
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 254

S

AUTOMATION FRAMEWORK FOR

SOFTWARE VULNERABILITY

EXPLOITABILITY ASSESSMENT

Bagri Gupta

Information Technology Information Technology

IGDTUW IGDTUW

Delhi, India Delhi, India.

Abstract—Software has become an integral part of

every industry and organization. Due to improvement in

technology and lack of expertise in coding techniques,

software vulnerabilities are increasing day-by-day in the

software development sector. The time gap between the

identification of the vulnerabilities and their automated

exploit attack is decreasing. This gives rise to the need

for detection and prevention of security risks and devel-

opment of secure software. Earlier the security risk is

identified and corrected the better it is. Developers needs

a framework which can report the security flaws in their

system and reduce the chances of exploitation of these

flaws by some malicious user. Common Vector Scoring

System (CVSS) is a De facto metrics system used to assess

the exploitability of vulnerabilities. CVSS exploitability

measures use subjective values based on the views of

experts. It considers mainly two factors, Access Vector(AV)

and Authentication (AU). CVSS does not specify on what

basis the third-factor Access Complexity (AC) is measured,

whether or not it considers software properties. Our

objective is to come up with a framework that automates

the process of identifying vulnerabilities using software

structural properties. These properties could be attack

entry points, vulnerability locations, presence of dangerous

system calls, and reachability analysis. This framework has

been tested on two open source softwares - Apache HTTP

server and Mozilla Firefox.

Index Terms—Structural Severity, Vulnerabilities,

Reachability, Entry points

I. INTRODUCTION

OFTWARE vulnerability is a defect in the soft-

ware construction that can be exploited by an

attacker to get some privileges in the system. The

least damaging software vulnerability is the one that

can never be exploited as no software is ideally

vulnerability proof. The earlier the software vulner-

abilities are detected the better it is. It is necessary

to audit the softwares for defects and remove them

before attackers discover and exploit them. Open

source softwares have an upper hand in this case

as they let anyone to audit the source code and

provide any enhancements or report the bugs in it.

Attackers can break into any system, provided they

have enough time, knowledge and resources. No

security technology or procedure can guarantee the

safety of a system from intrusion. Many probable

attacks can be avoided from happening by adopting

proper coding practices and ensuring less number

of bugs. Most security consultants agree upon the

standard security model called as CIA, or Confi-

dentiality, Integrity, and Availability. Vulnerability

assessment is nothing more than an internal audit

of the system and network security; resulting in the

evaluation of CIA security standards. Vulnerability

assessment is a process that involves sequential

steps to be followed. If vulnerability assessment

of a house is done, each door and window of the

house is checked if they are closed and secured.

Similarly, software systems are scanned for entry

points. First, we gather the relevant information

about the target system and resources. This is known

as reconnaissance phase. Second, we look for the

possible vulnerabilities in the system. Third, comes

the reporting phase where the severity of each

vulnerability is leveled with a low(L), medium(M),

or high(H) grade on the basis of initial results.

A. Problem Description

There exist a lot of vulnerabilities that are not

reported publicly. We need a measure to detect

the vulnerabilities that remain unreported so that

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 255

they can be handled before they are exploited. A

framework that systematically checks the source

code of the software and points to the location of

the flaw in code so that timely steps can be taken to

rectify it. There exist many challenges to assess the

software vulnerabilities. The structural properties of

the source code can reveal a lot about the potential

security defects in the software.

1) Vulnerable Function Location : Any normal

software contains n number function definition and

functional calls. Functions are the basic building

blocks of the any software. Here, we have con-

sidered vulnerabilities at functional level. One of

the major challenges in vulnerability detection is

to detect the location of the vulnerable function.

It may happen that a function defined in one file

may be used in some other file or a function

is defined multiple times in different files. What

metrics should be considered to mark a location in

the source code as vulnerable?

