Power Quality Improvement Using Fuzzy Logic Controller in Grid-Connected Hybrid Source

Abhishek Kumar Jha¹, A. K. Sahani², Anand Raj³ ^{1,3}M. Tech Scholar, NIT Patna, India; ²Associate Professor, NIT Patna, India,

Abstract –This research work proposed a control procedure for power quality in Grid-connected Hybrid PVwind-battery based framework with a productive multi-input bidirectional dc-dc converter is introduced. The proposed work measure load demand, deal with the power spill out of various sources, inject surplus into the grid and charge the battery from lattice as and when required. A boost bridge converter is utilized to load control from wind, while bidirectional converter is utilized to load control from PV alongside battery charging control. Here battery charging and analyzer proposed to manage power requirement of the system. From this proposed work optimized power ratio and quality of the system.

Keywords: Solar Photovoltaic, Wind Energy, Hybrid System, Transformer Coupled Boost Dual-Half-Bridge Bidirectional Converter, Bidirectional Buck-Boost Converter, Full Bridge Bidirectional Converter.

I. Introduction

An electrical system that includes multiple loads and distributed energy resources that can be operated in parallel within the border utility grid is called micro grid. Many countries generate electricity in large centralized facilities; these plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Solar photovoltaic (PV) and wind have developed as popular energy sources due to their eco-accommodating nature and cost capability. However, these sources are irregular in nature. Consequently, it is a best to supply and constant power utilizing these sources. For accomplishing the understanding of different inexhaustible sources, the normal methodology includes utilizing committed single-input converters one for each source, which are associated with a typical dc-transport. In any case, these converters are not effectively used, due to the irregular nature of the renewable energy sources. In addition, there are different power transformation stages which decrease the effectiveness of the system.

Today, wind vitality is principally used to produce power. Wind is known as a sustainable vitality source on.

Hybrid power system (HPS) are self-sufficient power creating frameworks that have more than one renewable

of intensity sources, worked alongside related supporting gear (counting stockpiling) to supply capacity to the network or on location. Through this joining of different

energy sources in a single supply framework, the innovation of hybridization gives a perfect opportunity to utilize locally available sustainable power hotspots for supply control in remote areas. Hybrid system in the main covers complete systems still as island grids of little and medium power ranges. Altogether cases, it contains two or a lot of power generation sources so as to balance every other's strengths and weaknesses.

A hybrid system may contain AC (or DC) diesel generators, an AC (or DC) framework, loads, renewable power sources, energy storage, control converters, rotating converters, coupled diesel frameworks, load management options or a supervisory control system. Examples of hybrid systems include:

- Wind turbines with battery storing and diesel support generators;
- Solid oxide cell combined with a turbine or micro turbine;
- Sterling engine combined with a solar dish;
- Engines (and diverse prime movers) joined with energy storing gadgets, similar to flywheels.

II. Proposed work

The proposed converter involves a transformer coupled boost double half-connect bidirectional converter interlaced with bidirectional buck support converter and a particular stage fullconnect inverter. The proposed converter has reduced number of power change stages with less part figure and high capability raised out from the present structure associated plans. The topology is essential and needs only six power switches. The boost dual half-connect converter has two dc-interfaces on the two sides of the high repeat transformer. Controlling the voltage of one of the dc-joins ensures controlling the voltage of the other. This makes the control strategy fundamental. In addition, converters can be facilitated with any of the two dcjoins. A bidirectional buck-support dc-dc converter is facilitated with the fundamental side dc-interface and singlestage full-associate bidirectional converter is related with the dc-interface of the optional side.

Figure 1 PV/Wind hybrid system.

A. DC–DC Converter

Dc-dc control converters are utilized in an assortment of uses, including power supplies for PCs, office gear, shuttle control frameworks, PCs, broadcast communications hardware, and in addition dc engine drives. The contribution to a dc-dc converter is an unregulated dc voltage Vg. The converter creates a directed yield voltage V, having an extent (and conceivably extreme) that varies from Vg. For instance, in a PC disconnected power supply, the 120 V or 240 V air conditioning utility voltages is redressed, delivering a dc voltage of around 170 V or 340 V, individually. A dc-dc converter at that point decreases the voltage to the directed 5 V or 3.3 V required by the processor ICs.

