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Abstract: 

At some stage in the method of cellular replication, microtubules and key cytoskeletal filaments play an 

important function. At some stage in cellular mitosis, the microtubules extend from the cellular centrosome to 

form mitotic spindle and connect to the kinetochore of chromosomes. Then, the kinetochores are collected 

around the equatorial plate. Microtubules are in dynamic equilibrium with tubulin dimers. Disruption of the 

dynamic equilibrium will lead to cellular cycle arrest or cell apoptosis. Given their great roles in the boom and 

feature of cells, microtubules or tubulins are some of the maximum essential molecular goals for cancer 

chemotherapeutic retailers. A number of small molecules were observed to bind tubulins, interfering with 

microtubule polymerization or depolymerization, and then result in mobile cycle arrest, main to cellular 

death.2d and 3D (QSAR) research were executed for correlating chemical composition of Cinnamic Acyl 

Sulfonamide analogues. Generation of established qsar version is crucial to make sure that the version have 

suited predictive energy. New chemical entities (NCE’s) were designed the usage of consequences of 2D & 

3D QSAR research. Binding affinities of designed NCE’s have been studied on protein tubulin polymerization 

enzyme (PDB code: 1sa0) the usage of docking research and their absorption, distribution, metabolism and 

excretion (ADME) homes were also predicted to make sure drug like pharmacokinetic profile. Generating r2-

0.735, q2-0.6549, pred. r2-0.8874 for 2D QSAR and q2-0.6025, pred.r2-0.8262 for 3D QSAR. 
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1. Introduction: 

The inducement of cancer is complex involving many molecular mechanisms. Loss of control in cell 

replication is one of the most important mechanisms that cause cancer. During the process of cell replication, 

microtubules and key cytoskeletal filaments involved in numerous cellular functions, play an important role. 

During cell mitosis, the microtubules extend from the cell centrosome to form mitotic spindle and fasten to the 

kinetochore of chromosomes. Then, the kinetochores are gathered around the equatorial plate1. Microtubules 

are in dynamic equilibrium with tubulin dimers. Disruption of the dynamic equilibrium will lead to cell cycle 

arrest or cell apoptosis[2,3]. Given their significant roles in the growth and function of cells, microtubules or 

tubulins are among the most important molecular targets for cancer chemotherapeutic agents. A number of 

small molecules were found to bind tubulins, interfering with microtubule polymerization or 

depolymerization, and then induce cell cycle arrest, leading to cell death [4-7]. Colchicine is the first drug that 

is well known to bind tubulin, and its binding site on tubulin has been characterized recently [8, 9]. Several 
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other new compounds have also been synthesized as antitubulin agents, such as E7010, CA-4, HMN-214, 

cyanocombretastatins, Metronidazole acid acyl sulfonamide. They bound tubulins through the same site as 

colchicines[10-14]. 

Computational methods provide powerful tool to design a new highly active molecules. Quantitative 

Structure Activity Relationship (QSAR) studies helped us to correlate the physicochemical properties of 

chemical compounds with biological activities, which could shed light on the key structural components that 

are important for biological activity. One of the important roles of QSAR methodology is to predict the 

biological activity of in-silico designed New Chemical Entities (NCEs) [15]. To increase the predictive power 

of QSAR methodology various methods were applied for model validation. Among them most popular 

method for model validation is leave-one-out cross-validated r2 (LOO q2). But it has been reported that the 

widely accepted Leave-One-Out (LOO) cross-validated r2 (q2) is an inadequate characteristic to assess the 

predictive ability of the models [16]. Thus to evaluate the predictive ability of a QSAR model; its validation 

must be done using an external test set of compounds (i.e. those, which were not included in the training set) 

with known activities. It includes the methodologies in constructing main components of QSAR model, 

namely the methods for selection of informative descriptors, validating the model for anticancer activity 

prediction. QSAR model was developed on a series of compounds containing cinnamic acyl sulfonamide 

pharmacophore to identify key structural fragments required around pharmacophore for anti-proliferative 

activity. In the present studies 2D QSAR and 3D QSAR studies were carried out using predictive QSAR 

modeling method [17,18]. The New Chemical Entities (NCEs) were designed using the results of best 2D and 

3D QSAR model, and Combinatorial Library was generated using Lipinski’s screen as filter. Finally, 

molecular docking studies were carried out to understand interactions between Tubulin Polymerization target 

and designed NCEs in better way. Hydrophobic and hydrogen bond interactions were used to find out active 

binding sites of Tubulin Polymerization protein in the docked complex. Rational drug design should take both 

pharmacokinetic and metabolic information into consideration, and the information should be incorporated 

with molecular, biochemical and pharmacological data to provide well rounded drug design. Hence, 

Prediction of ADME properties was though worthwhile as screen to sort out those compounds that follow 

Lipinski’s rule to ensure drug like pharmacokinetic profile of the designed NCEs[19].  

