
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907R36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 222

An Approach to Parallelization of Naive String

Matching Algorithm using Java Functional

Parallelism Frameworks
1 Vijay Kumar, 2 Alka Singh,

1M.Tech Student, 2Assistant Professor,
1 Department of Computer Science,

1 Kamla Nehru Institute of Technology, Sultanpur, Uttar Pradesh, India.

Abstract : String matching is one of the significant classes of problems in computer science. Searching smaller text in larger data

in a reasonable time is a difficult task for an algorithm. The Naive string matching algorithm is the basic linear single pattern

algorithm. After the survey of the Naive string matching algorithm, we found that the performance of the algorithm is better than

some advanced algorithm (Boyer-Moore) when the pattern exists at the starting of the larger data text. In this work, we are

applying the Naive string matching algorithm using the proposed concept of parallelization to enhance the performance. The

concept of parallelization is based on SIMD architecture where data divided and distributed for parallel processing. Using

different JAVA functional parallelism frameworks the results are generated and compared. The comparison suggests that the

performance of one framework is proved to be better than another framework.

Index Terms - String Matching, Naïve Algorithm, SIMD, Parallel Naïve.

I. INTRODUCTION

In this era of enormous data searching a piece of information in extremely huge data in a sequential manner is quite old-

fashioned. Huge data requires a parallel approach to deal with. Researchers had been doing research to improve the efficiency of

string matching algorithms [1, 2, 3]. Information of greater importance in an enormous amount of data is needed to be retrieved, so

the means of retrieval of information should be efficient enough to extract a piece of information within a given time. The

availability of information at a particular point in time has a greater impact. The role of information retrieval is significant for real-

time applications. String matching algorithms have a wide range of usage in computer science. With the concept of parallelism

better performance of the Naive algorithm is achieved.

II. RELATED WORK

 Ubaid S. Alzoabia et al.[4] proposed parallel KMP algorithm. In their research they proposed a strategy for data division to

distribute data over the individual processors. They provided with the detailed description of the KMP algorithm and about the

performance of the algorithm using parallel approach. They had divided the data with the number of available processors/core and

the remainder is distributed among all processors.

 Rasool et al.[5] proposed implementation of KMP string matching in parallel using different SIMD architecture-multicore

and GPGPUS. They designed the algorithm that work on SIMD architecture and concluded that their work is proved better then

multithreaded implementation.

 S.V. Raju et al. [6] in their research used grid computing approach to implement string matching in parallel using grif MPI.

Their approach for is based on Single Program Multiple Data method, data is divided into parts and then executed in parallel

simultaneously. Grid computing is usually used in finding solution to various complex problems.

III. PARALLEL PROCESSING OVERVIEW

The goal of parallelism is to efficiently utilize available resources concurrently to solve a problem. Resources such as

processing units, graphical processing units, memory units, and other required resources local or distributed. To speed up the

processing faster processor, faster memory, faster communication network, etc. An economical solution to a problem is desired by

using concept of parallel processing. While using concept of parallelism it should be kept in minds that which:

 The type of application under consideration.

 Parallel computer model to be used.

 Parallel algorithm-design techniques to be used.

 Which parallel algorithm model is best?

IV. NAIVE STRING MATCHING ALGORITHM

 Given a text string str[0..n] and a pattern ptr[0..m], write a function search(char ptr[], char str[]) that prints all indexes of

occurrence of ptr[] in str[]. It is assumed that ‘n’ being greater than ‘m’. Time-complexity for the algorithm comes out to be O (n-

m+1) m) i.e. is O (nm).

4.1 NAÏVE ALGORITHM WITH PROPOSED PARALLELIZATION
 The algorithm has been applied, to work on parallel architecture supporting strings of larger sizes. The motive of using the

concept of parallelization is to enhance the performance of the algorithm. Parallelization requires large size string to be divided

into parts irrespective of pattern size. The same pattern is executed on different parts of the string in parallel, thereby reducing the

time complexity of the algorithm. Talking about memory and processors, much reliable multiple executions can be achieved in

parallel. It is possible to apply the same notion of Naive Search to match the pattern in the strings divided into various parts and

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907R36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 223

performed in parallel. Here we illustrate the data division technique in figure 4.1.2 along with further changes. Suppose there are

four processors available. So we divide the text into four parts and shared memory keeps the patterns and four different parts are

processed by four different processors. In this parallelization, the architecture used is SIMD architecture. Here the Naive

algorithm is executed on individual data for parallel.

Figure 4.1: Data before division

The Figure 4.1 shows sample text and pattern.