2) Exploitibility of a vulnerability : Not all the

detected vulnerabilities are exploitable. There exist

many flaws in the source code but the probability

of that defect to be exploited by any attacker de-

pends on many factors. It depends upon a number

of factors. To find the metrics that classifies the

exploitibility of these vulnerabilities with low false

positive rate and to derive these metrics objectively

from the source code is a challenge.

3) Impact Level: Not all exploitable vulnerabil-

ities have the same impact. A defect in the GUI

of a software will have less impact then a defect

in the main business functionality of a software.

What factors can be used to decide the impact level

of a vulnerability in the source code? Existence of

dangerous system call can be used to decide the

impact level as higher the privilege an attacker has

the more damage it can cause. DSCs can be used

by an attacker to increase the privilege it enjoys.

B. Research Objectives

The main objective of this research is to address

the above mentioned problems with less human

intervention. We mainly focus on automating the

way to tackle these problems. Rather viewing and

mapping the publicly reported vulnerabilities we try

automate this process. The metrics used to detect the

exploitability of a vulnerability can also be derived

from the source code objectively. The metrics used

for this purpose is attack surface metrics. For any

attacker to attack a vulnerability in the software, it

requires an entry point and if an entry point exists,

it is important to have the knowledge of whether it

is connected to the vulnerable function that is under

consideration. To evaluate the impact of exploit, we

consider the existence of dangerous system calls in

the vulnerable function. Dangerous system call can

be used by the attacker to escalate its privileges and

hence can cause a greater impact. This research is

based and performed on the software written in C

language only.

The software selected as our case study to imple-

ment the stated solution are - Apache HTTP server

and Mozilla Firefox web browser. The reason to

select these software is the availability of source

code, code diversity, size of the software, large

publicly reported vulnerabilities database and bug

tracking.

II. METHODOLOGY

Our aim is to build an automated framework

that can help in assessment of vulnerabilities using

software structural properties. The approach for this

purpose is divided in major four steps. First, to de-

tect vulnerable location. Second, to find entry points

in source code. Third, to check the reachability of

the vulnerable location from the entry point and

lastly, checking the existence of any DSCs in the

entry point function. The outcome of these steps is

vulnerabilities classified as - reachable (R) from an

attack entry point with dangerous system call(DSC),

reachable(R) from attack entry point without dan-

gerous system call (NDSC) or not reachable(NR).

This study of Software Vulnerability Assessment

focuses on reducing subjectivity in assessing vulner-

ability risk. We have tried to reduce manual effort

as much as possible using python scripts and tools.

Figure 1 shows an overview of our approach for

assessing vulnerability exploitability risk.

A. Identify Vulnerable location

There can be many different ways to do this step

- Using prediction model based on software metrics

or by looking at the report in the vulnerability

database such as NVD or using static analysis tool.

According to Shin et al. [2013] using software

metrics based predictions model resulted in a preci-

sion value of only 11%. Mapping of the vulnerable

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 256

Fig. 1: Overview of the approach

location using vulnerability database as done by

Younis et al. [2015] takes a lot of human efforts and

time therefore it is not an efficient approach. Using

static code analyzer was a convincing approach as

it solves both the problems. Although, false positive

rate of static analyzers is a problem.

Static code analysis is a technique to find possible

bugs in the source code of a software without

executing it. We are automating this process using

FlawFinder [13] and a Python script. The reason for

using static analysis tool is that it will list out all

the reported and unreported vulnerabilities in the

software. Since, many software vulnerabilities are

not reported in the publicly available databases like

NVD [10], EDB, etc. static code analysis will let

the user find the unreported vulnerabilities as well.

FlawFinder uses CWE [11] database to locate vul-

nerabilities in the code. It is a community-developed

list of common software security weaknesses. It

serves as a common language, a measuring stick

for software security tools, and as a baseline for

weakness identification, mitigation, and prevention

efforts. CWE has defined strategic classes of vulner-

abilities. A class is a CWE entry that contains a set

of other entries that share a common characteristic.