2. Material & Methods: 

2.1. Biological dataset: 

For present study, 40 molecules of Cinnamic Acyl Sulfonamide series reported for the inhibition of Tubulin 

Polymerization (Table 1) was chosen to optimize substitution requirement around selected Pharmacophore by 

using QSAR and Molecular Modeling studies like Docking & ADME Prediction [20].Six molecules did not 

fit well into either training or test set reported for anticancer activity; hence were dropped from present 

studies. Selected series of compound were evaluated for their ability to inhibit of tubulin polymerization using 

tubulin assembly assay. Biological activity was expressed in terms of IC50 which was converted to pIC50 using 

formula (pIC50 = log1/IC50). 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                               www.jetir.org (ISSN-2349-5162) 

JETIR1907U97 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 490 
 

2.2. Software: 

All QSAR studies were performed using V-Life Molecular Design Suite Software, version 3.5 & 4.2 [21]. 

Molecules were optimized by Merck Molecular Force Field (MMFF) energy minimization method. 

Table1.Selected series of compounds containing Cinnamic Acyl Sulfonamide Pharmacophore: 

N
H

O

S

O

O

R1

R2

R3

 

Sr. 

No. 

Comp. 

No. 

R1 R2 R3 IC50 pIC50 (log 1/ IC50) 

1 9a -H -H -H 37 -1.5682 

2 9b -H -H -CH3 152 -2.18184 

3 9c -H -H -F 4.5 -0.65321 

4 9d -H -H -Cl 14.8 -1.17026 

5 9e -H -H -Br 63 -1.79934 

6 *10a -H -F -H 4.5 -0.65321  

7 10b -H -F -CH3 40 -1.60206 

8 10c -H -F -F 2.4 -0.38021 

9 *10d -H -F -Cl 4.5 -0.65321  

10 10e -H -F -Br 14.7 -1.16732 

11 11a -H- -Cl -H 15.3 -1.18469 

12 11b -H -Cl -CH3 30 -1.47712 

13 11c -H -Cl -F 8.9 -0.94939 

14 11d -H -Cl -Cl 9.3 -0.96848 

15 11e -H -Cl -Br 10.8 -1.03342 

16 12a -H -Br -H  74 -1.86923 

17 12b -H -Br -CH3 137 -2.13672 

18 12c -H -Br -F 3.8 -0.57978 

19 12d -H -Br -Cl 55 -1.74036 

20 12e -H -Br -Br 53 -1.72428 

21 13a -H -OCH3 -H  160 -2.20412 

22 13b -H -OCH3 -CH3 146 -2.16435 

23 13c -H -OCH3 -F 45 -1.65321 

24 13d -H -OCH3 -Cl 52 -1.716 
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25 *13e -H -OCH3  -Br 53 -1.72428  

26 14a -H -N(CH3)2 -H  26 -1.41497 

27 *14b -H -N(CH3)2 -CH3 37 -1.5682  

28 14c -H -N(CH3)2 -F 10 -1 

29 14d -H -N(CH3)2 -Cl 14 -1.14613 

30 14e -H -N(CH3)2 -Br 34 -1.53148 

31 15a -H  -NO2 -H  40 -1.69897 

32 15b -H -NO2 -CH3 151 -2.17898 

33 15c -H -NO2 -F 6.3 -0.79934 

34 15d -H -NO2 -Cl 134 -2.12711 

35 15e -H -NO2 -Br 163 -2.21219 

36 *16a -NO2 -H -H  74 -1.86923  

37 16b -NO2 -H -CH3 102 -2.0086 

38 16c -NO2 -H -F 69 -1.83885 

39 16d -NO2 -H -Cl 78 -1.8921 

40 *16e -NO2 -H -Br 134 -2.12711  

 

2.3. 2D QSAR Studies: 

2.3.1 Experimental design for 2D QSAR: 

Dataset of 34 molecules was divided into training and test set in an attempt to ensure robustness of the model 

and increase predictive ability of QSAR model. The experimental design for our study is shown in Figure1. 

The data set was divided in training and test sets and the training set which followed all model evaluation 

parameters were subjected to randomization test. Two models were selected which satisfy the results of 

randomization test which were named as Training set-A and Training set-B. These model were subjected to 

external validation by splitting test set into Test set-a for training set-A and Test set- b for training set-B 

respectively. If model generated by training set satisfy all parameters for prediction of test set, then only the 

concerned model was used to predict activity of test set molecules. If model does not satisfy test set prediction 

parameters, the whole process is repeated from first step i.e. selection of training set. Only those models which 

satisfy the test set were selected for design of NCEs. We have ensured that selected training and test sets also 

satisfy the following criteria: (i) Representative points of the test set must be close to those of the training set; 

(ii) Representative points of the training set must be close to representative points of the test set; (iii) Training 

set must have chemical and biological diversity; (iv) Training and test set have uniform representation of 

molecules; uni-column statistics were performed. 

 

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                               www.jetir.org (ISSN-2349-5162) 

JETIR1907U97 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 492 
 

 

Figure 1. Selection of molecules in training and test sets: 

 

2.3.2. Uni-column statistics: 

The comparative statistical parameters of training and test sets created by manual data selection are reported 

in Table 2. Standard deviations of Training set A as well as test set A were found to be nearly close to each 

other. This showed that even though the selected molecules in training/test set are different, still the 

distribution pattern with respect to the biological activities of the molecules in both the selection methods is 

quite similar.  

