
© 2019 JETIR June 2019, Volume 6, Issue 6                                                            www.jetir.org (ISSN-2349-5162) 

JETIR1907S18 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 749 
 

A Machine Learning Approach To Detect Intruder 

By Identifying Anomalies in Network Traffic in an 

Enterprise Networks 
 

1stA  Srinivas , 2ndDr.Kadapa Sagar Ph.D. 
1st Asst professor,2ndProfessor 

Computer Science and Engineering 

Sree chaitanya College Of Engineering , KNR, india, 

Chaitanya Bharathi Institute of Technology, hyd. India. 

 

 

Abstract 

 

Malware is an application that is harmful to our forensic information. Basically, malware analyses is the process of analyzing 

the behaviors of malicious code and then create signatures to detect and defend against it. Malware, such as Trojan horse, 

Worms and Spyware severely threatens the forensic security. This research observed that although malware and its variants 

may vary a lot from content signatures, they share some behaviour features at a higher level which are more precise in 

revealing the real intent of malware. This paper investigates the various techniques of malware behavior extraction and 

analysis. In addition, we discuss the implications of malware analysis tools for malware detection based on various techniques. 

This paper proposes a new and more sophisticated antivirus engine that can not only scan files, but also build knowledge and 

detect files as potential viruses. This is done by extracting system API calls made by various normal and harmful executable, 

and using machine learning algorithms to classify and hence, rank files on a scale of security risk. While such a system is 

processor heavy, it is very effective when used centrally to protect an enterprise network which maybe more prone to such 

threats. 

Keywords: Malware detection, virus, data mining, Information gain, random forest, machine learning, classification, 

enterprise, network, security. 

 
1. Introduction 

Malware, short for malicious software, consists of programming (code, scripts, and other content) designed to disrupt operation 

or gather information that leads to loss of privacy, gain unauthorized access to system resources, and other abusive behaviour 

[1]. It is a general term used to define a variety of forms of hostile, intrusive, or annoying software or program code. Any 

software is classified as malware based on the intent of the maker rather than any particular feature. Malware includes 

computer viruses, worms, Trojan horses, spyware, dishonest adware, crime-ware, most rootkits, and other malicious and 

unwanted software or program [2]. the major challenges that anti-malware faces today is the vast amounts of data and files 

which need to be evaluated for potential malicious intent. For example, Microsoft's real-time detection anti-malware products 

are present on over 160M computers worldwide and inspect over 700M computers monthly. This generates tens of millions of 

daily data points to be analyzed as potential malware. One of the main reasons for these high volumes of different files is the 

fact that, in order to evade detection, malware authors introduce polymorphism to the malicious components. This means that 

malicious files belonging to the same malware "family", with the same forms of malicious behavior, are constantly modified 

and/or obfuscated using various tactics, such that they look like many different files. 

In order to be effective in analyzing and classifying such large amounts of files, we need to be able to group them into groups 

and identify their respective families. In addition, such grouping criteria may be applied to new files encountered on computers 

in order to detect them as malicious and of a certain family. 

For this challenge, Microsoft is providing the data science community with an unprecedented malware dataset and encouraging 

open-source progress on effective techniques for grouping variants of malware files into their respective families.    

Symantec published a report in 2008 that "the release rate of malicious code and other unwanted programs may be exceeding 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                            www.jetir.org (ISSN-2349-5162) 

JETIR1907S18 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 750 
 

that of legitimate software applications.” According to F-Secure, "As much malware produced in 2007 as in the previous 20 

years altogether.” [3]. While these may mean nothing to the average home user, these statistics are alarming keeping in mind 

the financial implications of such threats to enterprises in case such threats penetrate and compromise the large volumes of data 

stored and transacted upon. 

Since the rise of widespread Internet access, malicious software has been designed for a profit, for examples forced advertising. 

Since 2003, the majority of viruses and worms have been designed to take control of users' computers for black-market 

exploitation. Spyware are programs designed to monitor users' web browsing and steal private information. Spyware programs 

do not spread like viruses, but are installed by exploiting security holes or are packaged with user software [4] [5]. 