Within classes there exist more specific base level

weaknesses with sufficient description for detection

and prevention.

Flawfinder [13] is an officially CWE compatible

tool. Flawfinder works by using a built-in database

of C/C++ functions with well-known problems,

such as buffer overflow risks (e.g., strcpy(), str-

cat(), gets()), format string problems ([v][f]printf(),

[v]snprintf()), race conditions (such as access(),

chown(), chgrp(), chmod(), tmpfile()), potential

shell meta character dangers (most of the exec()

family, system(), popen()), and poor random number

acquisition (such as random()). Python script is used

find the function defined in the source code inside

which the vulnerable C/C++ functions as discussed

above are called. Following steps are performed to

identify the vulnerable functions.

• Obtain the source code of an open source

software

• Using static analysis tool (FlawFinder), obtain

all the software security weaknesses in CSV

format.

• Data preprocessing using Python

• Find the calling functions of the vulnerable

function using a python script.

The outcome of the above steps is a list of vulnera-

ble locations along with their details of file path, line

number, CWE ID, category and calling function.

B. Find Entry Points

Entry point function are the C/C++ library func-

tions used to send input to the software environment.

They are the resources used the attacker to get inside

system. In this study we have only considered entry

points as the main target of the malicious users. The

entry points considered here are the one proposed

by Manadhata and Wing [2011]. An entry point

may be direct or indirect. Direct entry point directly

calls the vulnerable function and indirect entry point

calls another function which calls the vulnerable

function.

We have used a python script to scan the source

code for potential entry points for example - read,

get, getline etc using a dictionary of the attack

entry point functions. The dictionary contains all

the well-known C/C++ input library function. Next,

we find the calling functions using a python script

as done previously in finding vulnerable locations.

Following are the steps followed to find the entry

points from the source code of the software.

• Using a dictionary of potential attack entry

points (C/C++ library functions), find the list

of all possible entry points in the source code.

• Find the calling functions of the entry point

functions using a python script.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 257

The result of this step is the list of entry point

locations along with their details of file path, line

number, and function name.

C. Dangerous system call

Dangerous system calls are the calls to the func-

tions which may be used by the attacker for es-

calating its privileges of the compromised system.

We have used dangerous system calls as an impact

metrics of any vulnerability. These system calls have

been identified and classified into four levels of

threats. Level one allows full control of the system,

while level two is used for denial-of-service attack.

On the other hand, level three is used for disrupting

the invoking process and level four is considered

harmless. There are 22 system calls of the threat

level one and 32 of the threat level two. This

classification of the DSCs is proposed by Massimo

et al. [2002] . We have used a python script to find

all the dangerous system calls in the source code

using a dictionary of the DSCs and then classified

them into the above mentioned four classes.

• Using dictionary of potential DSCs, find the list

of all possible DSCs used in the source code.

Outcome of this step is a list of DSC locations along

with their details of file path, line number, level, and

function name.

D. Reachability analysis

Once all the vulnerable functions and entry points

are identified, the relationship between them is

found using a called-by graph. This graph is similar

to a dependency graph which captures all func-

tions that call the vulnerable function directly or

indirectly. This is done using Understand tool[13]

Python API. For each function in the called-by

verify whether it is an entry point or not. If yes

then the vulnerable function is reachable else not-

reachable. Also we simultaneously check the exis-

tence of any Dangerous System Calls in the entry

point functions. Following steps are performed to

do the reachability analysis.

• For each vulnerable function, generate a list of

Called-By functions which we usually see in

the dependency graphs.

• For every Called-By function, verify whether

it is reachable through an entry point or not.

• For the entry point functions, verify whether it

contains any Dangerous System Call or not.

The outcome of this step is the classifying vulnera-

bilities as reachable or not reachable from an attack

entry point.

E. Assessment

It is considered that if a vulnerability is not reach-

able, then it has Low severity despite of the presence

or absence of any DSCs. But if it is reachable, then

it has Medium severity in the absence of a DSC and

High exploitability risk in the presence of a DSC.