High effectiveness is continuously required, since cooling of wasteful power converters is troublesome and costly. The perfect dc-dc converter displays 100% productivity; practically speaking, efficiencies of 70% to 95% are ordinarily developed. This is accomplished utilizing exchanged mode, or chopper, circuits whose components disperse immaterial power. Pulse width modulation (PWM) permits control and direction of the aggregate yield voltage. This methodology is additionally utilized in applications including rotating current, including high-proficiency dc-ac power converters (inverters and power fixings), ac-ac power converters, and some ac dc control converters (low-consonant rectifiers).

Figure.2 the buck converter consists of a switch network that reduces the dc component of voltage, and a low-pass filter that removes the high-frequency switching harmonics: (a) schematic, (b) switch voltage waveform

A major dc-dc converter circuit known as the buck converter is laid out in Fig.2. A Single Pole, Double Throw (SPDT) change is related with the dc input voltage V_g as showed up. The switch yield voltage $v_s(t)$ is identical to Vg when the switch is in position 1, and is proportional to zero when the switch is in position 2. The switch position is changes irregularly, with the true objective that $V_s(t)$ is a rectangular waveform having period Ts and commitment cycle D. The commitment cycle is equal to the part of time that the switch is related in position 1, and in this manner $0 \le D \le 1$. The trading repeat f_s is comparable to $1/T_s$. Before long, the SPDT switch is recognized using semiconductor devices, for instance, diodes, control MOSFETs, IGBTs, BJTs, or thyristors. Ordinary trading frequencies lie in the range 1 kHz to 1 MHz, dependent upon the speed of the semiconductor devices.

The switch network changes the dc portion of the voltage. By Fourier examination, the dc portion of a waveform is given by its average value. The typical estimation of Vs(t) is given by

$$V_{s} = \frac{1}{T_{s}} \int_{0}^{T_{s}} v_{s}(t) dt = DV_{g}$$
(1)

The basic is equivalent to the region under the waveform, or the figure Vg duplicated when DTs. It very well may be seen that the switch arrange reduces the dc segment of the voltage by a factor equivalent to the requirement cycle D. Since $0 \le D \le$ 1, the dc segment of Vs is not exactly or equivalent to Vg. The purpose of the DC/DC converter in this work is to maintain a constant output voltage regardless of varying input voltage. It is also possible to control the output voltage in instruction to path a position, but this makes the DC/DC converter more complex and expensive. The converter should be dynamic enough to respond to the changes in required power and make the required power available on the bus. Buck, boost and buckboost DC/DC converters are the commonly known types. DC/DC converters can also be mono-or bi-directional. Bidirectional DC/DC converters can transfer power to and from source thus allowing the regenerated energy to be saved.

Figure.3: Circuit diagram of DC/DC converter

In this investigation, two sorts of DC/DC converter for power device application are considered. To start with, the unidirectional DC/DC converter changes the DC energy unit total capacity to yield voltage-current necessities of the outside power devices that associate with a FC system. Here we think about a boost converter (appeared in Figure 3) that can be utilized in PEM energy unit applications. The voltage and current at the DC/DC converter input are the FC total voltage Vst and the net FC current Inet, individually. In determined state, the converter usefulness can be depicted by

$$V_{st}I_{net} = v_{bus}I_{dc}$$
(2)
$$(I-d)I_{net} = I_{dc}$$
(3)

The bus voltage vbus and the output current Idc are associated with the duty cycle d of the solid state switch in the circuit. The inductance of input inductor Lin, the capacitance of output capacitor Cout and the resistance of the load Rload are shown in Figure 3.

JETIR1908004 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

17

In the area of fuel cell power applications, bidirectional DC/DC converter is considered, specifically in a load-following fuel cell system that the FC power meets most of power demand while small-sized battery covers some transients and start-up/shutdown. Bidirectional converter has an ability to match high voltage fuel cells with low voltage battery when fuel cell is directly connected to the DC bus in a hybrid configuration. Figure 4. depicts one of the bidirectional converter topology for low voltage battery and high voltage DC bus.

