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ABSTRACT 

The flow of a visco-elastic fluid has been analysed induced by the torsional oscillations of a disk about an 

axis normal to its plane. The case of high frequency has been considered in this problem. The structure of 

outer boundary layer has been examined matching inner and outer solutions. Kármán-Pohlhausen method has 

been applied while integrating the equations. The behaviour of different flow parameters has been analysed 

with table. 

1. INTRODUCTION: 

The periodical movement of a shaft is called Torsional oscillations. It takes very important part in the studies 

of fluid mechanics and power transmission system. Theodore Von Kármán 1, the Hungarian-American 

mathematician and Aero-dynamic engineer did some pioneering works on fluid flows due to rotations of 

disks. This followed by numerous other studies with extension of these ideas to time dependent rotator 

oscillations of one or two disks including works of Benney2, Rosenblat3 and so on. Rao and 

Kasiviswanath 4 have studied the flow and heat transfer due to torsional oscillations of two disks at 

different speeds. Puri 5 studied the unsteady flow of an elastic-viscous fluid past an infinite plate. Das, 

Maji, Jana and Seth 6 studied flow induced  by torsional oscillations of a disk in a rotating visco-elastic 

fluid. Shrivastava 7considered the torsional oscillations of a second-order fluid when the fluid is of an 

infinite extent as well as the case when it is bounded by another stationary plate by expanding the velocity 

components and the pressure in powers of the amplitude of oscillation of the plate. 

In the present paper we are going to investigate the behaviour of the flow parameters when the flow is caused 

by the torsional oscillation of a disk, the axis of rotation of the disk being normal to the plane of the disk and 

the frequency of oscillation being high. We have taken the visco-elastic fluid with short memories in our 

investigation. The constitutive equation of the fluid considered in this problem is 

𝜎𝑖𝑗 = −𝑝𝑔𝑖𝑗 + 2휂0𝑒𝑖𝑗 − 2𝐶
𝛿

𝛿𝑡
𝑒𝑖𝑗    

Where 

𝑒𝑖𝑗 = 𝑣𝑖,𝑗 + 𝑣𝑗,𝑖 , 휂0  is limiting viscosity of small rate of shear, 𝑔𝑖𝑗  is the metric tensor with respect to fixed 

coordinate system  𝑥𝑖  , 𝐶 is the visco-elastic parameter, 𝑣𝑖  is the velocity vector and 
𝛿

𝛿𝑡
  denotes the 

convected derivative of a tensor quantity. 

2. EQUATION: 

Considering the geometrical configuration of the problem we consider the cylindrical polar coordinates 

(𝑟, 휃, 𝑧) with axis of rotation being the initial line, the disk being on the plane 𝑧 = 0 and the liquid occupying 

the space 𝑧 > 0  . The boundary conditions of the problem will be as 

   𝑢 = 0, 𝑣 = 𝑟𝑊𝑐𝑜𝑠(𝜔𝑡) , 𝑤 = 0      𝑎𝑡 𝑧 = 0  
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   𝑢 → 0, 𝑣 → 0.                                       𝑎𝑠 𝑧 → ∞   ,                        (2.i)       

 

Where 𝑢, 𝑣, 𝑤  are velocity components, 𝜔  and 𝑊  are the frequency and angular speed of the oscillating 

motion of the disk respectively. 

The equations of motion in radial and transverse directions are as follows. 

𝜕2𝐹

𝜕𝑥𝜕𝑦
+ 𝜖 [(

𝜕𝐹

𝜕𝑥
)

2

− 2𝐹
𝜕2𝐹

𝜕𝑥2 − 𝐺2] =
1

2

𝜕3𝐹

𝜕𝑥3 − 𝐾 [
𝜕4𝐹

𝜕𝑥3𝜕𝑦
− 𝜖 {2𝐹

𝜕4𝐹

𝜕𝑥4 − 4
𝜕𝐹

𝜕𝑥

𝜕3𝐹

𝜕𝑥3 + (
𝜕2𝐹

𝜕𝑥2)
2

− 𝐺
𝜕2𝐺

𝜕𝑥2 − 3 (
𝜕𝐺

𝜕𝑥
)

2

}]                                      