After following all the above steps, we will have our

desired dataset. Using this dataset, we can compare

the outcome using publicly available vulnerability

database (NVD) and generate a performance report.

The vulnerabilities in the dataset will be classified

as one of the following:

• Reachable with Dangerous System Calls

(High)

• Reachable with No Dangerous System Calls

(Medium)

• Not reachable (Low)

III. EVALUATIONS AND RESULTS

This section presents the results of each step

of the methodology. For assessing software vul-

nerability exploitability is based on the steps that

have been discussed in the previous section. All the

steps have been followed for both Apache HTTP

server and Mozilla Firefox web server but we are

only including the detailed results of Apache HTTP

server.

A. Identify Vulnerable location

The vulnerability location can be found by look-

ing at the report in the vulnerability database or

by using a static code analyzer such as Splint or

FlawFinder. Finding vulnerability location by look-

ing at the reports in the vulnerability database was

implemented by Younis et al [2015]. But finding

vulnerabilities by mapping reports from vulnera-

bility database poses several problems. Firstly, it

involves a lot of manual work to identify each

vulnerability, finding its CVE-ID and then looking

in the database to locate that vulnerability. Secondly,

there exist many software that do not maintain

their vulnerability reports on the public platform

for the users. Thirdly, considering only the publicly

reported vulnerabilities may leave many unreported

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 258

TABLE I: Flawfinder Result Summary

vulnerabilities unnoticed. Our main purpose to un-

dergo this study is to build a framework using

which can be used during the development phase of

any software to detect the week points in the code

and take actions to remove those vulnerabilities

according to their priority. We have used a static

code analyzer Flawfinder to detect the vulnerable

locations from the source code. Flawfinder uses

CWE database to the find the vulnerable location

the code. Flawfinder reported 1576 vulnerabilities

in Apache HTTP server. Using a python script

we find the functions defined in the source code

inside which these vulnerabilities exists.We have

made use of the Understand tool python API and

Linux awk command to find the calling functions.

Table 1 shows a summary of the results of static

code analyzer with the category of the vulnerability

and total number of the files in the source code

having that kind of vulnerability. Figure 2 shows

the distribution of vulnerabilities according to the

CWE number. CWE-126 which belong to the buffer

category is present in maximum number of files in

the source code of Apache HTTP server.

B. Find attack entry points

Entry point is any library function used to get

some input from external environment. To find these

entry point function we used a python script that

analyzes the source code and performs a keyword

search for C/C++ input library functions such as

read, gets, getline etc. After getting the attack entry

points, we find the function defined in the code in-

side which that library function was actually called

(i.e. the calling function). This is required later for

mapping the entry points with the vulnerable func-

tions for the reachability analysis part. For this we

used a python script and Linux awk command. Table

2 shows the summary of this step with entry point

Fig. 2: Distribution of Vulnerabilities in Apache

HTTP server according to CWE

TABLE II: Summary of Entry Point Results

Entry point Count of Files

// Mapping with CWE ID in the table read 707

send 187

socket 604

fgets 5

fopen 22

fputc 4

fread 4

freopen 1

fwrite 22

getc 55

gethostbyname 5

getline 61

gets 213

rename 49

scanf 25

setbuf 1

sscanf 23

Grand Total 1988

functions and the count of the files containing that

attack entry points. Apache HTTP server contains

in total 1988 files containing entry point functions

and read has been used maximum number of times.

C. Reachability Analysis

Reachability analysis means the checking of the

call relationships between the entry points and the

vulnerability functions. We have made use of Un-

derstand tool python API to perform reachability

analysis on all the mapped vulnerable functions.

