Survey on prediction of crop yield by using different techniques

1st Shruti Rajendra Kudagi

Computer Department BV(DU)COE Pune, India 2nd Prof. Dr.S. H.Patil

Computer Department BV(DU)COE Pune, India 3rd Prof. Dr.Mrs. Sunita Dhotre

Computer Department BV(DU)COE Pune. India

II. MOTIVATION

Abstract— The Indian economy is mostly based on agricultural occupation. So the environmental factors like temperature, climate, moisture content, irrigation, soil fertility, minerals, sunlight, and variety of crop can affect the agriculture practices. Due to this the crop yield can be less. Farmer uses conventional methods so that they can judge the crop yield. But due to certain climatic changes farmers need to face huge loss. Climates are certain and specific but the weather is unpredictable sometimes this lead to loss in agriculture. Each type of crops need different environmental conditions this is threat to farmer. Machine learning is mainly used for predictive modeling based on existing dataset. In this paper tried to focus on survey on different papers which uses machine learning techniques to predict crop yield. Which helps us to select proper algorithms so that the model can predict crop yield with accuracy and better result.

Keywords— Machine learning, Predictive Model.

I. INTRODUCTION

Sugar factories wants to know the calculated yield of sugarcane in each season for their business planning. Every year the field surveying people of sugar factory collect the data of each plot by visiting there land .But this done conventionally. The survey people use there methods and formulas to estimate sugar production for the year and pricing is done. This helps the sugar factories to keep the historical data of farmers land and on basis of this the future yield prediction can take place. The main problem with the conventional method is human errors. This bridge the gap between the actual value and false value. Various new technologies and methods are used to calculate the crop yield prediction. In this paper, we have done the survey which will help us to analyse the best algorithm so that it fits into solution.We have survey on machine learning techniques that can help us to use algorithm which will provide better accuracy .The main motto of this survey to select best algorithm that would predict the crop yield .

In this paper we surveyed the sugarcane yield predictive methods by studying different papers. Algorithms like random forest classification and gradient boosting tree classification, KNN, ANN, are mainly used . Each algorithm have there own advantage and disadvantage on basis of problem they are going to work on . considering plot features for predicting crop yield temperature, soil attributes , irrigation all matters deeply. The contribution of survey done tends to give machine learning approach so that model can be built to predict the sugarcane yield for plot with accuracy. Many farmers are facing the problem of crop yield estimation. There are certain things are made manually, nut the prediction of the crop yield on previous dataset doing manually can result in human error. Machine learning the branch of AI which is one the important branch for predicting the results in accurate manner by using certain machine learning algorithms. In this paper we have used supervied machine learning algorithm. Due to different algorithms the predicting time required is more than the manual estimation. The cost of predicting yield is been reduce. Due to human interventation is not needed on large scale. Managing the dataset from historical records plays important role in predicting the crop yield prediction.

III. RELATED WORK

A broad literature surve has been done considering all different crops .Each paper focus on different attributes , location , weather and crop type. In this paper further research is going to done on sugarcane yield prediction . Sugarcane is basically selected due to its contribution in agriculture in India is more. The survey will help over all the algorithms which can be used for different crop yield prediction . Many of the paper consist of same parameters which actual becomes the base and algorithms used are different according to problem. This actually changes the result between the algorithms.

. Further studying the papers , each represent there contribution towards development to crop yield prediction techniques.[1] In this paper , algorithm used in this is Random forest algorithm . parameters like soil , weather, has been consider .Research mainly focus on Tamil Nadu crops.[2]Climatic parameters are given main focus which uses C4.5 algorithms to calculate yield .Crops like soyabean, Maize, Paddy crops. Location considered is Madya Pradesh. [3]In this paper satellite derived precipitation and soil characteristics are considered and preseason prediction is done . Crops like soybean and maize yield predicted by using Neural network.

[4]This paper is related to our research which focus om sugarcane yield grade prediction . This uses Random forest and Gradient Boosting tree technique. In which Random forest gives better result. Research is carried out in Thailand.[5]Mainly focus on crops in Tamil nadu which uses K-means and modified KNN algorithm for crop yield prediction. [6]Paper focuses on NDVI dataset to predict maize yield .Algorithms like SVM and Gaussian Process Regression , Boosted Regression tree algorithm are used . Research have been done in Iran

[7] The paper focus on Rice crop yield prediction using SVM. But the paper concludes that

© 2019 JETIR June 2019, Volume 6, Issue 6

the SVM has many errors as compared to other algorithms.[8] The papers focus on bitter melon crop yield prediction using CNN. Images of crop plays important role to identify quality of crop.[9] different algorithms are analysed out of which errors like root mean square error are studied in this paper.[10] Mainly focus on Groundnut crop yield using KNN , where perform good out of other machine learning approach.[11] focus on sugarcane yield prediction using Support vector Regression to predict NDVI. They have done on real time data considering NDVI and good accuracy is achieved. [12] Production output is predicted using Decision and KNN algorithm. They have six major crops of Bangladesh. [13] crop yield prediction is done using multiple linear regression and soil parameters, crop rotation is also considered. [14]Different machine learning algorithms are used to predict wheat yield prediction. NDVI time series have been more focused . The boosted Regression tree algorithm and SVM is used in this.[15]Mainly focus on sorghum yield which uses linear regression and CNN on basis of images of sorghum. All papers have certain drawbacks and futures scope which will be discussed in table below.