We have divided the data depending on:

 Number of Processors core - (k)

 Length of the Pattern (pat) - (LP)

 Length of Data String (S) - (LD)

Assume that (LP< LD)

For k = 4 (Number of processors/Cores)

Let us assume Processors (cores) P1, P2, P3, and P4

For k = 4, data should be divided into 4 Sub parts SP1, SP2, SP3 and SP4

Initially,

[Length of sub_part (LSP) = LD / k]

 [Length (SP1) = Length (SP2) = Length (SP3) = Length (SP4) = LSP]

Redefining sub parts length (SPi) depending upon the pattern occurring at division points:

int dp1 = LP -1;

int dp2 = LP -1;

int dp3 = LP -1;

for (int y=1; y<=3; y++) {

for (int z=1; z<=(LP -1); z++) {

If (t.charAt ((y* LSP)-z)! = p.charAt (0)) {

If (y==1)

dp1 = dp1-1;

 if (y==2)

dp2 = dp2-1;

 if(y==3)

dp3 = dp3-1;

}

Else {

 break;

 }

 }

 }

Finally,

Length (SP1) = LSP+dp1, length (SP2) = LSP+dp2, length (SP3) = LSP+dp3 and length (SP4) = LSP

Index for sub_part (SP1) for processor P1: [0, ((LSP + (dp1))]

Index for sub_part (SP2) for processor P2: [LSP , ((2*LSP) + (dp2))]

Index for sub_part (SP3) for processor P3: [(2*LSP) , ((3*Lsp) + (dp3))]

Index for sub_part (SP4) for processor P4: [(3*Lsp) , LD] //Fourth part (kth part) length will remain unchanged.

Figure 4.1.2: Data after division (dotted portion of the arrow shows overlapping portion ((dpi <=Lp-1) i = 1, 2, 3,) of ‘SPi’ which is

varying in length)

The purpose of redefining the length of first 'k-1' parts after division is to avoid unnecessary overlapping at the ‘k-1’ division

points. The reason behind the emphasis at the division point is that when the pattern size is comparatively large say half the size

of the data string the, in that case, the overlapping part will be larger, so by doing few comparisons we can redefine the size of the

subparts and avoid overlapping.

Proposed Parallelize Simd Based Naïve Algorithm:

//Naïve Algorithm Function

NaiveSearch (s, pat)

s - Data string in which pattern is searched

pat - String to be search.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907R36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 224

ParallelNaive:

Step 1: Start

Step 2: Input S(data string) or Data_File.txt, pat(pattern), k = no. of processor;

Step 3: LD = S.length ();

Step 4: LP = pat.length ();

Step 5: length of sub part (LSP) = LD/k; // C is no. of available Processor/Cores

Step 6: For all processors/cores pi where 1 ≤ i ≤ k // k is equal to no. of processors

{String Spi = [(S.substring (0, (LSP + (dp1))); // Sp1 Sub parts for threads 1),

(S.substring (LSP, (2* LSP + (dp2))); // Sp2 Sub parts for threads 2),

(S.substring ((2* LSP), (3*LSP + (dp3))); //Sp3 Sub parts for threads 3),

 (S.substring ((3* LSP), (k*LSP = LD)); //Sp4 Sub parts for threads 4),

 .

(S.substring (((k-1)* LSP), (k*LSP)); // Spk Sub parts for threads ‘kth’)]}

Step 7: Result Ri from all threads where 1 ≤ i ≤ k

{int Ri = [(NaiveSearch (Spi, pat) //R1 result produced b from thread 1),

(NaiveSearch (Spi, pat) //R2 result produced from thread 2),

(NaiveSearch (Spi, pat) //R3 result produced from thread 3),
.

 (NaiveSearch (Spk, pat) //Rk
th result produced from thread ‘kth’)]}

Step 8: Int Global Result = R1 + R2+ R3 + …+ Rk; //Global Result

Step 9: Print Final Result

Step 10: Stop

Figure 4.1.3: Proposed Model

V. ALGORITHM ANALYSIS

This method very much improves the performance of the algorithms. The time complexity of the string matching algorithm of

worst case scenario is O (nm), 'n' is the size of text in which pattern of size ‘m’ is to be searched. Algorithm utilizes the available

processors by make the number of string divisions equal to available number of processors k and approximately with same

number of characters. Time complexity of our parallel algorithm is .The algorithm process all part in parallel in

one stage without dependency between them.

VI. EXPERIMENTAL RESULT AND ANALYSIS

Supplying divided data string to individual thread and applying Naïve String Matching Algorithm on each thread in parallel and

executing algorithm on individual data string on each thread. After execution on each thread, result of each thread is combined

and global result is produced.

Naïve String matching algorithm is implemented using two Java Functional Parallelism frameworks which are:

 Executor Service Framework.

 ForkJoinPool Framework.

Enter Data String/Text

File (.txt)

&
Pattern

 Divide Text into 4(no. of

processor/cores) parts

Part 1

&

Pattern

Part 2

&

Pattern

Part 4

&

Pattern

Part 3

&

Pattern

Core-1

Thread_1

Naïve Algorithm

Core-2

Thread_2

Naïve Algorithm

Core-3

Thread_3

Naïve Algorithm

Core-4

Thread_4

Naïve Algorithm

Local Result (R1)

&
Local Time (T1)

Local Result (R2)

&
Local Time (T2)

Local Result (R3)

&
Local Time (T3)

Local Result (R4)

&
Local Time (T4)

Global _Result (Index) = R1+R2+R3+R4

Global Time = T1+T2+T3+T4

Final Results

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907R36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 225

Using the above two frameworks we can implement string matching algorithm using parallel model and analyze the performance

of the two frameworks and find out which framework is efficient in execution. We will take character strings of increasing length

and record the time of execution and analyzing the performance.