Figure 3 shows the graph image generated manually

using the Understand tool GUI. In order to check

whether the vulnerable function is reachable from

CWE Category Count of File

access 3

buffer 1260

crypto 4

format 29

integer 247

misc 17

race 6

random 3

shell 7

Grand Total 1576

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 259

Fig. 3: Called-by graph generated by Understand

tool for ap get mime headers core function

an entry point, we had to verify whether any of

the calling function (direct or indirect) has an entry

point or not. The figure provided depicts just a

small example. In figure 3 the called-by graph

of function ap get mime header core contains an

entry point function named register hooks(). regis-

ter hooks is a function defined in the source code

and it contains C/C++ library function such as read,

gets etc. and it clear from the called-by graph

that register hooks is indirectly reachable from

ap get mime header core. Hence, it is a vulnerable

function reachable from an attack entry point. The

called-by graph of this function is small but there

are many functions with more than 10 functional

invocations as well as levels. Hence, it is very time

consuming to manually generate called-by graph of

every vulnerable function and check the presence of

entry points in it.

To generate these graphs automatically for all the

vulnerable functions in a single run and simulta-

neously check the presence of entry points in it we

used a python script which does all this efficiently in

a single run and classifies each vulnerable function

as reachable(R) or not-reachable(NR). This saves

both time and efforts. Figure 4 is the textual format

of the same graph in Figure 3 generated using

python API of Understand tool. We made use of

this textual format graph to check the reachability

of the vulnerable functions.

Fig. 4: Textual Called-by graph generated using

Understand Python API for

ap get mime headers core function

TABLE III: Summary of threat level of DSCs

D. Dangerous system calls

Existence of DSCs is used as an estimator of

the impact of exploitation. DSCs are used by the

attacker to enhance its privileges and create a larger

impact. Entry points are the main target of the

attacker so we check the presence of DSCs in entry

point functions. A python script is employed to ver-

ify the presence of DSCs which uses a dictionary of

predefined dangerous system calls used to escalate

the privileges of the user such as getpid, chmod

etc. The script also classifies the DSCs into one the

four threat levels defined in table 5. If there is no

DSC present in the file, then the output of threat

level column is labeled as NDSC which means No

Dangerous System Call. Table 3 shows the summary

of the output of the python script.

E. Assessment of the vulnerabilities

The vulnerabilities are classified qualitatively on

the basis of their exploitability risk as one of the

following:

• High - Reachable with Dangerous System Calls

• Medium - Reachable with No Dangerous Sys-

tem Calls

• Low - Not reachable

The output also consists of metrics other than the

specified ones. The callsCount metrics gives the

count of number of function calls made by the

vulnerable function directly or indirectly and the

Threat Level Count

Denial of Service 1223

Full System Control 238

NDSC 125

Grand Total 1586

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 260

Fig. 5: Sample output with structural severity

Fig. 6: NVD Description for CVE-2016-8743

callbyCount metrics gives the count of number of

unique functions calling that function directly or

indirectly. We will discuss it later in the results

whether this metrics had any effect on the struc-

tural severity. The other metrics- epCount, epDSC,

epNoDSC, and ExploitRisk tells the number of

entry points, number of entry points having DSC,

number of entry points having no DSC and the

structural severity respectively. Figure 5 is a sample

of the output we got after the final assessment. The

complete result was quite large so we have included

just the sample of it.

IV. OBSERVATIONS AND PERFORMANCE

EVALUATION

To compare our results of the automation frame-

work which is a top-down alternative of the bottom-

up approach proposed by Younis et al [2015] . Their

results were based on the collection of publicly

reported vulnerabilities from NVD [10] while our

current result is based on the complete vulnerability

information using CWE [12]. Note that the vulnera-

bilities that we collected using NVD are only those

list of CVEs that are directly influenced by the user

input. Since there are various types of vulnerabilities

caused due to different reasons, it was essential to

select a subset of those vulnerabilities which were

desired for the comparison of our results.

Using this incomplete vulnerability information,

we can identify that this vulnerability is located in

the mod-proxy module in the source code of Apache

HTTP server. We used this detail to map the vul-

nerabilities identified by our automated framework.

