
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908033 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 219

PARALLEL DATA MINING TECHNIQUES ON

GRAPHICS PROCESSING FOR

MULTIVARIATE TIME SERIES

1S.Baskaran, 2S.Gandhi,

1Head,Dept.of.Computer science, Tamil University (Established by the Govt.of.Tamilnadu), Thanjavur-613010.

2Research Scholar, Dept.of.Computer Science, Tamil University, Thanjavur-613010.

ABSTRACT

 The traditional data processing algorithms add consecutive manner that will increase their time of execution. These algorithms ought to use

the data processing capabilities of the trendy GPUs to execute parallel programs with efficiency. thus a parallel process} rule ought to be

enforced that may utilize the processing power of GPUs to hurry up the execution. when put next with the straightforward set mining

drawback and string mining drawback, the hierarchi- cal structure of consecutive pattern mining (due to the requirement to contemplate

frequent subsets among every itemset, also as order among itemsets) and therefore the ensuing massive permutation area makes SPM

extraordinarily costly on typical pro-cessor architectures. HAC estimation for long and high-dimensional statistic is computationally costly.

This paper describes a unique pipeline-friendly HAC estimation rule derived from a mathematical specification, by applying transformations

to eliminate conditionals, to parallelise arithmetic, and to push information apply in computation. we have a tendency to then develop a fully-

pipelined hardware design supported the planned rule. This design is shown to be economical and ascendible from each theoretical and

empirical views. Experimental results show that AN FPGA-based implementation of the planned design is up to 111 times quicker than AN

optimised processor implementation with one core, and fourteen times quicker than a processor with eight cores.

Keywords: Parallel Computing , CUDA , Data mining , Classification , Clustering , GPU Databases.

I. INTRODUCTION

THE traditional data processing algorithms add successive manner

that will increase their time of execution. With data processing in

multicore systems, just one core will pro-cessing whereas alternative

cores stay idle. A se-quential data processing formula handling

massive knowledge sets would doubtless take an oversized quantity

of your time. data {processing} is that the process of finding patterns

in massive databases and is additionally called information

discovery.

 Now-a-days ,as computations and datasets ar growing,

quick algorithms ar gaining impor-tance. In recent years, the data on

the market is growly enormously. therefore the info mining

algorithms ought to use the data processing capabilities for

execution of parallel programs in associate degree economical

manner. additional memory is re-quired thanks to use of multiple

processors. To use the resources to their fullest ,parallel com-puting

techniques ar essential. The motivation behind usage of

correspondence is low power still as low consumption. It

additionally provides quicker execution in comparison to serial

techniques. victimisation parallel setting these data processing

algorithms is used for pattern discovery.

 to hurry up the execution , these paral-lel algorithms use

the process power of GPUs(Graphics process Unit). the benefits of

parallel data processing ar data processing of information, less

execution time and higher resource utilization. This shows that on

several domains parallel techniques ar robust.

 whereas period systems will typically have the benefit of

the speed and ease of hardware implementations, hardware

acceleration of your time series process isn't a well-studied topic. To

the most effective of our information, though there's recent analysis

on fast pattern matching in statistic, our work is that the initial to use

reconfigurable computing to statistic analysis. Our key contributions

ar as follows.

We derive a pipeline-friendly HAC estimation formula by playing

mathematical transformations. This formula exploits the process

power of the hardware platform with conditional-free logic and

parallelised arithmetic. Moreover, it avoids memory bottlenecks

with a strong knowledge employ theme. we have a tendency to map

the projected formula to a fully-pipelined hardware design by

customising on-chip memory to be a first-in-first-out buffer.

 This design takes full advantage of the pipeline-friendly

options of our projected formula in a chic means. we have a

tendency to implement our style during a industrial FPGA

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908032 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 220

acceleration platform. With measure and experimental results, we

have a tendency to demonstrate the performance and measurability

of our hardware style, which might be up to fourteen times quicker

than associate degree 8-core electronic equipment implementation.