B. DC/DC converter model

In this investigation, the DC/DC boost converter is chosen for 50 kW control and dependent on 400 V output voltage with input voltage is 250 V and along these lines input current is 200 A. In a perfect world the info control is prepared in a converter with 100 % effectiveness. Real proficiency is somewhat under 100 % because of the troubles in the inductor, capacitor, transformer, and switch and controller circuit.

Figure 5: Bidirectional DC/DC converter

A usual boost converter for PEM energy component application has around 95 % effectiveness when the voltage support proportion is incompletely two.

Expanding Lin lessens the great of the info current. Although considerable Lin buffers the structure from high frequency AC current, the related increment in opposition may diminish the converter productivity. The extent of Cout is typically controlled by the great detail of yield voltage. Different reviews, for example, the voltage and current limit of the capacitor should to likewise be accounted particularly because of high voltage and current qualities related with FC applications. For the ensuing unique investigation, the estimations of inductor and capacitor are chosen to be as $L_{in} = 1$ mH and $C_{out} = 1200 \ \mu$ F.

$$L_{in} \frac{dI_{net}}{dt} = v_{st} - (1 - d)v_{bus}$$

$$C_{out} \frac{dv_{bus}}{dt} = (1 - d)I_{net} - \frac{v_{bus}}{R_{load}}$$
(5)

The inputs to the converter, based on realistic FC operation, are the duty cycle d, the input voltage vst, and the output current, $I_{dc}=V_{bus}/R_{load}$. Linearization and Laplace transformation from these inputs to the output voltage vbus provide the following transfer functions.

$$v_{bus} = G_d(s)d + G_v(s)v_{st} - Z_{out}(s)I_{out}$$
(6)

$$G_{d}(s) = \frac{\frac{v_{bus,n}}{(1-d_{n})R_{load,n}C_{out}} \left[\frac{(1-d_{n})^{2}R_{load,n}}{L_{in}} - s\right]}{s^{2} + \frac{1}{R_{load,n}C_{out}}s + \frac{(1-d_{n})^{2}}{L_{in}C_{out}}}$$
(7)

www.jetir.org (ISSN-2349-5162)

$$G_{v}(s) = \frac{\frac{1 - a_{n}}{L_{in}C_{out}}}{s^{2} + \frac{1}{R_{load,n}C_{out}}s + \frac{(1 - d_{n})^{2}}{L_{in}C_{out}}}$$
(8)

$$Z_{out}(s) = \frac{\frac{1}{C_{out}}s}{s^{2} + \frac{1}{R_{load,n}C_{out}}s + \frac{(1 - d_{n})^{2}}{L_{in}C_{out}}}$$
(9)

Where d_n is the nominal duty cycle and R_{load} , n is the supposed load opposition. The exchange work Z_{out} is called converter impedance and speaks to the impact of little load (current) changes to V_{bus} .

As can be found in the zero at the cause of Zout, the determined state yield voltage isn't influenced by changes in load. This ability to can dimensions concerning influences (variety in Iout) and direct the yield voltage (V_{bus}) is attractive. Be that as it may, a zero at s = 0 compares to a subordinate of the unsettling influence input causing extensive originality in V_{bus} amid a stage change in load. Hence, in spite of the fact that the zero at the starting point helps the determined state execution, it declines the transient execution. The impedance can likewise communicate to the elements of Rload to vbus when the electric load is absolutely resistive which is regular for part or support control applications.

C. Fuzzy Controller

Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. The fis system is shown in figure 1. The mapping then provides a basis from which decisions can be made, or patterns discerned. The process of fuzzy inference involves membership functions, fuzzy logic operators, and if -then rules. Two types of fuzzy inference systems that can be implemented in the Fuzzy Logic Toolbox are,