Table  2. Uni-Column statistics for training set and test set: 

Column 

Name 

Average 

 

Max Min Std.dev. Sum 

Training      -1.5851 -o.5798 -2.2122 0.5087 -45.9685 

Test -1.1608 -0.3802 -1.5315 0.4841 -5.8038 
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2.4. Descriptor selection: 

Various 2D descriptors (a total of 229) like structural, hydrophobic, steric, electrostatic, topological 

descriptors etc, were calculated using V life MDS software. The pre-processing of the independent variables 

(i.e., descriptors) was carried out by removing invariables (one which do not vary for majority of compounds) 

after doing so only 192 descriptors remained in the worksheet. It has been reported that there is high 

probability of chance correlation between the observed and predictive activity when number of independent 

variable (descriptors) are comparable or more than the compounds in dataset for any QSAR analysis [22, 23]. 

Thus, reduction in no. of descriptor is very important step to avoid the occurrences of chance correlation and 

by chance incorporation of irrelevant descriptors in final QSAR model. As there are some reported descriptor 

selection method like-forward, backward, simulated annealing etc, but one must understand and remember 

that each method have its own limitations. Hence, we have applied some methods for variable (descriptor) 

reduction which may improve performance as well as improve predictability of QSAR model. 

2.4.1. Correlation matrix: 

In the present study we have considered the correlation between descriptor with activity as well as their inter-

correlation i.e. descriptor-descriptor correlation[24]. We have considered only those descriptors which show 

either direct or indirect correlation with activity by more than 0.35 and shows inter correlation less than 0.8 

generated for the selected series of compounds is shown in Table 3. 

Table 3. Correlation Matrix: 

Descriptor T_C_O_6 T_2_F_6 SsCLE-

index 

T_C_N_6 

T_C_O_6  1 - - - 

T_2_F_6  O.53 1 - - 

SsCLE-index  -0.184 0.968 1 - 

T_C_N_6  -0.182 0.037 -0.18 1 

 

2.5. QSAR model generation: 

QSAR models were generated by MLR (multiple linear regressions) method by selecting descriptors 

manually. MLR is usually used to fit the regression model (Equation 1), which models a response variable, y, 

as a linear combination of the X-variables, with the coefficients b. The deviations between the data (y) and the 

model (Xb) are called residuals, and are denoted by: 

y = Xb + e -------------------- [1] 

2.6. 3D QSAR by SA-KNN method: 

3D-QSAR studies were performed by KNN–MFA using SA variable selection method25. KNN-MFA method 

requires suitable alignment of given set of molecules after optimization; alignment was carried out by 

template based alignment method. Molecular alignment was used to visualize the structural diversity in the 

given set of molecules. It was followed by generation of common rectangular grid around the molecules, 
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steric and electrostatic interaction energies were computed at the lattice points of the grid. Resulting set of 

aligned molecules was then used to build 3D QSAR models. 

 

2.7. Model validation: 

2.7.1. Internal validation: 

Internal validation was carried out using leave-one-out (q2, LOO) method [15]. To calculate q2, each molecule 

in the training set was sequentially removed, the model was refitted using same descriptors, and the biological 

activity of the removed molecules were predicted using the refit model. This attempt was made to calculate 

robustness of QSAR model. All cross-validation studies were performed by considering the fact that a value 

of q2 > 0.5. 

2.7.2 External validation: 

External validation of generated models was carried out by predicting the activity of test set of compounds. 

The pred_r2 value is calculated as follows 

Pred_r2 = 1 – Σ(yi-ŷi)2 /  Σ(yi-ŷmean)2   ------------- (2) 

Where yi, ŷi are the actual and predicted activity of the ith molecule in the test set, respectively, and y mean is 

the average activity of all molecules in the training set [16] 

2.7.3 Randomization test: 

This is a most popular tool used by researchers to prevent from chance correlation. In this method, keeping the 

x-variable intact, a repeated permutation of response variable is done. After each permutation r2 and q2 is 

recorded. If in each case the r2 and q2 gives very low value than original data, then we can say with some 

confidence that original QSAR model is real and not generated by chance. In our study we have calculate Z-

score to check significance of the model. Following formula was used for the same[26]. 

Z score = (q2org-q2a) q2std - - - - - - - - - [3] 

Where q2org is the q2 value calculated for the actual data set, q2 a is the average q2, and q2 std is the standard 

deviation of q2, calculated for various iterations using different randomized datasets. 

2.8. Model Evaluation: 

The developed QSAR models were evaluated using the following statistical measures: number of observations 

(molecules); k, number of variables; r2, co-efficient of determination; q2, cross validated r2 (by leave-one-out); 

pred_ r2, r2 for external test set; Z score, Z score calculated by the randomization test; best_ran_ q2, highest q2 

value in the randomization test; best_ran_ r2, highest r2 value in the randomization test; α, statistical 

significance parameter obtained by the randomization test; SEE, standard error of estimate of the model; 

SECV, standard error of cross validation; and SEP, standard error of external test set prediction. 