(2.ii) 

𝜕𝐺

𝜕𝑥
+ 2𝜖 (

𝜕𝐹

𝜕𝑥
𝐺 − 𝐹

𝜕𝐺

𝜕𝑥
) =

1

2

𝜕2𝐺

𝜕𝑥2 − 𝐾 [
𝜕3𝐺

𝜕𝑥2 𝜕𝑦
− 𝜖 {2𝐹

𝜕3𝐺

𝜕𝑥3 +
𝜕3𝐹

𝜕𝑥3 𝐺 − 2
𝜕𝐹

𝜕𝑥

𝜕2𝐺

𝜕𝑥2 + 4
𝜕2𝐹

𝜕𝑥2

𝜕𝐺

𝜕𝑥
}]       (2.iii)        

 

Where, 𝑢 = 𝑟𝑊
𝜕𝐹

𝜕𝑥
,    𝑣 = 𝑟𝑊𝐺(𝑥, 𝑦),    𝑤 = −2𝑊 (

2𝜗1

𝜔
)

1

2
𝐹(𝑥, 𝑦)                                 (2.iv) 

               𝑥 = 𝑧√
𝜔

2𝜗1
   ,    𝑦 = 𝜔𝑡,     𝜗1 =

2𝜂0

𝜌
 ,         

               𝐾 =
∁𝑊

𝜂0
     and  𝜖 =  

𝑊

𝜔
 

The boundary conditions now becomes  

                𝐹 =  
𝜕𝐹

𝜕𝑥
= 0, 𝐺 = cos 𝑦         at   𝑥 = 0 

               
𝜕𝐹

𝜕𝑥
 , 𝐺 →   0                               at   𝑥 →  ∞                                                              (2.v) 

 

             3. Solution: 

 

Let us consider the high frequency case i.e. 𝜖 ≪ 1. We substitute the following series  

𝐹(𝑥, 𝑦) =  ∑ 𝜖𝑖𝐹𝑖(𝑥, 𝑦)∞
𝑖=0                                                                                                      (3.i) 

𝐺(𝑥, 𝑦) =  ∑ 𝜖𝑖∞
𝑖=0 𝐺𝑖 (𝑥, 𝑦)                                                                                               (3.ii) 

 

into the equations (2.ii) and (2.iii).  

Equating the coefficients of like powers of 𝜖  , we obtain the following partial differential equations 

𝐹0𝑥𝑦
=  

1

2
𝐹0𝑥𝑥𝑥

−  𝐾𝐹0𝑥𝑥𝑥𝑦
  ,                                                                                            (3.iii) 
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𝐹1𝑥𝑦
+  (𝐹0𝑥

)
2

−  2𝐹0 𝐹0𝑥𝑥
− 𝐺0

2 =  
1

2
𝐹1𝑥𝑥𝑥

−  𝐾 [𝐹1𝑥𝑥𝑥𝑦
−  2𝐹0𝐹0𝑥𝑥𝑥𝑥

−  (𝐹0𝑥𝑥
)

2
] +  4𝐹0𝑥

𝐹0𝑥𝑥𝑥
+

 𝐺0𝐺0𝑥𝑥
+  3 (𝐺0𝑥

)
2
 ,                                                                               (3.iv) 

 

etc.  

𝐺0𝑦
=  

1

2
 𝐺0𝑥𝑥

−  𝐾 𝐺0𝑥𝑥𝑦
                                                                                               (3.v) 

 

𝐺1𝑦
+  2 [𝐹0𝑥

𝐺0 −  𝐹0 𝐺0𝑥
] =  

1

2
 𝐺1𝑥𝑥

−  𝐾 [𝐺1𝑥𝑥𝑦
− 2𝐹0 𝐺0𝑥𝑥𝑥

+ 𝐹0 𝐺0𝑥𝑥
− 4𝐹0𝑥𝑥

 𝐺0𝑥
] , 

 

                                                                                                                                              (3.vi) 

etc.  

