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ABSTRACT: 

 The notion of P-regular rings was introduced by V. A. Andrunakievich (1990) which is the generalization of 

regularity in rings.  In 1991, S.J. Choi extended the P-regularity in rings to P-regularity in near-rings.  In this paper, 

P-weak regularity in near-ring was defined.  It is proved that a near-ring N is P-left weakly regular near-ring if and 

only if every two-sided ideal and every quotient near-ring is P-left weakly regular near-ring.  Also, in a reduced P-

left w-weakly regular near-ring, N and for any proper ideal P of N TFAE (i) P is prime (ii) P is completely prime (iii) 

P is maximal.  It is proved that a reduced near-ring N is P-left w-weakly regular if and only if 𝑁 𝑃⁄  is a simple domain 

for every prime ideal P of N. 
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I. INTRODUCTION: 

 In a ring (N, +, .), if we ignore commutativity of + and one distributive law, then (N, +, .) is a near-ring.  If we 

do not stipulate the left distributive law, (N, +, .) is a right near-ring.  The notion of P-regular rings was introduced by 

V. A. Andrunakievich (1990) which is the generalization of regularity in rings.  In 1991, S.J. Choi extended the P-

regularity in rings to P-regularity in near-rings.  P. Dheena and C. Rajeswari introduced the notion of w-weakly (weak 

weakly) regular near-rings and give several characterization of w-weakly regular near-ring.  P.Dheena and C. Jenila 

introduced the notion of P-Strongly regular near-rings in 2012.  In this paper, some results on P-Weakly regular near-

ring and P- weak weakly regular near-ring are discussed. 

II. PRELIMINARIES: 

DEFINITION: II.1 [7] 

 A right near-ring is a non-empty set N together with the two binary operators ‘+’ and ‘.’ such that  (i) 

(N, +) is a group (need not be abelian) 

  (ii) (N, .) is a semi-group 

  (iii)  (𝑎 + 𝑏). 𝑐 = 𝑎. 𝑐 + 𝑏. 𝑐 hold for all 𝑎, 𝑏, 𝑐 in N 

 Instead of (iii), if N satisfies the left distributive law, then (N, +, .) is called a left near-ring. 

DEFINITION: II.2 [7] 

 A near-ring N is called regular near-ring, if for every element 𝑎 in N, there exists an element 𝑥 in N such that 

𝑎 = 𝑎𝑥𝑎 

DEFINITION: II.3 [7] 

 An element 𝑎 in the near-ring N is called nilpotent if 𝑎𝑘 = 0 for some positive integer 𝑘. 
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DEFINITION: II.4 [7] 

 A near-ring N is said to be reduced if it has no nonzero nilpotent element in N. 

DEFINITION: II.5 [2] 

 Let P be any ideal of the near-ring, N.  Then the near-ring N is said to be a P-regular near-ring if for each 𝑎 

in N, there exists an element 𝑥 in N such that 𝑎 = 𝑎𝑥𝑎 + 𝑝 for some 𝑝 in P. 

 If 𝑃 = 0, then a P-regular near-ring is a regular near-ring. 

DEFINITION: II.6 

 A near-ring N is said to be left weakly regular near-ring if 𝑥 ∈ (𝑁𝑥) ∗ (𝑁𝑥) for all 𝑥 in N. 

NOTATION: II.7 

(1) For any subsets A, B of N, 𝐴 ∗ 𝐵 denotes the set of all finite sums of the form ∑ 𝑎𝑘𝑏𝑘 with 𝑎𝑘 ∈ 𝐴, 𝑏𝑘 ∈ 𝐵 

(2) For any 𝑥 in N, < 𝑥 > stands for the principal ideal of N generated by 𝑥 

DEFINITION: II.8 

 A near-ring N is said to be left w-weakly (weak-weakly) regular if for any 𝑥 ∈ 𝑁, 𝑥 = 𝑢𝑥 for some 𝑢 ∈< 𝑥 > 

III. A STUDY ON P-WEAKLY REGULAR NEAR-RINGS 

Hereafter, N stands for right near-ring. 

DEFINITON: III.1 

 A near-ring N is said to be P-left weakly regular near-ring if 𝑥 ∈ (𝑁𝑥) ∗ (𝑁𝑥) + 𝑃 for all 𝑥 in N and for some 

ideal P of N 

DEFINITION: III.2 

 A near-ring N is said to be P-left w-weakly regular near-ring if for any 𝑥 in N, 𝑥 = 𝑢𝑥 + 𝑝 for some 𝑢 ∈<

𝑥 > & 𝑝 ∈ 𝑃, the ideal of N 

 In a near-ring, P-left weakly regular near-ring always implies P-left w-weakly regular near-ring. 