3. Result and Discussion:  

3.1. 2D QSAR models: 

We have got four meaningful descriptor viz. T_C_O_6, T_2_F_6, SsClE-index, T_C_N_6, r2= 0.7355, 
q2 = 

0.5965, F test = 16.6839, pred_ r2 = 0.8874 shown in Figure 2. 
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Figure 2: Contribution plot of selected descriptor. 

 

 

Contribution plot of selected descriptors: 

By looking at the results we came to know that this descriptor alone satisfies all evaluation parameters. The 

above mentioned descriptors show highest correlation with activity (as shown in correlation matrix) and also 

show proper distribution of data points. On the basis of the statistical parameters viz. r2> 0.7, cross-validated 

r2 .i.e. q2> 0.5 and parameter to assess external validation i.e. pred_r2> 0.8; the generated regression equation 

of model was used for further studies. Following regression equation was used to design NCEs. 

pIC50= -0.2773(T_C_O_6) + 0.3825T_2_F_6 + 0.426 SsClE-index + 0.3151T_C_N_6. 

The plot of actual versus predicted activity for model considering only there three descriptors for 

training set-A is shown in  

Figure 3. Shows Plot of Actual versus predicted Activity:  
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Table 4. Statistical parameters of developed 2D QSAR model: 

Statistical parameter MLR Model 1 MLR Model 2 

r2     0.7355 0.8165 

q2  0.6549  0.5965  

F test 16.683 21.3793 

r2se 0.2826 0.2562 

q2se 0.2691 0.2856 

Pred_r2  0.8874 0.6322 

Pred_r2se 0.2274 0.2350 

Best rand r2  0.40189 0.44281 

Best rand q2  0.15695 0.20728 

Z Score_ran_ r2  6.90599 6.30521 

Z Score_ran_ q2  5.96042 4.04202 

α_ran_ r2  0.0000 0.0000 

α_ran_ q2  0.0000 0.0000 

Descriptors  T_C_O_6 

T_2_F_6 

SsClE-index 

T_C_N_6 

T_2_F_6 

T_C_O_6 

SsClE-index 

T_2_C_1 

 

3.1.1 Accuracy of Model (Residual Value Calculation): 

The accuracy of Model-1 has well because residual value of that model was found to be nearer to zero 

and we can take Model-1 for the pharmacophore optimization. 

The residual value of Model-1 shows in Table 5. 

Table 5. Residual value calculation: 

Sr. 

No. 

Compd. Biological Activity 

Training set 

Predicted Activity Residual Value 

TRAINING SET 

1 9a 
-1.5682 -1.7097 

0.1415 

2 9b 
-2.1818 -1.9492 

-0.2326 

3 9c 
-0.6532 -0.9448 

0.2916 

4 9d 
-1.1703 -1.417 

0.2467 

5 9e 
-1.7993 -1.7097 

-0.0896 

6 10b 
-1.6021 -1.5667 

-0.0354 

7 10e -1.1673 
-1.3273 

0.16 

8 11a 
-1.1847 -1.3694 

0.1847 

9 11c 
-0.9494 -0.6163 

-0.3331 
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10 11d 
-0.9685 -1.0752 

0.1067 

11 11e 
-1.0334 -1.3685 

0.3351 

12 12a 
-1.8692 -1.7097 

-0.1595 

13 12b 
-2.1367 -1.9492 

-0.1875 

14 12c 
-0.5798 -0.9448 

0.365 

15 12d 
-1.7404 -1.416 

-0.3244 

16 12e 
-1.7243 -1.7097 

-0.0307 

17 13a 
-2.2041 -1.987 

-0.2171 

18 13b 
-2.1644 -2.2264 

0.062 

19 13c 
-1.6532 -1.2221 

-0.4311  

20 13d 
-1.716 -1.6987 

-0.0173 

21 14d 
-1.1461 -1.1046 

-0.0415 

22 15a 
-1.699 -1.9493 

0.2502 

23 15b 
-2.179 -2.1886 

0.0096 

24 15c 
-0.7993 -1.1842 

0.3427 

25 15d 
-2.1271 -1.6757 

-0.4514 

26 15e 
-2.2122 -1.9492 

-0.263 

27 16b 
-2.0086 -2.5037 

0.4951 

28 16c 
-1.8389 -1.4993 

-0.3396 

29 16d 
-1.8921 -1.9967 

0.1046 

TEST SET 

1 10c 
-0.3802 -0.5623 

0.1821 

2 11b 
-1.4771 -1.6093 

0.1322 

3 14a 
-1.4149 -1.3946 

-0.0203 

4 14c 
-1 -0.6096 

-0.3904 

5 14e 
-1.5314 -1.3946 

-0.1368 

 

 

3.2. Interpretation of 2D QSAR: 

The present QSAR model reveals that Baumann’s alignment independent descriptor has major contribution in 

explaining variation in activity. The definition for the descriptors that contributing significantly for the QSAR 

models are given below, the value given in parenthesis are percentile contribution of descriptor for the 

activity[27]. 