In view of the substitutions (3.i) and (3.ii), the boundary conditions (2.v) take the suitable form as 

𝐹𝑖 = 𝐹𝑖𝑥
= 0, 𝐺0 = cos 𝑦 , 𝐺𝑖+1 = 0  at 𝑥 = 0,                for 𝑖 = 0,1,2, …   

          𝐹𝑖𝑥
 → 0, 𝐺𝑖  → 0                           as  → ∞ ,            for 𝑖 = 0,1,2, …               (3.vii) 

 

Solutions of the equations (3.iii) to (3.vi) have been obtained subject to the boundary conditions (3.vii) as 

𝐹0  (𝑥, 𝑦) = 0         (3.viii) 

𝐺0 (𝑥, 𝑦) =  𝑒−𝑃𝑦   cos(𝑥 − 𝑄𝑦)                                                                                   (3.ix) 

𝐹1(𝑥, 𝑦) =  
1

4𝑃2
{1 − 2𝐾(2𝑃2 + 𝑄2)} [𝑦 +  

1

2𝑃
(𝑒−2𝑃𝑦 −  1)] +  𝐽(𝑦)𝑒2𝑖𝑥            (3.x) 

𝐺1(𝑥, 𝑦) = 0                                                                                                                      (3.xi) 

 

where the fluctuating part   𝐽(𝑦) of   𝐹1  is given by  

𝐽(𝑦) =  [2(𝑚 + 𝑖𝑛)√1 + 16𝐾2{4𝐾(𝑚 + 𝑖𝑛)2 − 1}/(𝑞 + 𝑖𝑠)] [1 − 𝑒
−(𝑞+𝑖𝑠)𝑦

√1+16𝐾2] − [{4𝐾(𝑚 + 𝑖𝑛)2 − 1}/

8{𝑖(𝑚 + 𝑖𝑛) − (1 − 4𝑖𝐾)(𝑚 + 𝑖𝑛)3}][1 − 𝑒−2(𝑚+𝑖𝑛)𝑦] ;                                (3.xii) 

where, 

𝑚2, 𝑛2 =  [√1 + 4𝐾2 ∓  2𝐾]/(1 + 4𝐾2)  

and  𝑞2, 𝑠2 = 2[√1 + 16𝐾2 ∓ 4𝐾]    

Using of these solutions in the velocity components we can conclude that as 𝐹0 (𝑥, 𝑦) = 0 , the first order 

solution has no component of radial or axial velocity, only the transverse velocity given by 
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𝑣 = 𝑟𝑊𝑒𝑥𝑝 (−𝑚𝑧√
𝜔

2𝜗1
) cos {𝜔𝑥 − 𝑛𝑧√

𝜔

2𝜗1
}                                                             (3.xiii) 

It may be noted that the steady part of the radial component of velocity persists outside a shear wave or inner 

boundary layer of thickness of order (
𝜗1

𝑚2𝜔
)

1

2
. The axial velocity persists outside the region thereby 

conforming continuity. At the edge of the inner boundary layer, the steady parts of the velocity components 𝑢  

and 𝑤  are 

 

𝑢𝑠 = 𝑟𝜖𝑊𝐷 [1 − 𝑒𝑥𝑝 {−2𝑚𝑧√
𝜔

2𝜗1
}]  

𝑤𝑠 =  
𝜖𝑊𝐷

4𝑚3
√

2𝜗1

𝜔
 [1 − 𝑚𝑧√

2𝜔

𝜗1
− 𝑒

−𝑚𝑧√
𝜔

2𝜗1]                                                                  (3.xiv) 

  

where    𝐷 =  
1

4𝑚2
{1 − 2𝐾(2𝑚2 + 𝑛2)}                                                                         (3.xv) 

 Let us study the structure of the outer boundary layer in detail. We are going to match inner and outer 

expansions. Since there is no oscillatory potential flow in the outer layer, the derivation of the equation is 

quite obvious. The terms in the inner boundary layer must match at each stage with that of the outer boundary 

layer. Thus in order to effect a match with inner solution of o(𝜖) , the first term of the outer solution for 𝑢𝑠  is 

taken as of  (𝜖). Thus for studying the flow in outer layer we write  

𝐹(𝑦) = 𝑅(휁) , 𝐺(𝑦) = 𝑆(휁) , 𝑦 =  𝜖−1휁                                                                       (3.xvi)  

The transformation expresses the fact that the thickness of the outer layer is of order  𝜖−1 times that of the 

inner. Clearly 𝑆 = 0 and the equation for 𝑅  will be  

𝑅∕∕∕ = 2 (𝑅/2
− 2𝑅𝑅∕∕) + 𝐾1 (4𝑅/𝑅∕∕∕ − 2𝑅𝑅𝑖𝑣 − 𝑅∕∕2

)                                       (3.xvii) 

 

with   𝑅/(∞) = 0  as evident from the condition that outer solution matches with inner solution as 𝑦 → ∞ . 