LEMMA: III.3 

 If a near-ring N is P-left weakly regular near-ring then 𝑃 = 𝑃2 for every ideal P of N 

Proof: 

 The proof clearly follows from the definition of P-left weakly regular near-ring. 

LEMMA: III.4 

 Every two sided ideal and every quotient near-ring of a P-left weakly regular near-ring is P-left weakly 

regular.  On the other hand, if a near-ring N has a two-sided ideal P such that P and 𝑁 𝑃⁄  are both P-left weakly 

regular then N is P-left weakly regular near-ring. 

Proof: 

 The proof follows from lemma: III.3.  On the other hand, Suppose that N has a two-sided ideal P which is P-

left weakly regular and that the quotient near-ring 𝑁 𝑃⁄  is also P-left weakly regular near-ring.  Let 𝑥 ∈ 𝑁.  Since 

𝑁 𝑃⁄  is P-left weakly regular near-ring, 𝑥 + 𝑃 = (𝑛1𝑥𝑛2𝑥 + 𝑛3𝑥𝑛4𝑥 + ⋯ … 𝑛𝑘𝑥𝑛𝑘+1𝑥) + 𝑃.  Then 𝑥 − 𝑥′ ∈ 𝑃 
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where 𝑥′ = 𝑛1𝑥𝑛2𝑥 + 𝑛3𝑥𝑛4𝑥 + ⋯ … 𝑛𝑘𝑥𝑛𝑘+1𝑥.  Since P is P-left weakly regular, 𝑥 − 𝑥′ ∈ [𝑃(𝑥 − 𝑥′) ∗

𝑃(𝑥 − 𝑥′)] + 𝑃.  Now claim that [𝑃(𝑥 − 𝑥′) ∗ 𝑃(𝑥 − 𝑥′)] + 𝑃 ⊂ (𝑁𝑥 ∗ 𝑁𝑥) + 𝑃.  For, let 𝑦 ∈ [𝑃(𝑥 − 𝑥′) ∗

𝑃(𝑥 − 𝑥′)] + 𝑃.  Then 𝑦 = [𝑧1(𝑥 − 𝑥′)𝑧2(𝑥 − 𝑥′) + ⋯ … 𝑧𝑘(𝑥 − 𝑥′)𝑧𝑘+1(𝑥 − 𝑥′)] + 𝑃.  Now, 𝑧𝑗(𝑥 − 𝑥′)𝑧𝑗+1(𝑥 −

𝑥′) + 𝑃 = 𝑧𝑗(𝑥 − 𝑛1𝑥𝑛2𝑥 + 𝑛3𝑥𝑛4𝑥 + ⋯ … 𝑛𝑘𝑥𝑛𝑘+1𝑥)𝑧𝑗+1(𝑥 − 𝑛1𝑥𝑛2𝑥 + 𝑛3𝑥𝑛4𝑥 + ⋯ … 𝑛𝑘𝑥𝑛𝑘+1𝑥) + 𝑃 =

𝑧𝑗[1 − (𝑛1𝑥𝑛2 + 𝑛3𝑥𝑛4 + ⋯ … 𝑛𝑘𝑥𝑛𝑘+1)]𝑥𝑧𝑗+1[1 − (𝑛1𝑥𝑛2 + 𝑛3𝑥𝑛4 + ⋯ … 𝑛𝑘𝑥𝑛𝑘+1)]𝑥 + 𝑃 ∈ [𝑁𝑥 ∗ 𝑁𝑥] + 𝑃.  

Thus 𝑦 ∈ (𝑁𝑥 ∗ 𝑁𝑥) + 𝑃.  Hence, 𝑥 − 𝑥′ ∈ (𝑁𝑥 ∗ 𝑁𝑥) + 𝑃.  Clearly, 𝑥′ ∈ (𝑁𝑥 ∗ 𝑁𝑥).  Therefore, 𝑥 ∈ (𝑁𝑥 ∗ 𝑁𝑥) +

𝑃.  Thus the required is proved. 

LEMMA: III.5 

 Every ideal of a reduced P-left w-weakly regular near-ring N is completely semi-prime. 