Descriptors T_X_Y_Z can be defined as total count of fragments formed with atom types X and Y separated 

by topological distance of Z bonds. 
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T_C_O_6 ; This is the count of number of Carbon atoms (single double or triple bonded) separated from any 

Oxygen atom (single or double bonded) by Six bond distance in a molecule. This descriptor shows negative 

contribution in the activity. This signifies That presence of Oxygen atom which leads to decreases Anticancer 

Activity. 

T_2_F_6 ; This is the count of number of double bounded atoms (i.e. any double bonded atom, T_2) separated 

from Fluorine atom by Six bonds distance in a molecule. This descriptor shows positive contribution in the 

activity. The presence of fluorine atom increases the activity. 

SsClE-index ; Electro-topological state indices for number of –Cl group connected with one single bond. This 

descriptor shows positive contribution in the activity. 

T_C_N_6 ; This is the count of number of Carbon atoms (single double or triple bonded) separated from any 

Nitrogen atom (single or double bond Six bond distance in a molecule. This signifies that increase in number 

such groups increases anticancer activity. 

From the above observation it can be concluded that the descriptor in the model shows the positive 

contribution like T_2_F_6 shows that substitution of fluorine at R2 and R3 position increases the tubulin  

polymerization activity. Where as the  T_C_N_6 descriptor also shows the positive contribution leads to 

increase the activity. The presence of nitrogen at R2 position shows the anticancer activity. Other descriptor 

like T_C_O_6 which shows decreases the biological acivity. The SsClE-index descriptor shows that presence 

of chlorine  on the ring which increases the activity. 

3.3. 3D QSAR Studies: 

The SA-KNN-MFA method is used for 3D QSAR studies, the error obtain by this method was low (q 2 

_se = 0.2578, pred_r2se = 0.2428). By using SA-KNN-MFA method the value of q2, pred_r2 and K of 

model 1 were found to be 0.6025, 0.8262 and 3 respectively. The points which contributed to SA KNN-

MFA model 1 are display in Figure 4. It gives the idea about hydrophobic, steric, electronic parameter 

generated by SA-KNN-MFA method with their positive or negative contribution. The model generated 

by this method showed good internal and external predictivity.  The results obtained are show in  

Figure 4: Data points generated using SA-kNN–MFA method (3D-QSAR):  
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Table 6. The statistical results of 3D QSAR generated by SA- KNN-MFA Method: 

 

 

 

 

 

 

 

 

 

 

3.4. Interpretation of 3D QSAR model: 

The electrostatic, steric, and hydrophobic requirement around Cinnamic Acyl Sulfonamide pharmacophore 

was optimized by 3D QSAR. The 3D data point was generated that contribute to SA-KNN-MFA 3D QSAR 

model, are shown in Figure 4. 

The generated data point helped for the design of potent NCEs, range was based on the variation of the field 

values at the chosen point using the most active molecules and its nearest neighbor set. Negative and positive 

values in electrostatic descriptor indicated the requirement of negative and positive electrostatic potential 

respectively for enhancing the biological activity of Cinnamic Acyl Sulfonamide derivative. Point generated 

in SA-KNN-MFA 3D QSAR model are E_133(-0.0279, 0.3942) , S_324( -0.1518, -0.0928), S_824( -0.4510, -

0.4344), S_669( 4.4406, 4.9253), S_59 ( -0.0147, -0.0073), H_914(0.2552, -0.3318), i.e electronic, sreric and 

hydrophobic interaction at lattice point 133,324,824,669,59,914 respectively. The nagative electronic value 

indicate the less electronic group are required to increase the activity.  The sterically positive values like 

S_669( 4.4406, 4.9253) and sterically negative values like S_324( -0.1518, -0.0928), S_824( -0.4510, -

0.4344), S_59 ( -0.0147, -0.0073) indicate the less steric and bulky group are  required to enhancing the 

activity. Where as the hydrophobic group like H_914(0.2552, -0.3318) are required for the activity. 

Figure 4. Data points generated using SA-KNN–MFA method (3D-QSAR): 

3.5. Design of new chemical entities (NCEs) containing cinnamic acyl sulfonamide      

pharmacophore:                           

The information obtained from 2D and 3D QSAR studies had helped a lot in optimizing cinnamic acyl 

sulfonamide pharmacophore and for design of NCEs containing for potent anti-cancer activity. Substitution 

Statistical Parameter SA-kNN MFA Model 1 

q2  0.6025 

q2se  0.2578 

Pred_r2  0.8262 

Pred_r2se  0.2428 

N  27 

K nearest neighbor  3 

Contributing descriptors  E_133(-0.0279, 0.3942) 

S_324( -0.1518, -0.0928) 

S_824( -0.4510, -0.4344) 

S_669( 4.4406, 4.9253) 

H_914(0.2552, -0.3318) 

S_59  ( -0.0147, -0.0073) 
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pattern around cinnamic acyl sulfonamide pharmacophore showed in Figure 5 was used for the design of 

NCEs using CombiLib tool of V Life MDS software. Figure 6 shows common template used for design of 

NCE’s. Designed compounds were subjected to Lipinski’s screen[28] to ensure drug like pharmacokinetic 

profile of the designed compounds in order to improve their bioavailability. The following parameters were 

used as Lipinski’s filters (Values in parenthesis indicate ideal requirements).  