6.1 Experimental Environment:

System Configuration Implemented on:

 Processor: i5(Intel® Core™ i5-3210M CPU @ 2.5 GHz processor(Dual Core)

 RAM: 6GB

 OS: Windows 7(64 Bit) operating system

 Language: Java SE runs on Eclipse 2018-12(4.10.0)

 Language (parallel Implementation): Java ExecutorService and ForkJoin Framework.

To implement the algorithm we used Eclipse IDE 2018-12(4.10.0) along with Java 8.0/ JDK 1.8.

6.2 Experimental Data for String Matching

Data String: Text of size of 10000000 -120000000 characters.

Text File: Text files containing data string (File size: 9.53 MB to 114 MB)

Pattern File: Pattern of size 10 character.

Here we are taking 4 threads, executing one thread on each core in multi-core CPU. The Implementation is done on 10 texts

sample with different length n from 10000000 to 120000000 characters and each next text is grater by 10000000 characters. In

Executor Service string is distributed to the individual threads depending upon the distribution strategy and the executing is

carried out whereas in ForkJoin after the distribution of the string to the individual threads further internal breakdown is done

until simpler instances are achieved under this framework.

6.3 EXPERIMENT
Naïve String matching algorithm is implemented in three different ways:

 Serial

 Multicore CPU using Executor Service Framework

 Multicore CPU using ForkJoin Framework

The experimental outcomes are shown in tables 6.3; the comparison is shown in the graphs figure 6.3 below. In Executor Service

Framework implementation a speedup of 1.02 is gained, in ForkJoin Framework implementation a speedup of 1.16 is achieved in

comparison to the serial implementation. Speedup also depends upon machine producing result by parallel processing.

Table 6.3 Table of execution time for comparative analysis of Sequential Naïve String Matching algorithm, Parallel Naïve String

matching using Java Executor Service Framework and Parallel Naïve String matching using Java ForkJoin Framework.

S.No.

Length

of

Data String

(in Number

of

Characters)

Execution time of

Sequential Naïve

String Matching

Algorithm

(in Milliseconds)

Execution time of

Parallelized (using Java

Executor Service

framework) Naïve

String Matching

Algorithm

(in Milliseconds)

Execution time of

Parallelized (using

Java ForkJoin

framework) Naïve

String Matching

Algorithm

(in Milliseconds)

1 1 Crore 107 166 103

2 2 Crore 182 214 182

3 3 Crore 258 301 257

4 4 Crore 344 395 326

5 5 Crore 420 468 392

6 6 Crore 548 484 421

7 7 Crore 623 578 530

8 8 Crore 700 641 592

9 9 Crore 796 747 676

10 10 Crore 854 811 741

11 12 Crore 1018 927 810

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907R36 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 226

Figure 6.3: Execution time chart for comparative analysis of Sequential Naïve String matching algorithm, Parallel Naïve String

matching using Java Executor Service Framework and Parallel Naïve String matching using Java ForkJoin Framework.

VII. CONCLUSIONS
Through this work, we achieved better performance in terms of execution time and also result of this work proves that the

ForkJoin Framework qualifies to be the best framework for parallel implementation of this algorithm. The performance of the

ForkJoin framework is better than the Executor Service framework. From the result, it can be concluded that the ForkJoin

framework may have better or we can say lesser context switching overhead between threads and may also have better load

distributed between sub-tasks internally.

REFERENCES

[1] Chettri, Pranit, and Chinmoy Kar. "Comparative Study between Various Pattern Matching Algorithms." International

Journal of Computer Applications 975: 8887.

[2] Published IEEE papers related to confined topics of KMP and other string matching algorithms, references as , Knuth

DE,Morris JH,Pratt V R.Fast pattern in strings[J]. SIAM Journal on Computing,1977,6(2):323-350.

[3] Tang Va-ling. KMP algorithm in the calculation of next array. Computer Technology and Development [J] .2009,19 (6) :98-

101.

[4] Alzoabi, Ubaid S., et al. "Parallelization of KMP string matching algorithm." 2013 World Congress on Computer and

Information Technology (WCCIT). IEEE, 2013.

[5] Rasool, Akhtar, and Nilay Khare. "Parallelization of KMP string matching algorithm on different SIMD architectures: Multi-

core and GPGPU's." International Journal of Computer Applications49.11 (2012).

[6] Rajashekharaiah, K. M. M., Ch MadhuBabu, and S. Viswanadha Raju. "Parallel string matching algorithm using grid."

International Journal of Distributed and Parallel Systems3.3 (2012):21.

0

200

400

600

800

1000

1200

Execution time of
Sequential Naïve String
Matching Algorithm
(in Milliseconds)

Execution time of
Parallelized (using Java
Executor Service
framework) Naïve String
Matching Algorithm
(in Milliseconds)

Execution time of
Parallelized (using Java
ForkJoin framework)
Naïve String Matching
Algorithm
(in Milliseconds)

http://www.jetir.org/