GENERALIZED successive PATTERN FRAMEWORK

 The GSP methodology is predicated on the downward-

closure prop-erty and represents the dataset during a horizontal

format. The downward-closure property suggests that all the

subsequences of a frequent sequence are frequent associate degreed

so for an in-frequent sequence, all its supersequences should even be

infre-quent. In GSP, candidates of (k+1)-sequences ar generated

from renowned frequent k-sequences by adding an additional pos-

sible frequent item. The mining begins at 1-sequence and therefore

the size of candidate sequences will increase by one with every pass.

In every pass, the GSP formula has 2 major oper- ations: 1)

Candidate Generation: generating candidates of frequent (k+1)-

sequences from renowned frequent k-sequences 2) Matching and

Counting: Matching candidate sequences and enumeration support.

NVIDIA CUDA ARCHITECTURE[5]

 CUDA is associate degree computer programme

Interface(API) created by NVIDIA that provides a platform for

parallel computing. It permits general purpose computing on

Graphics process Unit(GPU). CUDA provides access to parallel

process components and therefore the virtual instruction set. It

additionally features a unified computer storage. CUDA will work

with programming languages like C,C++ and algebraic language.

CUDA is compatible with all commonplace operative systems.

GPU could be a specialised processor that works on high resolution

tasks like 3D graphics. GPU permits manipulation of enormous

block of information quicker than electronic equipment as GPU is

evolution of parallel multicore systems. GPU design hides latency

from computation.

 A CUDA application can run serial code on host i.e

{cpu|central process unit|CPU|C.P.U.|central

processor|processor|mainframe|electronic

equipment|hardware|computer hardware} whereas the parallel code

on GPU threads through multiple processing components. GPU

executes parallel portion as Kernel. Kernel could be a operate dead

on GPU for the asking of host(CPU) as associate degree array of

threads that executes in parallel through completely different

methods. Kernel is dead during a fashion of grid of block of threads.

Block is assortment of Threads and Grid is assortment of Blocks.

data processing TECHNIQUES

 data {processing} is that the process of discovering pat-

terns by analyzing info through differ-ent views. The discovered

information is then used for generating revenue. it's accustomed

notice correlations among numerous massive fields particularly

relative databases.

 data processing techniques includes association rule

mining, cluster etc. several algorithms are developed like K-Nearest

Neighbour classifier ,Nave Bayesian classifier, FP Growth, Apriori,

K-means for data processing functions.

Parallel knowledge Mining[2][3]

 once data processing tools or formula imple-mentations ar

done victimisation parallel computers, it results into high

performance computing which might analyze huge knowledge

briefly time. at the side of quicker computations, advanced

knowledge is analyzed which might be during a bigger amount and

thereby would offer improved results.

 numerous challenges ar to be taken into con-sideration for

parallel data processing like Com-munication , Synchronization and

knowledge De-composition. If ignored, these will degrade the

standard of information mining results. Dynamic load reconciliation

is that the necessary issue to be consid-ered as parallel info servers

has transient hundreds and multiple users.

The EMAC framework

 The numerical world atmosphere–chemistry model EMAC

(ECHAM/MESSy atmospherical Chemistry) could be a standard

world model that simulates the chemistry and dynamics of the layer

and layer. The model includes completely different submodels for

the calculation of concentrations within the atmosphere, their

interaction with the ocean and land surfaces, and therefore the

evolution influences. The EMAC model runs on many platforms,

however it's presently unsuitable for massively parallel computers

thanks to its measurability limitations and enormous memory needs

per core.

 The untidy submodel MECCA executes severally the gas-

phase chemical dynamics as a result of there aren't any dependencies

between physical neighbors and no limitations by vertical closeness

relations. during a typical configuration of untidy with a hundred

and fifty five species and 310 chemical reactions, MECCA takes

seventieth of the simulation execution time (Christou et al., 2016).

the proportion of execution time will go up to ninetieth in

simulations with additional advanced chemistry.