Proof: 

 Suppose P is an ideal of N and 𝑎2 ∈ 𝑃.  By hypothesis we have, 𝑎2 = 𝑢𝑎2 + 𝑝 for some 𝑢 in < 𝑎2 > & 𝑝 in 

P.  This gives, (𝑎 − 𝑢𝑎)𝑎 ∈ 𝑃.  Also, since P is an ideal, 𝑢(𝑎 − 𝑢𝑎) ∈ 𝑃.  Now, (𝑎 − 𝑢𝑎)2 = 𝑎(𝑎 − 𝑢𝑎) − 𝑢𝑎(𝑎 −

𝑢𝑎) ∈ 𝑃.  Hence (𝑎 − 𝑢𝑎)2 + 𝑃 ⊆ 𝑃.  Since N is reduced, 𝑎 − 𝑢𝑎 ∈ 𝑃.  Therefore, 𝑎 = 𝑢𝑎 + 𝑝 ∈ 𝑃. 

COROLLARY: III.6 

 Every ideal of a reduced P-left weakly regular near-ring is completely semiprime. 

Proof: 

 Since P-left weakly regular near-ring always implies P-left w-weakly regular near-ring, the proof follows from 

lemma: III.5 

THEOREM: III.7 

 Let N be a reduced near-ring.  N is P-left weakly regular if and only if  

(i) Every ideal is completely semiprime 

(ii) 𝑁 𝑃⁄  is P-left weakly regular for all prime ideals P of N 

Proof: 

 Let us assume that N is P-left weakly regular near-ring. 

(i) follows from corollary: III.6 and (ii) follows from lemma: III.4. 

Conversely, assume that the conditions (i) and (ii) holds.  Now, to prove that N is P-left weakly regular.  If not, then 

there is an element 𝑥 in N such that 𝑥 ∉ (𝑁𝑥 ∗ 𝑁𝑥) + 𝑃.  Let S={completely semiprime ideals I of N / 𝑥 ∉

(𝑁𝑥 ∗ 𝑁𝑥) + 𝑃 }  Clearly, S≠ ∅.  By Zorn’s lemma, S has a maximal element say P such that 𝑥 ∉ (𝑁𝑥 ∗ 𝑁𝑥) + 𝑃.  

By (ii), P is not a prime ideal.  So, there exists ideals A, B of N such that 𝑃 ⊂ 𝐴, 𝑃 ⊂ 𝐵 but 𝐴𝐵 ⊆ 𝑃.  Let K={𝑛 ∈

𝑁/𝑛𝐵 ⊆ 𝑃} and L={𝑛 ∈ 𝑁/𝑛𝐾 ⊆ 𝑃}.  Clearly, K and L are ideals.  And also, 𝐴 ⊆ 𝐾 &𝐵𝐾 ⊆ 𝑃.  This gives, 𝐵 ⊆ 𝐿.  

So we get, 𝑃 ⊂ 𝐾 & 𝑃 ⊂ 𝐿 but 𝐾⋂𝐿 = 𝑃.  By maximality of P, 𝑥 ∈ (𝑁𝑥 ∗ 𝑁𝑥) + 𝐾 and 𝑥 ∈ (𝑁𝑥 ∗ 𝑁𝑥) + 𝐿 so 𝑥 −

𝑒1𝑥 ∈ 𝐾 & 𝑥 − 𝑒2𝑥 ∈ 𝐿 for some 𝑒1, 𝑒2 ∈ (𝑁𝑥 ∗ 𝑁).  Let 𝑒 = 𝑒1(1 − 𝑒2) + 𝑒2.  Then 𝑥 − 𝑒𝑥 = 𝑥 − (𝑒1(1 − 𝑒2) +

𝑒2)𝑥 = 𝑥 − 𝑒2𝑥 − 𝑒1(𝑥 − 𝑒2𝑥) ∈ 𝐿.  Since K is completely semiprime, 𝑥(1 − 𝑒1) ∈ 𝐾.  Consider, [(1 − 𝑒1)(𝑥 −

𝑒2𝑥)]2 = (1 − 𝑒1)[𝑥(1 − 𝑒1) − 𝑒2𝑥(1 − 𝑒1)](𝑥 − 𝑒2𝑥) ∈ 𝐾.  Since K is completely semiprime, (1 − 𝑒1)(𝑥 −

𝑒2𝑥) ∈ 𝐾, which gives, 𝑥 − 𝑒𝑥 ∈ 𝐾.  Thus, 𝑥 − 𝑒𝑥 ∈ 𝐾⋂𝐿 = 𝑃 which is a contradiction to 𝑥 ∉ (𝑁𝑥 ∗ 𝑁𝑥) + 𝑃.  