Mamdani type

Sugeno type

Mamdani type inference expects the output membership functions to be fuzzy sets. After the aggregation process, there is a fuzzy set for each output variable that needs defuzzification. It is possible, and in many cases much more efficient, to use a single spike as the output membership function rather than a distributed fuzzy set. This type of output is sometimes known as a singleton output membership function, and it can be thought of as a pre-defuzzified fuzzy set [5]. It enhances the efficiency of the defuzzification process because it greatly simplifies the computation required by the more general mamdani method, which finds the centroid of a two-dimensional function. Rather than integrating across the two-dimensional function to find the centroid, we use the weighted average of a few data points. Sugeno -type systems support this type of model. In general, Sugeno-type systems can be used to model any inference system in which the output membership functions are either linear or constant.

ile Edit View			
input1		Kavitha (mamdani)	output1
inputz			
FIS Name:	Kavitha	FIS Type:	mamdani
FIS Name: And method	Kavitha	FIS Type:	mamdani
FIS Name: And method Or method	Kavitha min max	FIS Type:	mamdani input1
FIS Name: And method Or method Implication	Kavitha min max min	FIS Type:	mamdani input1 input
FIS Name: And method Or method Implication Aggregation	Kavitha min max min max	FIS Type:	mamdani input1 input (0 1)

Figure 6: Fuzzy logic controller

The error 'e' and the change of error 'ce' are used as numerical variables from the real system. To convert these numerical variables into linguist variables, the following seven fuzzy sets are used: NL (Negative Large), NM (Negative Medium), NS (Negative Small), Z (zero), PS (Positive Small), PM (positive medium) and PL (Positive Large).

- The fuzzy controller is characterized as follows:
- Seven fuzzy sets for each input and output
- Triangular membership functions for simplicity
- Fuzzification using continuous universe of discourse
- Implication using mamdani type inference system
- Defuzzification using weighted average method

D. The Solar PV System

Solar PV generation involves the generation of electricity from solar energy. With the greater enhancement in inverter advancements, PV cell is currently chosen worldwide as Distributed Energy Resources (DERs). The significant preferences of a PV structure are:

- (a) The economical idea of solar energy
- (b) Positive natural effect
- (c) Longer life time and silent activity.

The most normally utilized model for a PV cell is the one-diode equal circuit as appeared in fig.8. Since the shunt obstruction

 R_{sh} is infinite, it tends to be ignored. The five parameters demonstrate appeared in fig.8 (an) and efficient four parameters display appeared in Fig. 8(b).

Figure.8 One-diode equivalent circuit model for PV cell (a) five parameters model; (b) simplified four parameters model. This simplified equivalent circuit model is represented by the following expressions:

$$I_{pv} = I_{ph} - I_d$$

$$I_d = I_0 \left[\exp((V_{pv} - R_s I) / V_t) - 1 \right]$$

$$I_{ph} = G / G_{ref} \left[I_{ph,ref} + \lambda_I (T_c - T_{c,ref}) \right]_{(4)}$$

Where I_{ph} is the light current, I_{pv} is the load current and I_o is the immersion current. The V_{pv} is the yield voltage, R_s is the arrangement obstruction, the V_t is the warm voltage, G is the illumination, Tc is the cell temperature and λI is the temperature coefficient. The primary PV parameters are V_{mp} , I_{mp} , V_{oc} , I_{sc} , P_{max} . Sun based PV stage system is a conveyed power age and supply system, comprising of PV battery exhibit, PV converter, system controller, storing and nearby loads. Its evaluated yield control is determined under the standard state of light energy 1000W/m² and temperature 25°C, and its open yield control is affected by numerous variables. The PV stage system is a decent decision to supply self-governingly, extraordinary appropriate for the remaining tasks at hand not ask for top notch control and the remote region with incredible expense of power.

IV. Results

In proposed work design hybrid power system. That is connected battery, PV and Wind. Here show basic parameter of the system in table 1.

Here figure 9 show voltage generation of wind and figure 10 show current generation of wind according the load demand and wind speed. Demand variation of the speed of rotor. It is seen that according to the wind speed variation, the generator speed varies and that its power to rotating speed of rotor is produced corresponding to the wind speed variation.

Figure:9 Wind voltage with respect to Time

Figure:10 Wind current with respect to Time

Same here figure 11 show PV voltage as generated through pv panel with respect to time and irradiance value all is manage by MPPT.