Currently, EMAC uses coarse-grained correspondence supported the

Message Passing Interface (MPI). However, the present approach

doesn't have the benefit of the accelerators that exist in fashionable

hybrid superior computing (HPC) architectures. This puts severe

limitations on current world climate time-length atmospherical

chemistry and pollution transport simulations in terms of

movableness, complexity, and determination.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908032 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 221

 EMAC uses the Kinetic Pre-processor (KPP) (Sandu and

Sander, 2006; Damian et al., 2002) ASCII text file general analysis

tool to formulate the mechanism. KPP integrates terribly economical

numerical analysis routines and mechanically generates algebraic

language and C code that computes the time evolution of chemical

species from a specification of the mechanism during a domain-

specific language.

 Taking a group of chemical reactions and their rate

coefficients as input, KPP generates code of the ensuing coupled

standard differential equations (ODEs). finding the lyric poem

system permits the temporal integration of the kinetic system.

potency is obtained by exploiting the scantiness structures of the

Jacobian matrix.

 The largest challenge to deal with within the application is

that the imbalance caused by the adjustive time-step measuring

instrument finding the differential equations that describe the

chemical equations computed. The varied strength at sunrise and

sunset together with concentrations of precursors and gases (such as

Nox and O3) ends up in chemical science reactions (mostly over

midlatitudes within the stratosphere) that heavily alter the stiffness

of the ODEs. as an example, Fig. 1a presents the accumulative range

of execution steps needed for the combination method for every

model column, presents the most distinction within the range of

steps between cells in every column. The distinction within the

range of steps within and between columns provides a sign of the

robust imbalance created between execution times of various

processes.

 The ECHAM atmospherical self-propelled circulation part

of EMAC solely scales up to or so a number of hundred cores

(Christou et al., 2016) thanks to the significant all-to-all

communication overhead of the spectral decomposition. At higher

levels of correspondence, at or on the far side or so a thousand cores,

the MECCA load imbalance thanks to the chemical science

additionally becomes a limiting issue.

GPU ACCELARATED DATABASES

 nowadays there area unit a embarrassment of widespread

and useful databases to settle on from whereas beginning a

contemporary direction project.

 of these databases offer exceptional func-tionality in

numerous fields like RDBMS/NoSQL, ACID properties,

Maintaining redundancy, protective dependencies, Providing

security, Providing an expensive and powerful source language and

then on.

 However, in todays era of similarity, a number of these

informations lack the necessity of providing similarity for execution

of database opera-tions.

 large similarity may be achieved if GPUs area unit

employed in conjunction with databases to ac-celerate the operations

and save precious time which can later be used for the other compu-

tation. There area unit a number of GPU accelerated informations

out there within the market that use the huge computation power of

the GPU for general pur-pose database operations and speed the ex-

ecution compared to ancient databases.

AUTOMATA PROCESSOR

 design

 The AP chip has 3 styles of useful parts - the

state transition component (STE), counters, and Boolean ele-ments

[5].The STE is that the central feature of the AP chip and is that the

component with the very best population density. associate STE

holds a set of 8-bit symbols via a DRAM column associated rep-

resents an NFA state, activated or deactivated, via associate one-bit

register. The AP uses a homogenous NFA representa-tion [5] for a

additional natural match to the hardware operation.

 In terms of Flynn’s taxonomy, the AP is thus a awfully un-

usual multiple-instruction, single-data (MISD) architecture:each

state (column) holds distinctive responses (instructions) to potential

inputs, and that they all respond in parallel to every in-put. Most

different industrial architectures area unit John von Neumann

architectures, e.g. single processor cores (SISD), multicore or

multiprocessors (MIMD), and GPUs (SIMD).

 The counter component counts the incidence of a pattern

described by the NFA connected thereto and activates different parts

or reports once a given threshold is reached. One counter will count

up to 212 − one. 2 or additional counters may be daisy-chained to

handle larger threshold. Counter parts area unit a scarce resource of

the AP chip, and thus become a vital limiting issue for the capability

of the SPM automaton planned during this work.

 Micron’s current generation AP-D480 boards use AP

chips designed on 50nm DRAM technology, running at associate

input sym-bol (8-bit) rate of 133 megacycle per second. A D480

chip has 192 blocks,with 256 STEs, four counters and twelve

Boolean parts per block [5]. we have a tendency to assume associate

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908032 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 222

AP board with thirty two AP chips, in order that all AP chips method

computer file stream in parallel.