Here 𝐾1 = 𝐾𝜖2 and the prime denotes differentiation with respect to  휁.  

With the help of (3.xiv) and (3.xvi) and using the velocity components we deduce that 𝑅 → 𝐷휁 as → 0 . 

Thus  

𝑅(0) = 0, 𝑅/(0) = 𝐷                                                                                                     (3.xviii) 

Let us solve the equation (3.xvii) by Kármán-Pohlhausen method. We introduce  

휁 = 𝛿𝜉, 𝑅 =  𝛿𝑆                                                                                                              (3.xix) 

Where 𝛿  is the non-dimensional boundary layer thickness of the outer boundary layer.  With trhis 

substitution, equation (3.xvii) takes the form 

𝑆∕∕∕ = 2 (𝑆/2
− 2𝑆𝑆∕∕) + 𝐾1 (4𝑆/𝑆∕∕∕ − 2𝑆𝑆𝑖𝑣 − 𝑆∕∕2

)                                       (3.xx) 
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Where differentiation is with respect to 𝜉 .  

Considering the smoothness of the solution over outer boundary layer edge, we assume the form 

𝑆∕ = 𝐷(1 + 𝑏𝜉)(1 − 𝜉)4                                                                                                (3.xxi) 

where 𝑏  is a constant to be determined. To determine  𝑏  and  𝛿  we have momentum integral equation as  

−𝑆∕∕(0) = 6𝛿2 ∫ 𝑆/2
𝑑𝜉 + 𝐾1 [6𝑎2(4 − 𝑏) − 7 ∫ 𝑆∕∕2

𝑑𝜉
1

0
]

1

0
                                  (3.xxii)  

The condition that equation (3.xx) is satisfied as  𝜉 → 0  is found as  

𝑆∕∕∕(0) = 2𝛿2𝑆/(𝑜)2 + 𝐾1[4𝑆/(0)𝑆∕∕∕(0) − 𝑆∕∕(0)2]                                           (3.xxiii)       

 

4. Results and Discussion: 

 

Using (3.xxi), (3.xxii) and (3.xxiii), we can determine the constants 𝑏 and 𝛿 for different values of 𝐾1. We 

have calculated the values of  , 𝐷, 𝛿 ,  𝑅∕∕(0)  for 𝐾1 = 0, .002, .005 . These values of the parameters for 

different values of visco-elastic parameter are given in the table-1. From the Table-1, we can conclude that 

absolute vale of 𝑅∕∕(0)  decreases with the increase in the visco-elastic parameter 𝐾1 . The correctness of the 

calculations can be guessed by the fact that whereas the exact value of 𝑅∕∕(0) is - 0.207 for Newtonian fluid 

i.e. 𝐾1 = 0 the same has been calculated as – 0.205. 

Let us consider again the inner solution. The term of order 𝑜(휀) in the substituted series (3.i) is given as  

𝐹2(𝑥) =  𝑐2   𝑥
2                     (3.xxiv) 

Where 𝑐2   is yet unknown. The constant was assumed to be zero by Rosenblat (4) and Srivastava (14). By 

matching (3.xxiv) with the appropriate term in the outer solution we get 

𝑐2 =  𝑅∕∕(0) ≠ 0  . 

Thus the terms of even order in 휀  do not vanish in the inner solution. 

                                                                                

 Table - 1 

𝐾1 0 .002 .005 

𝑏 0 -0.0003 -0.0007 

𝐷 0.249 0.2413 0.2398 

𝛿 4.971 4.9801 4.9987 

𝑅∕∕(0) -0.2052 -0.2041 -0.1998 
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