Clearly, there is a very urgent need to find, not just a suitable method to detect infected files, but too build a smart engine that 

can detect new viruses by studying the structure of system calls made by malware. 

 
2. Current Antivirus Software 

Antivirus software is used to prevent, detect, and remove malware, computer viruses, computer worm, Trojan horses, spyware 

and adware. A variety of strategies are typically employed by the anti-virus engines. Signature- based detection involves 

searching for known patterns of data within executable code. However, it is possible for a computer to be infected with new 

virus for which no signatures exist [6]. To counter such “zero-day” threats, heuristics can be used, that identify new viruses or 

variants of existing viruses by looking for known malicious code. Some antivirus can also make predictions by executing files 

in a sandbox and analysing results. Often, antivirus software can impair a computer's performance. Any incorrect decision may 

lead to a security breach, since it runs at the highly trusted kernel level of the operating system. If the antivirus software 

employs heuristic detection, success depends on striking the correct middle point between false positives and negatives. 

Today, malware may no longer be executable files. Powerful macros in Microsoft Word could also present a security risk. 

Traditionally, antivirus software heavily relied upon signatures to identify malware. However, because of newer kinds of 

malware, signature-based approaches are no longer effective [7]. 

Although standard antivirus can effectively contain virus outbreaks, for large enterprises, any breach could be potentially fatal. 

Virus makes are employing "oligomorphic", "polymorphic" and, "metamorphic" viruses, which encrypt parts of themselves or 

modify themselves as a method of disguise, so as to not match virus signatures in the dictionary [8]. 

Studies in 2007 showed that the effectiveness of antivirus software had decreased drastically, particularly against unknown or 

zero day attacks. Detection rates have dropped from 40-50% in 2006 to 20-30% in 2007. The problem is significantly greater 

due to the novel methods of virus makers. Testing on major virus scanners shows that none provide 100% virus detection. The 

best ones provided as high as 99.6% detection, while the lowest provided only 81.8% in tests conducted in February 2010 [25]. 

All virus scanners produce false positive results as well, identifying benign files as malware. 

 
3. Our Approach 

As we have seen, current antivirus engine techniques are not optimum in detecting viruses in real time. They may be useful in 

controlling viruses once they infect systems, which is again, fateful for enterprises [9] [10]. This research is thus aimed at a 

central solution that works at the firewall level of the enterprise network. The complete system diagram is shown in Figure 1 

and our process diagram is shown in Figure 2. 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                            www.jetir.org (ISSN-2349-5162) 

JETIR1907S18 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 751 
 

 
 

Figure 1: Network Diagram of the entire system 

 
 

Figure 2: Process Diagram of our System 

 
 

Portable Executable (PE) 

This format is a file format for executables, object code and DLLs, used commonly in the Windows operating systems [23]. 

The term "portable" refers to the format's versatility in numerous environments of operating system software architecture. The 

PE format is essentially a data structure encapsulating necessary information for the Windows OS loader to manage the 

wrapped executable code. It primarily includes dynamic library references for linking, API export and import tables, resource 

management data, etc. 

A Portable Executable file consists of a number of sections that indicate to the dynamic linker the mapping of the file in the 

memory. An executable image consists of several different regions, each of which requires different memory protection. The 

Import address table (IAT), is used to lookup tables when the application is calling a function in a different module. This is 

because a compiled program does not recognize the memory location of the libraries it depends and an indirect jump is 

required if an API call is made. The dynamic linker thus loads modules and joins, while writing physical addresses into the 

IAT, such that they point to the memory locations of corresponding library functions. 

In our research, we extracted the PE Header from numerous infected and normal executables and using the IAT, extracted 

various API calls and stored them into a data mine [11] [12]. We then derived Information Gain (IG) for each function. 