Input and output

 The AP takes input streams of 8-bit symbols. Any STE

may be organized to simply accept the primary image within the

stream (called start-of-data mode, little “1” within the left-upper

corner of STE within the following automaton illustrations), to

simply accept each image within the input stream (called all-input

mode, little “∞” within the left-upper corner of STE within the

following illustrations) or to simply accept a logo solely upon

activation. Any sort of component on the AP chip may be organized

as a news component; one news element generates a one-bit signal

once it matches the input image.

 If any re-porting component reports on a specific cycle,

the chip can generate associate output vector that contains 1’s in

positions comparable to {the parts|the weather} that report and 0’s

for re-porting elements that don't report. Too frequent outputs can

cause AP stalls, thus minimizing output vectors is a vital thought for

performance improvement.

Programming and configuration

 The Micron’s AP SDK provides Automata

NetworkMarkup Language (ANML), associate XML-like language

for describing automata networks, also as C, Java and Python bind-

ing interfaces to explain automata networks, produce input streams,

analyse output and manage process tasks on the AP board. A

“macro” could be a instrumentation of automata for encapsulating a

given practicality, kind of like a perform or procedure in common

programming languages.

 Deploying automata onto the AP cloth involves 2 stages:

placement-and-routing compilation (PRC) and loading (con-

figuration) [1]. within the China stage, the AP compiler deduces the

simplest component layout and generates a binary version of the

automata network. within the cases of huge range of topologically

identical automata, macros or templates may be precompiled in

China stage and composed later [13]. This shortens China time, as a

result of solely alittle automata network among a macro must be

processed, then the board may be covered with as several of those

macros as work.

 A pre-compiled automata solely desires the loading stage.

The loading stage, that desires concerning fifty milliseconds for an

entire AP board [13], includes 2 steps: routing configu-ration /

reconfiguration that programs the connections, and therefore the

image set configuration/reconfiguration that writes the matching

rules for the STEs. The dynamical of STE rules solely involves the

second step of loading, that takes forty five mil-liseconds for an

entire AP board.

 The feature of quick partial reconfiguration play a key role

in a very fortunate AP imple-mentation of SPM: the quick image

replacement helps to affect the case that the overall set of candidate

patterns exceeds the AP board capacity; the fast routing recon-

figuration permits a quick switch from k to k + one level in a very

multiple-pass rule like GSP for sequence mining.

PGStrom : PostGre SQL

 PostGre SQL is one among the foremost widespread open

supply direction systems out there within the market. like every

ancient RDBMS system, it doesn't support GPU acceleration

however it's potential to feature GPU acceleration to the present

information. PG-Strom is a further extension for PostGre SQL

information that is meant to utilize NVidia CUDA GPUs large

similarity capability to perform intensive information operations.

PG-Strom uses JIT compiler to choose whether or not a question

may be with success paralleized and dead on GPU.

CONCLUSIONS

The paper focuses on the parallelization of information mining

techniques. for various data processing applications , GPU with

CUDA provides US advantages for parallelization. The opensource

PostgreSQL info is employed for this purpose. It took around a

hundred and twenty seconds for execution of 2 tables joined along

mistreatment this info. The results demonstrate the power of those

abstractions to scale and therefore the advantages of getting native

support for time-series graphs in distributed frameworks. whereas

we've extended our GoFFish framework to support TI-BSP, these

abstractions will be extended to different partition- and vertex-

centric programming framework too. The question execution time

magnified roughly by forty seconds anytime a replacement table was

joined. for 3 tables joined it took some a hundred and sixty sec , for

four 220 sec then on. so applications that used distributed envi-

ronment or supercomputers will be currently resolved employing a

single desktop having NVIDIA graph-ics card for parallel computing

usig CUDA. The AP-accelerated resolution alsooutperforms

PrefixSpan and SPADE on multicore electronic equipment byup to

300X and 30X. By parallelizing candidate generation, these

speedups area unit more improved to 452X and 49X. Even a lot of

performance enhancements will be achieved by hard-ware support to

reduce image replacement latency. The AP advantage will increase

with larger datasets, showing smart scaling properties for larger

datasets whereas the alternatives scale poorly.