Figure:11 PV voltage with respect to Time

Figure: 12 PV Current with respect to Time

Figure 13 show power graph between load , PV , Battery, and wind power. In this four color wave form cyan color shows battery power, pink color shows wind power, yellow color show PV power, and red color shows load power.

Figure:13 Different power compares with respect to Time

Time

Figure 14: Output Current with respect to Time

In Figure14, the current produced by PV and wind is high; the load demand is also high. In this case the PV alone is sufficient to run the load; the excess power from the wind is used to charge the battery through. Figure 15 show voltage demand of the load as for load variation its fulfill all condition without delay.

Figure 15: Output Voltage with respect to Time

Figure 16 is show harmonic distortion(THD) of the system, that is less. THD of the system is 5.34% that is indication ,our system generate best quality power and less harmonic.

Figure16: THD Value

V. Conclusion

This proposed work presents the modelling of DC Gridconnected with solar and wind as their input source. These renewable sources are integrated into the main DC bus through bi directional dc-dc converter. Wind energy variation and rapidly change in solar irradiance was considered in order to

explore the effect of such environment variations to the proposed grid connected system. Network are utilizes elective power structures to help these load focuses, for example, sun based power, wind control and so on. In this exploration work solar power was chosen as an elective energy source. In the stimulate of ascertaining sounds and load proficiency, it tends to be inferred that when PV load effectiveness increments gradually, the load supporting focuses decline and misfortune increments and connects of limit. The inexhaustible power which can be created from the sustainable assets can be incorporated by the aggregated model. By this assembled model the power for the individual time can be determined. Proposed work decreased harmonics and optimized power quality. THD value is 5.34%.

REFERENCES

- [1]W. Qi, J. Liu, X. Chen, and P. D. Christofides,"Supervisory predictive control of standalone wind/solar energy generation systems," IEEE Trans. Control Sys. Tech., vol. 19, no. 1, pp. 199-207, Jan. (2011)
- [2] S. Bae and A. Kwasinski, "Dynamic modelling and operation strategy for a micro grid with wind and photovoltaic resources," IEEE Trans.Smart Grid, vol. 3, no. 4, pp. 1867-1876, Dec. (2012)
- [3] C. W. Chen, C. Y. Liao, K. H. Chen and Y. M. Chen, "Modeling and controller design of a semi isolated multi input converter for a hybrid/wind power charger system," IEEE Trans. Power Electron., vol. 30,no. 9, pp. 4843-4853, Sept. (2015)
- [4] R. Wandhare and V. Agarwal, "Novel integration of a PV-wind energy system with enhanced efficiency," IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3638-3649, Jul. (2015)
- [5]H. Wu, K. Sun, S. Ding, and Y. Xing, "Topology derivation of non-isolated three-port dc-dc converters from DIC and DOC," IEEE Trans. Power Electron. vol. 28, no. 7, pp. 3297-3307, July (2013)
- [6]H. C. Chiang, T. T. Ma, Y. H. Cheng, J. M. Chang, and W. N. Chang, "Design and implementation of a hybrid regenerative power system combining grid-tie and uninterruptible power supply functions,"IET Renew. Power Gen., vol. 4, no. 1, pp. 8599, (2010)
- [7] A. Khaligh, J. Cao, and Y. J. Lee, "A multiple-input dc-dc converter topology," IEEE Trans. Power Electron., vol. 24, no. 3, pp. 862-868, Mar. (2009)
- [8] P.Anesh Kumar*1, B.Ramesh2"Hybrid Source Based Transformer Coupled Bidirectional Dc-Dc Converter for Domestic Applications" International Journal of Science Engineering and Advance Technology, IJSEAT, Vol. 5, Issue 4 ISSN 2321-6905 April (2017)
- [9] K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, "A Distributed control strategy based on DC bus signalling modular photovoltaic generation systems with battery energy storage," IEEE Trans. Power Electron,vol. 26, no. 10, pp. 3032–3045, Oct. (2011)
- [10] Y. A.-R. I. Mohamed, "Mitigation of converter-grid resonance, grid induced distortion, and parametric instabilities in converter-based distributed generation," IEEE Trans. Power Electron., vol. 26, no. 3, pp. 983– 996, Mar. (2011)

www.jetir.org (ISSN-2349-5162)