Hence the required is proved. 
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THEOREM: III.8 

 If N is a reduced P-left w-weakly regular near-ring then for any proper ideal P of N, TFAE: 

(i) P is prime 

(ii) P is completely prime 

(iii) P is maximal 

Proof: 

(i)⟹(ii): Suppose 𝑎𝑏 ∈ 𝑃.  Then clearly, < 𝑎 >< 𝑏 >⊆ 𝑃.  Since P is prime, < 𝑎 >⊆ 𝑃 or < 𝑏 >⊆ 𝑃.  This gives, 

𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃.  (ii) ⟹ (i) follows clearly.  Now to prove, (i) ⟹(iii).  Let P be a proper prime ideal.  Suppose P is 

properly contained in an ideal M.  Let 𝑥 ∈ 𝑀 𝑃⁄ .  Since N is P-left w-weakly regular, and for any 𝑛 in N, 𝑛𝑥 = 𝑛𝑦𝑥 +

𝑛𝑝.  This gives, < 𝑛 − 𝑛𝑦 >< 𝑥 >⊆ 𝑃.  Since P is completely prime, 𝑛 − 𝑛𝑦 ∈ 𝑃 ⊂ 𝑀.  This implies, 𝑛𝑦 ∈ 𝑀 which 

in turn, 𝑛 ∈ 𝑀.  Hence N = M.  (iii) ⟹(i) is obvious. 

THEOREM: III.9 

 A reduced near-ring N is P-left w-weakly regular iff 𝑁 𝑃⁄  is a simple domain for every prime ideal P of N. 

Proof: 

 Let N be a P-left w-weakly regular near-ring.  Then by theorem:III.8, 𝑁 𝑃⁄  is a simple domain for every prime 

ideal P of N.  Conversely, let 𝑁 𝑃⁄  be a simple domain for every prime ideal P of N.  Let 0 ≠ 𝑎 ∈ 𝑁 and 𝒩 = 𝑁 𝐴(𝑎)⁄  

be reduced and �̅� ∈ 𝑁 𝐴(𝑎)⁄  be not a zero-divisor.  Let M be the multiplicative semigroup generated by all the 

elements of the form �̅� − �̅��̅� where 𝑥 ∈< 𝑎 >.  Now, claim that 0̅ ∈ 𝑀.  If not, then there exists a completely 

semiprime ideal 𝒫 with 𝒫 ∩ 𝑀 = ∅.  Suppose < �̅� >⊆ 𝒫.  Then for any 𝑥 ∈< 𝑎 >, �̅� − �̅��̅� ∈ 𝒫 which is a 

contradiction to 𝒫 ∩ 𝑀 = ∅.  Suppose < �̅� >⊄ 𝒫.  Since 𝒫 is maximal, 𝒫+< �̅� >= 𝒩.  This gives, 1 − �̅� = �̅� ∈ 𝒫.  

This implies, �̅� − �̅��̅� ∈ 𝒫 which is a contradiction to 𝒫 ∩ 𝑀 = ∅.  Hence 0̅ ∈ 𝑀.  Now, 0̅ = (�̅� − 𝑥1̅̅̅�̅�)(�̅� −

𝑥2̅̅ ̅�̅�) … … (�̅� − 𝑥𝑛̅̅ ̅�̅�) where 𝑥𝑖 ∈< 𝑎 >.  Since N is reduced and �̅� is not a zero-divisor, (1̅ − 𝑥1̅̅̅)(1̅ − 𝑥2̅̅ ̅) … … (1̅ −

𝑥𝑛̅̅ ̅) = 0̅.  Now, claim that, 1 + 𝑃 = 𝑥 + 𝑃 for some 𝑥 ∈< 𝑎 >.  Let 𝑛 = 2.  Then (1̅ − 𝑥1̅̅̅)(1̅ − 𝑥2̅̅ ̅) = 0̅.  This gives, 

1̅ = [𝑥1̅̅̅(1̅ − 𝑥2̅̅ ̅) + 𝑥2̅̅ ̅] + 𝑃, which in turn gives, 1 + 𝑃 = [𝑥1(1 − 𝑥2) + 𝑥2] + 𝑃.  Since 𝑥1, 𝑥2 ∈< 𝑎 >, 𝑥1(1 −

𝑥2) + 𝑥2 ∈< 𝑎 > .  Let 𝑥1(1 − 𝑥2) + 𝑥2 = 𝑥.  Then 1 + 𝑃 = 𝑥 + 𝑃.  Hence, 1 − 𝑥 ∈ 𝑃.  This yields, 𝑎 = 𝑥𝑎 + 𝑝 for 

some 𝑥 ∈< 𝑎 > & 𝑝 ∈ 𝑃.  Thus, N is a P-left w-weakly regular near-ring. 

IV CONCLUSION: 

 In this paper, it is proved that every ideal in a reduced P-left w-weakly regular near is completely semi-prime.  