REFERENCES

[1] Micron Automata Processor website, 2015.

http://www.micronautomata.com/documentation.

[2] C. C. Aggarwal and J. Han, editors. Frequent Pattern Min-

ing. Springer International Publishing, Cham, 2014.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In

Proc. ICDE’95, pages 3–14. IEEE, 1995.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908032 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 223

[4] S. Cong, J. Han, J. Hoeflinger, and D. Padua. A sampling-

based framework for parallel data mining. In Proc. PPoPP

’05. ACM, 2005.

[5] P. Dlugosch et al. An efficient and scalable semiconductor

architecture for parallel automata processing. IEEE TPDS,

25(12):3088–3098, 2014.

[6] W. Fang et al. Frequent itemset mining on graphics proces-

sors. In Proc. DaMoN ’09, 2009.

[7] P. Fournier-Viger et al. Spmf: A java open-source pat-

tern mining library. Journal of Machine Learning Research,

15:3569–3573, 2014.

[8] V. Guralnik and G. Karypis. Parallel tree-projection-based

sequence mining algorithms. Parallel Comput., 30(4):443–

472, Apr. 2004.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without

candidate generation. In Proc. SIGMOD ’00. ACM, 2000.

[10] K. Hryni´ow. Parallel pattern mining-application of gsp al-

gorithm for graphics processing units. In ICCC ’12, pages

233–236. IEEE, 2012.

[11] H. Noyes. Micron automata processor architecture: Recon-

figurable and massively parallel automata processing. In

Proc. of Fifth International Symposium on Highly-Efficient

Accelerators and Reconfigurable Technologies, 2014. Keynote

presentation.

[12] J. Pei et al. Mining sequential patterns by pattern-growth:

The prefixspan approach. IEEE Trans. on Knowl. and Data

Eng., 16(11):1424–1440, 2004.

[13] I. Roy and S. Aluru. Discovering motifs in biological se-

quences using the micron automata processor. IEEE/ACM

T COMPUT BI, 13(1):99–111, 2016.

[14] T. Shintani and M. Kitsuregawa. Mining algorithms for se-

quential patterns in parallel: Hash based approach. In Pro-

ceedings of the Second Pacific−Asia Conference on Knowl-

edge Discovery and Data mining, pages 283–294, 1998.

[15] R. Srikant and R. Agrawal. Mining sequential patterns: Gen-

eralizations and performance improvements. In Proc. EDBT

’96, 1996.

[16] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the

dynamics of the news cycle,” in Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM,

2009, pp. 497–506.

[17] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning

about a Highly Connected World. Cambridge University Press, 2010.

[18] Y. Simmhan, C. Wickramaarachchi, A. Kumbhare, M. Frincu, S.

Nagarkar, S. Ravi, C. Raghavendra, and V. Prasanna, “Scalable analytics

over distributed time-series graphs using goffish,” arXiv preprint

arXiv:1406.5975, 2014.

[19] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, Boost Graph Library: User

Guide and Reference Manual, The. Pearson Education, 2001.

[20] S. J. Plimpton and K. D. Devine, “Mapreduce in mpi for large-scale

graph algorithms,” Parallel Computing, vol. 37, no. 9, pp. 610–632, 2011.

[21] P. Harish and P. Narayanan, “Accelerating large graph algorithms on the

gpu using cuda,” in High performance computing–HiPC 2007. Springer,

2007, pp. 197–208.

[22] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” CACM, vol. 51, no. 1, 2008.

[23] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec,

“Hadi: Mining radii of large graphs,” TKDD, vol. 5, 2011.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “pregel: a system for large-scale graph processing,” in

Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data. ACM, 2010, pp. 135–146.

[25] L. G. Valiant, “A bridging model for parallel computation,” CACM, vol.

33, no. 8, 1990.

http://www.jetir.org/