- [11] R. H. Lasseter and P. Paigi, "Micro grid: A conceptual solution," in Proc. IEEE Power Electron. Spec. Conf., vol. 6, pp. 4285–4290. Jun. (2004)
- [12] H. Zhou, T. Bhattacharya, D. Tran, T. S. T. Siew, and A. M. Khambadkone, "Composite energy storage system involving battery and ultra capacitor with dynamic energy management in micro grid applications," IEEE Trans. Power Electron., vol. 26, no. 3, pp. 923–930, Mar. (2011)
- [13] Y. M. Chen, C. Cheng, and H. Wu, "Grid-connected hybrid PV / wind power generation system with improved DC bus voltage regulation strategy, "in Proc. of Applied Power Electronics Conference and Exposition, (APEC), Texas, pp.1088-1094, Mar. (2006)
- [14] Y. M. Chen, Y. C. Liu, S. C. Hung, and C. S. Cheng, "Multi-input inverter for grid-connected hybrid PV/wind power system," IEEE Trans.Power Electron., vol. 22, no. 3, pp. 1070-1077, May. (2007)
- [15] L. Kumar and S. Jain, "A multiple input dc-dc converter for interfacing of battery/ultra capacitor in EVs/HEVs/FCVs," in Proc. IEEE IICPE,pp. 1-6.(2012)
- [16]N.D. Kaushika (Ph.D), S.S. Bhatnagar Research Endowment Award (Hariom Ashram Prerit) for research in energy conservation in (1987).
- [17]Michael S. Branicky "Introduction to Hybrid Systems" Department of Electrical Engineering and Computer Science Case Western Reserve University Cleveland, OH 44106.
- [18]Sources: Energy Information Administration, Renewable Energy Annual2006, April 2008.
- [19]W. Li, C. Xu, H. Luo, Y. Hu, X. He, and C. Xia, "Decoupling-Controlled Triport Composited DC/DC Converter for Multiple Energy Interface" IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4504-4513, July (2015).
- [20]S. K. Kim, J. H. Jeon, C. H. Cho, J. B. Ahn, and S. H. Kwon, "Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer," *IEEE Trans. Ind. Electron.*, vol. 55, no. 4, pp.1677-1688, Apr. (2008).
- [21]Y. A.-R. I. Mohamed, "Mitigation of converter-grid resonance, grid induced distortion, and parametric instabilities in converter-based distributed generation," IEEE Trans. Power Electron., vol. 26, no. 3, pp. 983– 996, Mar. (2011).
- [22]B. Mangu, S. Akshatha, D. Suryanarayana and B. G.Fernandes,"Grid-Connected PV-Wind-Battery based Multi-Input Transformer Coupled Bidirectional DCDC Converter for household Applications"IEEE Journal of Emerging and Selected Topics in Power Electronics., vol. 4, no. 3, pp.1086 - 1095., 2016
- [23]F. Valenciaga and P. F. Puleston, "Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy," IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 398-405, Jun. 2005.
- [24]S. K. Kim, J. H. Jeon, C. H. Cho, J. B. Ahn, and S. H. Kwon,"Dynamic modeling and control of a gridconnected hybrid generation system with versatile

- power transfer,"IEEE Trans. Ind. Electron., vol. 55, no. 4, pp.1677-1688, Apr. 2008.
- [25]S. Bae and A. Kwasinski, "Dynamic modeling and operation strategy for a micro grid with wind and photovoltaic resources," IEEE Trans. Smart Grid, vol. 3, no.4, pp. 1867-1876, Dec. 2012.
- [26]C. W. Chen, C. Y. Liao, K. H. Chen and Y. M. Chen, "Modeling and controller design of a semi isolated multi input converter for a hybrid PV/wind power charger system," IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4843-4853, Sept. 2015.
- [27] W. M. Lin, C. M. Hong, and C. H. Chen, "Neural network-based MPPT control of a stand-alone hybrid power generation system," IEEE Trans. Power Electron.,vol. 26, no. 12, pp. 3571-3581, Dec. 2011