Note that the complexity for this CVE-2016-8743

provided by the National Vulnerability Database is

Low whereas in our results, we found a total of

nine vulnerable functions in the same module, out

of which only six have Low structural severity and

the rest three have High structural severity.

It was observed that out of 50 vulnerabilities in

Apache HTTP server 2.4.x, only 35 were directly

influenced by the user input out of which we were

able to match 32 CVEs based on their description

of the vulnerable module. These 32 vulnerable mod-

ules covered 138 vulnerable functions present in it

specifying the structural severity for each function.

Apart from that, there were 487 other vulnerable

functions identified by our approach in which 193

were of High structural severity.

To evaluate the performance, we have used the

concept of confusion metrics. It is a good tool

to analyze the performance of a binary classifier.

Here, the files are classified as vulnerable and non-

vulnerable. Total number of files in Apache HTTP

source code were equal to 348 out of which 137 files

were classified as vulnerable in our result and only

35 files were present in the reported vulnerabilities.

The performance measures derived from confusion

metrics are:

RECALL - percentage of vulnerable files detected

in the software.

PRECISION - the percentage of files which are

vulnerable in the reported database as well as

predicted to be vulnerable by the framework.

ACCURACY - the percentage of files that are cor-

rectly classified.

For Apache HTTP 2.4.x case study:

Precision=(TP/(TP+FP)) = 17.4% [Note that we

have used the static code analyzer to fetch the

complete vulnerability details which include

the unreported vulnerabilities as well. Since the

comparison has been done with the publicly

reported vulnerabilities only and there is not

sufficient data for efficient comparison, hence

it was expected to have high false positive rate

and therefore, low precision value.]

· Recall=(TP/(TP+FN)) = 91.43%

· Accuracy=((TP+TN)/(TP+TN+FP+FN)) = 55.2%

·

·

·

·

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908190 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 261

TABLE IV: Confusion Matrix for Case Study:

Apache HTTP 2.4.x

Actual vs Predicted Vulnerable File Non-Vulnerable File

Vulnerable File 32 4

Non-Vulnerable File 152 161

TABLE V: Confusion Matrix for Case Study:

Mozilla Firefox 53.0.3

Actual vs Predicted Vulnerable File Non-Vulnerable File

Vulnerable File 39 0

Non-Vulnerable File 123 3403

We have also implemented the same approach

in another open source software - Mozilla Firefox

53.0.3.

Precision = (TP/(TP+FP)) = 24.1%

Recall = (TP/(TP+FN)) = 100% [Mozilla Fire-

fox has private vulnerability advisory and has

provided more incomplete description than the

publicly available reported vulnerabilities in

NVD. There were total 39 CVEs in their advi-

sory and total 162 distinct vulnerable files were

found in our results. Due to the incomplete

description of vulnerabilities, we have assumed

that the actual vulnerable files have been pre-

dicted as vulnerable]

Accuracy = ((TP+TN)/(TP+TN+FP+FN)) =

96.5%

V. CONCLUSION AND FUTURE WORK

The goal to build an automation framework for

all the steps of approach proposed by Younis et al

[2015] to assess the structural severity of vulnerabil-

ities has been achieved in this thesis. This will help

in analyzing the results for other C software which

do or do not have publicly available description

of vulnerabilities. Moreover, this framework can be

extended to calculate other structural metrics such as

NodeRank proposed by Bhattacharya et al [2012] as

an estimator of the vulnerability impact and penetra-

tion depth of a vulnerable location i.e. the minimum

number of invocations required from an entry point

with DSC to call the vulnerable location. Reachabil-

ity is the major contributor for measuring the risk of

exploitation of an vulnerability. However, this is not

always true that a vulnerability that is reachable is

exploitable. There are number of factors upon which

the exploitability of a reachable vulnerability may

depend for example the number function invokes

the attacker has to make to reach the vulnerable

location(depth) or authentication mechanism used

in the software. These metrics may be added to

the final result and evaluate their impact on the

exploitability prediction.

