S onto itself satisfying 𝑑(𝑥𝑦) = 𝑑(𝑦)𝑥 +
𝜎(𝑦)𝑑(𝑥) for all 𝑥, 𝑦 ∈ 𝑆 and 𝜎 is an automorphism on a semi near ring S. Also we have introduced some 

conditions on d, to get the commutativity on S, when S is a prime semi near ring.  
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