IV.	TABULAR	LITERAT	URE SURVEY
-----	---------	---------	------------

Fahle	IV	1

1 abie. IV.1							
Sr.	Proposed	Merits	Demerits	Future			
No	model			Scope			
[1]	Maximum	It achieve a	only few	Improvement			
	yield	largest	crops are	in algorithm			
	prediction	number of	selected				
	using	crop					
	random	vield					
	forest	models with					
	101000	a lowest					
		model					
[0]	C	IIIOuei	0.1	T I			
[2]	Crop	User	Uniy	Improvement			
	Advisor"	friendly web	climatic	in parameters			
	tool is	based	factors are	can increase			
	implemented	interactive	considered	the yield			
	for	software	On selected				
	prediction of	which	location				
	yield on	predicts	and crop in				
	basis of	Yield	MP are				
	climatic		considered				
	factors						
[3]	System	Forecasting	Only for	Improved in			
[3]	nredicts crop	vield before	selected	data set			
	viald using	beginning of	location	uata set			
	yield using	orgining of	and array				
	satellite	season or	and crop				
	derived	crop.	Hign cost				
	precipitates	Fewer data					
	,Soil	requirement					
	features,	compare to					
	climatic data	others					
[4]	Predict	Improved	Need more	Prediction			
	sugarcane	yield	feature	accuracy can			
	yield on		extraction	be improved by			
	individual		to increase	dataset and			
	plot		more	feature			
	·		accuracv	selection			
[5]	Yield	Crop vield	Data set is	Accuracy in			
(~)	prediction	KNN	not recent	algorithm can			
	on major	algorithm		be done			
	crops grown	gives hest		be done			
	in Tomil	gives best					
	nadu	other two					
[6]		CDD and	Turner	Management			
[6]	Crop yield	GPR out	Images	More crops can			
	prediction	performs	and data set	be consider and			
	using	better than	are limited	with different			
	remotely	SVR		data size			
	sensed data						
[7]	Prediction of	Crop yield	SMO	Naïve bayes			
	rice vield	for rice is	classifier	can be used as			
	using SMO	more	gives low	compared to			
	classifier	accurate	accuracy	SVM for			
	Where SVM	accurate	Than other	implementation			
	is used		lileo	mpiementation			
	is used		IIKe				
			Multilayer				
	1	1	perceptron				

www.jetir.org (ISSN-2349-5162)

			51	
[8]	Prediction of	No clear	No clear	By computer
	yield using	results are	results are	vision test
	leaf images	mentioned	mentioned	images of the
			~	leaves
[9]	Yield	Automated	Completely	Algorithm can
	prediction	system	depend on	be improved
	using	detection	hardware	
	sensors	and alert		
F101	\$7' 11	system	0.1	M
[10]	Yield	Accuracy 18	Only	More accuracy
	prediction	achieved by	groundhut	in algorium
	Biotic factor	algorithm	consider for	can be done
	Diotic factor	argorithm	vield	
			prediction	
[11]	Crop vield	Accuracy is	Restricted	Improve
[]	using SVM	achieved is	to	esemble
	algorithm	83% in	sugarcane	learning
	for	sugarcane	crop only	techniques and
	sugarcane	yield	and	algorithms
	-	prediction	karanatak	-
		.SVM	region is	
		outperforms	considered	
		better than		
		others.		
[12]	Proposed	Six major	Accuracy	More
	model	crops in 10	failed to	algorithms can
	compares	cities are	meet the	be used to
	two	considered	accuracy	improve the
	KNN and	detect		and bottor
	decision tree	uataset.		precision
[13]	Proposed	NDVI	On wheat	More work can
[10]	-model	shows	crop is	be done for
	compares	accurate	consider.	different
	two	majors in		season
	algorithm	critical		
	BRT and	situation in		
	SVM by	wheat crop.		
	considering	BRT paly		
	NDVI	important		
		role among		
F1.41	Derectore	two.	Data ant	To an a late
[14]	CNN and	achieved is	Data set	set to give
	Linear	around 74 5	very limited	more accuracy
	regression	% Images	. er y minted	more accuracy
	crop yield is	plays		
	predicted	important		
	Mainly	role in		
	focused on	estimataing		
	sorghum	weight		
	crop			

V. METHODOLGY

In this paper we have done a survey on different methods given by author who have used different algorithms for prediction of crop yield. Various crop yield are identified . In this paper we have introduce the proposed model with some implementation work done till now.