Another improvement that can be made in this

study is the impact factor. Here, we have only

considered DSCs as the measure of the vulnerability

exploitability impact. Many other factors such as

business factor(e.g., monetary loss) may be consid-

ered.

There exist many vulnerabilities that are ex-

ploitable without the presence of a entry point.

Work can be done to be incorporate these kind of

vulnerabilities in the study.

REFERENCES

[1] Red Hat Documentation

[2] Awad Younis, Yashwant K. Malaiya, Indrajit Ray, Assessing

vulnerability exploitability risk using software properties, in

Software Quality Journal, volume 24, Issue 1, March [2015].

[3] James Walden, Jeff Stuckman, Riccardo Scandariato, Predicting

Vulnerable Software Components via Text Mining, in IEEE

Transactions on Software Engineering, Volume: 40, Issue: 10,

[2014].

[4] Manadhata, Wing. An attack surface metric. The IEEE Transac-

tions on Software Engineering, 37(3), 371386.[2011].

[5] Bhattacharya, P., Iliofotou, M., Neamtiu, I., & Faloutsos, M.

(2012). Graph-based analysis and prediction for software evo-

lution. In: Proceedings of the 34th international conference on

software engineering (ICSE 12) (pp. 419429). ISBN: 978-1-

4673-1067-3.

[6] Willy Jimenez, Amel Mammar, Ana Cavalli, Software Vulnera-

bilities, Prevention and Detection Methods: A Review, Proceed-

ings SEC-MDA 2009: Security in Model Driven Architecture

pp.1 - 11, [2010]

[7] Sam Ransbotham, An Empirical Analysis of Exploitation At-

tempts based on Vulnerabilities in Open Source Software, in

workshop on economies of information security, June [2010]

[8] Yonghee SHIN, Andrew MENEELY, Laurie WILLIAMS and

Jason OSBORNE ,Evaluating Complexity, Code Churn, and De-

veloper Activity Metrics as Indicators of Software Vulnerabilities

[2010]

[9] Sara Moshtari, Ashkan Sami, and Mahdi Azimi. 2013. Using

complexity metrics to improve software security. Comput. Fraud

Secur. 2013, 5 (2013), 817.[2013].

[10] Massimo, B., Gabrielli, E., & Mancini, L. [2002]. Remus: A

security-enhanced operating system. ACM Transactions on

Information and System Security (TISSEC), 5(1), 3661.

[11] National Vulnerability Database (2018). http://www.nvd.nist.

gov/. Accessed January 2018.

[12] Scientic Toolworks Understand. (2017). http://www.scitools.

com/.

[13] Common Weakness Enumeration. Accessed in January 2018.

http://cwe.mitre.org/

[14] FlawFinder https://www.dwheeler.com/flawfinder/.

[15] Common Vulnerability Enumeration (CVE). Accessed in March

2018. https://cve.mitre.org/.

·
·

·

http://www.jetir.org/
https://dl.acm.org/citation.cfm?id=2890276
https://www.semanticscholar.org/paper/Predicting-Vulnerable-Components-via-Text-Mining-or-Tang-Zhao/f9dacb7556e70b0c8c8a053d1c1933b7594a6c0c
https://ieeexplore.ieee.org/document/5482589/
https://hal.archives-ouvertes.fr/hal-01367445
http://samransbotham.com/sites/default/files/Ransbotham_OpenSourceExploitationDiffusion_WEIS_2010.pdf
http://ieeexplore.ieee.org/iel5/32/4359463/05560680.pdf?arnumber=5560680
https://www.sciencedirect.com/science/article/pii/S1361372313700459
http://dx.doi.org/10.1145/504909.504911
http://www.nvd.nist.gov/
http://www.nvd.nist.gov/
http://www.nvd.nist.gov/
http://www.scitools.com/
http://www.scitools.com/
http://www.scitools.com/
http://cwe.mitre.org/
https://www.dwheeler.com/flawfinder/
https://cve.mitre.org/