Also, in a reduced near-ring N,  it is proved that N is P-left weakly regular if and only if every ideal is completely 

semiprime and N P⁄  is P-left weakly regular for all prime ideals P of N. It is proved that a reduced near-ring N is P-

left w-weakly regular iff N P⁄  is a simple domain for every prime ideal P of N. 

BIBLIOGRAPHY: 

[1] V.A. Andrunakievich, Regularity of a ring with respect to right ideals, Dokl. Akad. Nauk SSSR. 310 (1990), 

no. 2, 267-272 

[2] Aphisit Muangma and Aiyared Iampan, P-Regular Near-rings characterized by their Bi-ideals, arXiv: 

3948vl[math.RA], 17 Dec 2012 

[3] A.O. Atagun, IFP Ideals in near-rings, Hacet, Journal of Mathematics and Statistics, volume 39 (2010), no. 

1, 17-21 

[4] S.J. Choi, Quasiideals of a P-Regular Near-Ring, International Journal of Algebra, volume 4 (2010), no. 9-

12, 501-506 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                                     www.jetir.org (ISSN-2349-5162) 

JETIR1907Q70 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 163 
 

[5] P. Dheena, On Strongly regular near-rings, Journal of Indian Mathematical Soceity (N.S), volume 49 (1985), 

no. 3-4, 201-208 

[6] G. Mason, Strongly regular near-rings, Proceedings of Edinburgh Mathematics Soceity (2), volume 23 

(1980), no. 1, 27-35 

[7] G. Pilz, Near-Rings, North Holland, Amsterdam, 1983 

[8] Radha D and Kavitha M, Pseudo Symmetric Ternary 𝛤 - Semiring, Proceedings on National Conference on 

Innovations in Mathematics (NCIM - 2018), Feburary 2018, ISBN: 978-81-935198-5-1, Page (19-24). 

[9] Radha D and Meenakshi P, Some Structures of Idempotent Commutative Semigroup, International Journal of 

Science, Engineering and Management (IJSEM) Vol 2, Issue 12, December 2017, ISSN (Online) 2456-1304. 

[10] Radha D and Parvathi Banu M, Left Singularity and Left Regularity in Near Idempotent 𝛤 - Semigroup , 

International Journal of Science, Engineering and Management (IJSEM) Vol 3, Issue 4, April 2018, ISSN 

(Online) 2456-1304. 

[11] Radha D, Raja Lakshmi C, On Weakly 𝜋-subcommutative Γ-Near Rings, Proceedings; National Conference 

on Innovations in Mathematics(NCIM-2018) Feb 9, 2018, (10-18), ISBN No.:978-81-935198-5-1. 

[12] Radha D, Raja Lakshmi C, A study on Semicentral Seminear-rings, Proceedings; National Seminar on New 

Dimensions in Mathematics and its Applications, October 17, 2018, 97-106, ISBN NO: 978-93-5346-948-

1 

[13] Radha D, Raja Lakshmi C, A study on Pseudo Commutative Seminear-rings, Journal of Emerging 

Technologies and Innovative Research, February 2019, vol 6 (2), 1082-1088, ISSN: 2349-5162. 

[14] Raja Lakshmi C, Radha D, On Zero-symmetric Semicentral Γ-Near Rings, International Journal of Science, 

Engineering and Management (IJSEM) vol 3, Issue 4, April 2018, 571-575, ISSN (online) 2456-1304 

[15] Radha D and Rajeswari R, On Quasi Weak Commutative Semi near ring, International Journal of 

Science, Engineering and Management, January 2019, vol 4, 21-23, ISSN: 2456-1304. 

[16] Radha D and Selvi V, Stable and Pseudo Stable Gamma Near Rings, Proceedings on National Conference on 

Recent Trends in Pure and Applied Mathematics, September 2017, ISBN: 978-81-935198-1-3. 

[17] Radha D and Sivaranjni J, On left bipotent Γ semi near ring, Journal of Emerging Technologies and Innovative 

Research, February 2019, vol 6 (2), 17-20, ISSN: 2349-5162. 

[18] Radha D and Suguna S, Normality in Idempotent Commutative 𝛤 - Semigroup, International Journal of 

Science, Engineering and Management (IJSEM) Vol 3, Issue 4, April 2018, ISSN (Online) 2456-1304. 

[19] Radha D, Vinutha M and Raja Lakshmi C, A study on GS-near rings, Journal of Emerging Technologies and 

Innovative Research, February 2019, vol 6 (2), 1064-1069,  ISSN: 2349-5162. 

[20] I. Yakabe, Regular near-rings without nonzero nilpotent elements, Proceedings of Japan Acad. Ser. A Math. 

Sci., volume 65 (1989), no. 6, 176-179. 

http://www.jetir.org/