1. Number of Hydrogen Bond Acceptor (A) (<10) 

2. Number of Hydrogen Bond donor (D) (<5)  

3. Number of Rotatable Bond (R) (<10)  

4. X log P (X) (<5)  

5. Molecular weight (W) (<500 g/mol)  

6. Polar surface area (S) is (<140 Ǻ) 

Figure 5. Pharmacophoric requirements around Cinnamic Acyl Sulfonamide. 

SN
H

O R3R1

R2

O

O

Required for activity

More steric and Hydrophobic
group increases activity

Less steric and electronic group required
for activity

Small Sterically group increases 
Activity  

Figure.6. Common template used to design NCEs: 

N
H

O

S

O

O

R1

R2

R3

 

The designed NCE’s along with predicted activity obtained by MLR equation generated by 2D-QSAR models 

shows in Table 7. 
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Table7. Structures of designed NCE’s along with predicted activity: 

Sr. 

No 

Comp. 

No. 

R1 R2 R3 Predicted 

activity 

Lipinski 

Screen 

Lipinski 

Score 

1 N-1 -H   -Br -C6H5 0.812 ADRXWS  6  

2 N-2 -H -Cl  - CH3 0.735 ADRXWS  6  

3 N-3 -H -F  -C6H5 0.721 ADRXWS  6  

4 N-4 -H -Cl C CH  
0.702 ADRXWS  6  

5 N-5 -H -OH -CH3  0.667 ADRXWS  6  

6 N-6 -H -F -Cyclopropane 0.648 ADRXWS  6  

7 N-7 -H -Br - CH2- CH3 0.612 ADRXWS  6  

8 N-8 -CH3 -Br C CH
 

0.492 ADRXWS  6  

9 N-9 -H -Cl -C6H5  0.419 ADRXWS  6  

10 N-10 -OH  -OH -F  0.353 ADRXWS  6  

11 N-11 -CF3 -Br -CH=CH2 0.273 ADRXWS  6  

12 N-12 -CF3  -H -CH=CH-CH3 0.239 ADRXWS  6  

13 N-13 -CF3  -OH C CH  
0.116 ADRXWS  6  

14 N-14 -CF3  -Br -C6H5 0.105 ADRXWS  6  

15 N-15 -H -SO2 -Cyclopropane -0.153 ADRXWS  6  

16 N-16 -H -SO2H -CH3 -0.248 ADRXWS  6  

 

3.6 Molecular Docking Studies: 

The molecular docking tool, GLIDE (Schrodinger, LLC, New York, NY) was used for ligand docking studies 

in to the receptor tubuline polymerase enzyme binding pocket. The crystal structures of enzyme and co-

crystalized ligand were obtained from protein data bank. (PDB Code: 1SA0). The goal of ligand–protein 

docking is to predict the predominant binding mode(s) of a ligand with a protein of known three-dimensional 

structure. Successful docking methods search high-dimensional spaces effectively and use a scoring function 

of dockings. Docking can be used to perform virtual screening on large libraries of compounds, rank the 

results, and propose structural hypotheses of how the ligands inhibit the target, which is invaluable in lead 

optimization[29]. 

3.6.1 Methodology:  

The Glide (Schrodinger, LLC, New York, NY) software[30] was used to dock potential inhibitors (Ligand) in 

the binding pocket of the Protein (Tubuline) structure. Glide is most commonly used and validated software 

designed to assist in high-throughput screening of potential ligands based on binding mode and affinity for a 

given receptor molecule. One can compare ligand scores with those of other test ligands, or compare ligand 

geometries with those of a reference ligand. Glide approximates a complete systematic search of the 
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conformational, orientation, and positional space of the docked ligand. Glide (Grid-based Ligand Docking 

with Energetics) is one of the most accurate docking tools available for ligand-protein, protein-protein binding 

studies. Glide was found to produce least number of inaccurate poses and 85% of Glides binding models had 

an RMSD of 1.4 A0 or less from native co-crystallized structures. 

 

3.6.2 Receptor Preparation and Selection:  

Docking studies were carried out using Tubuline complexe with DAMA colchicines (N-deacetyl-N-(2-

mercaptoacetyl) colchicines). It was solved by X-ray diffraction techniques with a resolution of 3.58 Å. We 

retrieved it from the Gen-bank (code 1SA0). The quality of the results obtained from Glide depends critically 

on the quality of the starting structures. These starting structures must include all hydrogen’s, have correct 

charge states near the binding site, and be reasonably free of major steric clashes. A typical PDB protein 

complex structure, as downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB) web 

site (http://www.rcsb.org), has no hydrogen’s and may have residues in unusual charge states. Therefore 

comprehensive protein preparation to ensure chemical correctness and optimization of protein structure was 

done in order to achieve best results. The typical structure file from the PDB is not suitable for immediate use 

in molecular modeling calculations as the PDB structure file consists only of heavy atoms and may include a 

co-crystallized ligand, water molecules, metal ions, and cofactors. Schrödinger has therefore assembled a set 

of tools to prepare proteins in a form that is suitable for modeling calculations. All structures were prepared 

for docking using the ‘protein preparation wizard’ in Maestro wizard 8.5[31]. In the refinement component, a 

restrained impact minimization of the co-crystallized complex was performed.  