- I. Proposed model
- a. Algorithms used

The below section gives a brief idea about proposed idea and algorithm used. We have selected machine learning methods used for sugarcane yield prediction system by selecting best algorithm among three algorithm to be used. For this previous existing dataset are used by selecting some predefined attributes . The output expected is crop yield prediction. By using three different model, In this paper we have introduce initial work further can be done in next paper.

JETIR1907U92 Journa

© 2019 JETIR June 2019, Volume 6, Issue 6

Random forest algorithm 1.

Random forest is one of the prediction method which can be used for the regression and classification work. Mainly Random forest is used where esembling technique can be introduce which can be used to increase accuracy. In this dependent variable and independent variable are used the attribute as independent or dependent . Multiple independent attribute is called as multilinear regression properly to determine relation . Before going in to detail we need to study decision tree by selecting different attributes. Decision tree algorithm is technique to classify large data and determine patterns among it.

K- nearest neighbor 2.

This algorithm is based on proximity which includes near values. It includes close points, proximity, distance is also considered. It just club together similar data point which are near to each other. Selecting K is one one important task by calculating previous distances.

3. Naïve Bayes

It is collection of different algorithm . Where it uses Bayes theorem which work on probability. It completely work on indepent assumptions, which in practical could not give perfect results. The dataset are mainly split into feature matrix and response vector. The feature matrix is complete collection of all dependent variable. The response vector consist of class variables.

II. Proposed flow

This consist of various modules Like

- a. New registration and Login
- b. Form filling for crop yield prediction
- Rainfall, soil attribute selecting. c.
- d. Dataset
- Result with crop yield prediction value. e.

Fig. V. II

III. Implementation

At this time we have done initial work which includes User Registration a.

b. Home login

Rainfall Prediction c.

Fig. V.II. c

IV. Conclusion

The papers concludes literature survey on various papers which mainly falls in crop yield prediction. Every papers introduces new methodology which gives idea to identify research gap and give way to introduce new methodology.

According to survey we are going to use Random forest, KNN and naïve Bayes classification techniques of machine learning for predicting crop yield. Sugarcane is the crop is given more focus. Further enhancement can be discuss in next paper.

References

[1] P.Priya et.al ,"Predicting yield ,of the crop using machinelearning algorithm", IJESRT, 7(4): April

[2] S.Veenadhari et.al,"Machine learning approach for forecasting crop yield based on climatic parameter", ICCCI-2014.

[3] Ignor Oliveira et.al,"A Scalable Machine learning system for Preseason Agriculture yield forecast", 2018 IEEE 14 International conference on e -Science.

[4] Phusania Charoen - Ung et.al,"sugarcane yield grade Prediction using Random Forest and Gradient Boosting Tree Techniques", JCSSE, 2018.

[5] Mr A Suresh et.al,"Prediction of major crop yield of Tamil Nadu using K means and modified KNN", ICCES 2018.

[6] Hossein Aghighi et.al ."Machine learning Regression technique for the silage Maize Prediction using Time series of Landset 8 OLI", 2018 IEEE.

459

© 2019 JETIR June 2019, Volume 6, Issue 6

[7] Niketa Gandhi et.al,"Rice crop yield prediction in India using Support Vector Machines", IEEE

[8] Marizel B. Villanueva et.al, "Bitter melon crop yield prediction using machine learning algorithm", IJACSA, Volume 9,No. 3, 2018

[9] Kodimalar Palanivel et.al ,"An approach for prediction of crop yield using machine learning and Big data techniques", IJCET, Volume 10, Issue 3, May 2019.

[10]Vinita Shah et.al ,"Ground crop yield Prediction using Machine learning Techniques", 2018

[11] Ramesh A. Medar at.al", Sugarcane crop yield forecasting model using supervised machine learning ", 2019 IJISA, 2019,8 11-20.

[12]Md. Tamid Shakoor et.al,"Agriculture production output prediction using supervised Machine learning technique",2017 IEEE

[13] Michiel Stas, Jos Van et.al, "A comparison of machine learning algorithms for regional wheat yield prediction using NDVI time series of SPOT – VGT", 2018 IEEE J-STARS

[14] Judicael Geraud N. ZANNOU,"Sorgham yield prediction using machine learning ",13 June 2019, IEEE.

[15]<u>https://towardsdatascience.com/machine-learning-</u>basics-with-the-k-nearest-neighbors-algorithm-

6a6e71d01761

[16] https://www.geeksforgeeks.org/naive-bayes-classifiers/