 

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                            www.jetir.org (ISSN-2349-5162) 

JETIR1907S18 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 752 
 

Algorithm for Information Gain: 

The entropy of a variable X is defined as: 

 

Where in H(P), the P(X) is as follows: 

P(X )  
Numberof  PE with xi  ascertain API 

 

i 
Total numberof  PE 

 

 
And the entropy of X after observing values of another variable Y is defined as: 

 

The amount by which the entropy of X decreases reflects additional information about X provided by Y is called information 

gain, given by: 

IG(X | Y) = H(X) - H(X | Y) 

 
 

Machine learning, a branch of artificial intelligence, is a scientific discipline concerned with the design and development of 

algorithms that allow computers to evolve behaviours based on empirical data, such as from sensor data or databases [14]. A 

learner can take advantage of data to capture characteristics of interest of their unknown underlying probability distribution. A 

major focus of the research in machine learning is to learn to recognize complex patterns and to automatically make intelligent 

decisions based on the collected data [15]. 

Further, we apply the Random Forest Algorithm (RFA) [16]. This is a machine learning classification algorithm to construct 

the classifier to detect malware. A Random Forest is a classifier that is comprised of a collection of decision tree predictors. 

Each individual tree is trained on a partial, independently sampled, set of instances selected from the complete training set. The 

predicted output class of a classified instance is the most frequent class output of the individual trees [17] [18]. 

 
4. Obtained Results 

To determine whether our method can provide successful results, we extracted data from over 5000 executables. These have 

been a combination of normal and infected files [19] [22] [24]. The first step was to create a hash map of all the executables 

and functions (Figure 2). After that, the information gain algorithm is used to choose only the top 80% of the functions (Figure 

3), which are most likely to be present in harmful files [20]. The Information Gain is further corrected by using this formula: 

 

This formula helps in correcting the error by adding or subtracting the average value from the information gain value 

calculated. This is similar to the error correction using a standard deviation. 

The results of the same are shown below: 

Figure 3: Hash Map of EXEs and API Functions 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                            www.jetir.org (ISSN-2349-5162) 

JETIR1907S18 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 753 
 

After running the information gain algorithm, these are the top functions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Information Gain values of API Functions Using this data, we 

run the Random Forest Algorithm, yielding the following functions: 

 

 

 

 
Table 1: Experiment Results 

 
Algorithm 

TP FP DR  ACY 

Decision Tree 0.9 0.1 90 % 90 % 

Naive Bayes 0.95 0.05 95 %  95% 

Random Forest 0.97 0.03 97 %  97% 

Our Proposed Method 0.996 0.003 99%  98% 

 

5. Conclusion 

In this research, we have proposed a malware detection module based on advanced data mining and machine learning. While 

such a method may not be suitable for home users, being very processor heavy, this can be implemented at enterprise gateway 

level to act as a central antivirus engine to supplement antiviruses present on end user computers. This will not only easily 

detect known viruses, but act as a knowledge that will detect newer forms of harmful files. While a costly model requiring 

costly infrastructure, it can help in protecting invaluable enterprise data from security threat, and prevent immense financial 

damage. 

 

 

References 

[1] http://www.us-cert.gov/control_systems/pdf/undirected_attack0905.pdf 

[2] "Defining Malware: FAQ". http://technet.microsoft.com. Retrieved 2009-09-10. 

[3] F-Secure Corporation (December 4, 2007). "F-Secure Reports Amount of Malware Grew by 100% during 2007". Press 

release. Retrieved 2007-12-11. 

[4] History of Viruses. http://csrc.nist.gov/publications/nistir/threats/subsubsection3_3_1_1.html 

[5] Landesman, Mary (2009). "What is a Virus Signature?” Retrieved 2009-06-18. 

[6] Christodorescu,M., Jha, S., 2003. Static analysis of executables to detect malicious patterns. In: Proceedings of the 12th 

USENIX Security Symposium. Washington .pp. 105-120. 

Total Instances 4500  

Correctly Classified Instances 4470 99.5556 % 

Incorrectly Classified Instances 30 0.4444 % 

 

http://www.jetir.org/
http://www.us-cert.gov/control_systems/pdf/undirected_attack0905.pdf
http://technet.microsoft.com/
http://csrc.nist.gov/publications/nistir/threats/subsubsection3_3_1_1.html


© 2019 JETIR June 2019, Volume 6, Issue 6                                                            www.jetir.org (ISSN-2349-5162) 

JETIR1907S18 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 754 
 

[7] Filiol, E.,2005. Computer Viruses: from Theory to Applications. New York, Springer, ISBN 10: 2-287- 23939-1. 