3.6.3 Receptor Grid Generation:  

For receptors that adopt more than one conformation on binding, it is necessary to prepare grids for 

each conformation to ensure that possible actives are not missed. Grid files represent physical properties of a 

volume of the receptor (specifically the active site) that are searched when attempting to dock a ligand. Also 

the shape and properties of the receptor are represented on a grid by several different sets of fields that provide 

progressively more accurate scoring of the ligand poses. Grids were generated by Receptor Grid Generation 

panel which define receptor structure by excluding any co-crystallized ligand that may be present, determine 

the position and size of the active site as it will be represented by receptor grids, and set up Glide constraints. 

Grids were defined by centering them on the ligand in the crystal structure using the default box size. 

3.6.4 Ligand Preparation:  

Ligand preparation was carried out using LigPrep panel in the software. The use of LigPrep produces a single 

low-energy 3D structure with correct chiralities for each successfully processed input structure. All the 

structures in format were imported in the project file and subjected to ligand preparation using OPLS 2005 

force field using default setting[32].  

Possible ionization states for each structure at the pH 7.0 ± 2.0 were generated using the ionizer option 

and only one low energy ring conformer per ligand was allowed to generate. Low energy stereo isomers 32 
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per ligand were allowed to generate to identify additional chiral atoms in the structures and generate 

additional structures with the same molecular formula but different chiral properties. 

3.6.5 Docking and Scoring Function:  

 The ligands were docked with the active site using the ‘Extra precision’ Glide algorithm. Glide uses a 

hierarchical series of filters to search for possible locations of the ligand in the active-site region of the 

receptor. Final scoring of docked ligand is carried out on the energy-minimized poses Glide Score scoring 

function. Glide Score is based on Chem Score, but includes a steric-clash term and adds buried polar terms 

devised by Schrodinger to penalize electrostatic mismatches.  

G Score = 0.065*vdW + 0.130*Coul + Lipo + Hbond + Metal + BuryP + RotB +            

                    Site ------------------------------- (3.3) 

Where, vdW: - Vander Waal energy;  

  Cool: - Coulomb energy;  

  Lipo: - Lipophilic contact term; 

           H Bond: - Hydrogen-bonding term;  

 Metal: - Metal-binding term; 

 Bury P: - Penalty for buried polar groups;  

 Rot B: - Penalty for freezing rotatable bonds;  

 Site: - Polar interactions at the active site; and  

          The Coefficients of vdW and Coul are: - a = 0.065, b = 0.130.  

The all 3D QSAR studies were carried out by using partial least square statistical method in combination with 

stepwise forward variable selection method. 

3.6.6. Colchicine binding site on Tubuline: 

In  the  tubulin–DAMA Colchicine crystal structure the A and C rings interacts with the β subunit and the B 

ring side chain interacts with the α subunit. The colchicine site  in  the  tubulin  DAMA colchicine  crystal  

structure lies  within  the intermediate domain of the b subunit, surrounded by strands S8 and S9, loopT7 and 

helices H7 and H8. Besides β-subunit, colchicine also interacts with the loop T5 of the adjacent α-subunit. 

This  structure  supports  the  observation  that  tubulin  heterodimer  is  stabilized  upon colchicine 

binding[33]. The TMP moieties of DAMA-colchicine occupy space and are buried in the β -tubulin structure 

near residue Cys β 241. The dimensions of the colchicine site are ~ 10 Å× ~10 Å× ~4.5 Å. The colchicine site 

is located mostly in the β -subunit and is bordered in β -tubulin by helix 7, which contains Cys β 241, and 

helix 8. Although not as extensively as β -tubulin, α -tubulin also forms crucial interactions at the colchicine 

site, notably the loop connecting sheet 5 and helix 5. The latter contains Thr α 177 and Val α 179, both of 

which appear to form hydrogen bonds to the colchicines site inhibitors[34]. 

 

 

 

3.6.7. Results and Discussion:  
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All  the  designed  compounds  that  confirmed  top  expected  interest  and  accompanied Lipinski’s rule were 

docked into Tubuline (PDB code 1sa0) for studying the binding mode of designed compounds and further 

screening to sort out the nice compound having right binding affinity which became in comparison with 

binding mode of Tubuline polymerization inhibitors i.e. Colchicines, consequences of which can be depicted 

in desk 8. The  reliability  of  the  docking  results  turned into  first  checked  by means of  evaluating  the  

quality docking poses obtained  for the co-crystallized inhibitor with its certain conformation. This become 

carried out with the aid of casting off co-crystallized ligand from their lively site and subjecting once more to 

docking  into  the  binding  pocket  in  the  conformation  discovered  in  the  crystal  structure.  As a end 

result, a root suggest square deviation (RMSD) of 0.7 Å changed into found suggesting that the docking 

process may be depended on to predict the binding mode of our compounds. The correct prediction  of  

protein-ligand  interaction  geometries  is  crucial  for  the  success  of  digital- screening  methods  in  shape-

primarily based  drug  layout. The docking  consequences  were  evaluated based  on  drift  score  (G-  score),  

hydrogen  bonds  (H-bond)  and  vander  waals  (vdw) interplay among ligands and receptor. 