[8] Filiol, E., Jacob, G., Liard, M.L., 2007: Evaluation methodology and theoretical model for antiviral behavioral 

detection strategies. J. Comput. 3, pp 27–37. 

[9] H. Witten and E. Frank. 2005. Data mining: Practical machine learning tools with Java implementations. Morgan 

Kaufmann, ISBN-10: 0120884070. 

[10] J. Kolter and M. Maloof, 2004. Learning to detect malicious executables in the wild. In Proceedings of KDD'04, pp 

470-478. 

[11] J. Wang, P. Deng, Y. Fan, L. Jaw, and Y. Liu, 2003.Virus detection using data mining techniques. In Proceedings 

of IEEE International Conference on Data Mining. 

[12] Kephart, J., Arnold, W., 1994. Automatic extraction of computer virus signatures. In: Proceedings of 4th Virus 

Bulletin International Conference, pp. 178–184. 

[13] L. Adleman, 1990. An abstract theory of computer viruses (invited talk). CRYPTO ’88: Proceedings on Advances in 

Cryptology, New York, USA. Springer, pp: 354–374. 

[14] Lee, T., Mody, J., 2006.Behavioral classification. In: Proceedings of European Institute for Computer Antivirus Research 

(EICAR) Conference. 

[15] Lo, R., Levitt, K., Olsson, R., 1995: Mcf: A malicious code filter. Comput. Secur. 14, pp.541–566. 

[16] M. Schultz, E. Eskin, and E. Zadok, 2001.Data mining methods for detection of new malicious executables. In Security 

and Privacy Proceedings IEEE Symposium, pp 38-49. 

[17] McGraw, G., Morrisett, G.,2002 : Attacking malicious code, report to the infosec research council. IEEE Software. pp. 

33–41. 

[18] P. Szor, 2005.The Art of Computer Virus Research and Defense. New Jersey, Addison Wesley for Symantec 

Press. ISBN-10: 0321304543. 

[19] Rabek, J., Khazan, R., Lewandowski, S., Cunningham, R., 2003. Detection of injected, dynamically generated, and 

obfuscated malicious code. In: Proceedings of the 2003 ACM Workshop on Rapid Malcode, pp. 76–82. 

[20] S. Hashemi,Y. Yang, D. Zabihzadeh, and M. Kangavari, 2008.Detecting intrusion transactions in databases using data 

item dependencies and anomaly analysis. Expert Systems, 25,5,pp 460–473. DOI: 10.1111/j.1468- 0394.2008.00467.x 

[21] Sung, A., Xu, J., Chavez, P., Mukkamala, S., 2004.Static analyzer of vicious executables (save). In: Proceedings 

of the 20th Annual Computer Security Applications Conference. IEEE Computer Society Press,ISBN 0-7695-2252-

1,pp.326-334. 

[22] Virus dataset, Available from: http://virussign.com/ 

[23] Y. Ye, D. Wang, T. Li, and D, Ye. 2008. An intelligent pe-malware detection system based on association mining. In 

Journal in Computer Virology, 4, 4, pp 323–334. DOI 10.1007/s11416-008-0082-4. 

[24] Zakorzhevsky, 2011. Monthly Malware Statistics. Available from: 

http://www.securelist.com/en/analysis/204792182/Monthly_Malware_Statistics_June_2011. 

[25] Dan Goodin (December 21, 2007). "Anti-virus protection gets worse". Channel Register. Retrieved 2011- 02-24. 

http://www.jetir.org/
http://virussign.com/
http://www.securelist.com/en/analysis/204792182/Monthly_Malware_Statistics_June_2011
http://www.securelist.com/en/analysis/204792182/Monthly_Malware_Statistics_June_2011