Table 8.  Results of Molecular Docking Studies: 

Sr. 

No  

Title  G-score  E-Model  H-Bond  Good 

VDW  

Bad 

VDW  

Ugly 

VDW  

1  N-3  -8.46 -57.6 1 187 4 0 

2  N-5   -7.84 -55.2 1 211 7 0 

3  Std.  -7.22  -54.2 1 213 6 0 

4  N-7  -6.96 -49.5 1 169 2 0 

5  N-9  -6.84 -43.7 1 174 5 0 

6  N-10  -6.27 -39.6 1 189 5 0 

7  N-16  -6.01 -40.3 1 164 6 0 

 

G  score  of  compounds  N-3 and N-5 was  found  to  be -8.46 and -7.84  respectively  which  was  

comparable  with  G-score  of  standards  colchicine  (G score: -7.22) indicated that designed compounds have 

good binding affinity for binding to tubuline. The best poses obtained by docking results are reported in Fig. 7 

& 8, where main interaction between ligands and receptors can be observed. All designed compounds adopt a 

very similar conformation at tubuline binding pocket. 

 

 

 

Figure 7. Docking pose of colchicines at colchicines binding site:  
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Figure 8. Docking pose of compounds N-3 at colchicines binding site: 

 

3.7.  

ADME Predictions: 

All designed compounds were filtered by predicting their Absorption, Distribution, Metabolism, and 

Excretion (ADME) properties by means of Qikprop 2.2 Tool of, Schrodinger. It was used as last screening 

tool to design cinnamic acyl sulfonamide derivatives for anticancer activity. In addition to predicting 

molecular properties, Qikprop provides ideal ranges of these properties for comparing a particular property 

with those of 95% of known drugs. Number properties of designed analogues are predicted by Quikpro tool 

but here we have reported significant  descriptors which are required for predicting drug like properties of the 

molecule. These properties are: 

1) Rule of five: It includes Molecular Weight (MW) (150-650), Predicted octanol/water partition coefficient. 

(QP log Po/w < 5), estimated number of hydrogen bond donor (donor HB ≤ 5), estimated number of 

hydrogen bond acceptor (accpt HB≤ 10). Compounds that satisfy these rules are considered to have drug-like 

pharmacokinetic profile. 

 2. Brain/blood partition coefficient (CNS) (-2 to 2) 

 3. Percent Human Oral absorption (>80% is high, <25%is poor). 
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 4. Number of possible metabolites (should range from 1-8) 

 The parameters illustrated in Table 9 Qikprop analysis show significant results. CNS parameter is 

related with absorption of entity through Blood brain barrier, standard limit for CNS is -2 to +2, where -2 

shows inactive CNS penetration and +2 shows active CNS penetration. All the designed entities show 

satisfactory results within the range. Percent Oral Absorption parameter is related with extent of oral 

absorption of drug, indicating suitable route of administration, if it is going to be formulated. Here all entities 

shows more than 80% oral absorption, it is considered to be highly absorbed. The result of prediction of 

ADME properties shows in Table 9. 

Table 9.  Prediction of ADME properties: 

Sr. 

No 

Comp. 

Code 

Mol. 

Wt 

Donor 

HB 

Accept 

HB 

QPlog 

Po/w 

Percent 

Human 

Oral 

Absorption 

CNS 

No.Of 

possible 

metabolites 

1 N-3 381.42 1 5.45 2.977 100 0 2 

2 N-5 317.35 0 9.65 3.883 100 -1 3 

3 N-7 394.28 0 6.95 3.731 100 0 4 

4 N-9 397.87 2 6.2 2.358 87.307 -2 3 

5 N-10 337.32 1 8.15 3.218 100 -1 3 

6 N-16 365.42 2 8.9 2.582 91.579 -2 4 

 

4. Conclusion: 

On this look at, Goal became targeted on improvement of the capability by-product of Cinnamic Acyl 

Sulfonamide for anticancer interest by using pharmacophore optimization the use of QSAR research. In this 

we've got completed 2D QSAR studies the usage of a couple of linear regression (MLR) technique and 3D 

QSAR studies using simulated annealing okay-nearest neighbour molecular subject evaluation approach (SA-

KNN) which offers meaningful descriptor having their contribution in hobby. On the idea of 2D & 3D QSAR 

research we have optimized the pharmacophore. The optimized molecule were then subjected to the lipinski 

screening and sixteen designed compounds suggests the coolest Lipinski’s rule. ADRXWS. All  the  designed  

compounds  that  show  exact  predicted  activity  and  follow Lipinski’s rule have been Docked and filtered 

by way of predicting their absorption, distribution, metabolism, and excretion (ADME) homes of designed 

compounds and further screening to type out the pleasant six compound having appropriate predicted activity. 
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