Potential leads for development of new antimalarial drugs

Savita A.Patil, Amol Thete, Sudarshan Shelke, Jyoti Kondhalkar, Dwarkanath bhagat

Bioreinventors LLP ,Pune; Department of Biotechnology.

Abstract:

Malaria is a dreadful disease caused by the Abstract:

parasite Plasmodium and is transmitted to humans by mosquitoes. Malaria remains an important public health problem, especially in endemic regions of India. Globally, malaria remains a leading infectious disease, and especially so in Sub-Saharan Africa and South East Asia. Global efforts are underway to eliminate malaria and to use a multipronged strategy where drugs play a crucial part. The most effective present day line of treatment option is based on the artemisinin-based drugs. The malarial parasites are developing resistance to the artemisinin class of drugs; it is likely that one day these drugs will be ineffective. Therefore, there is an urgent need to develop new classes of anti-malaria drugs with novel modes of action. Cladosporin (also known as asperentin), 3,4-dihydro-6,8-dihydroxy3-(6-methyl tetrahydropyran-2-ylmethyl) isocoumarin, is an important secondary metabolite isolated from Cladosporium cladosporioides in 1971. It is the major compound of C. cladosporioides, but a minor metabolite of other fungal sources including Aspergillus flavus. In Present study we have assessed the fungal metabolite-inspired molecules (Cladosporin stereoisomers) as potential lead antimalarials. Novel synthetic routes were developed in the laboratory to access this natural product. In addition, the team has synthesized all the possible stereoisomers of Cladosporin using novel synthetic organic chemistry protocols. After the successful synthesis of all eight compounds (called Cladologs), the teams tested it against malaria parasites to address their potency. Enzyme and structure-based studies were done to address mechanistic details of the drug interactions. The important cladologs were co-crystallized with the target enzyme lysyl-tRNA synthetase of malaria parasite in order to provide atomic details. The bases for wide differences in antimalarial potency between various

sterioisomeric forms of cladosporin using an elegant chemistry, strong biochemisty and modern structure-based methods. Three categories of molecules as potent, moderately potent and non-potent were identified based on target binding and parasite killing. The demonstrations validated two most potent stereoisomers of cladosporin so this information will allow their development for drug-like properties. The significance of chirality in modern drug discovery has also been highlighted through these efforts.

Introduction:

Malaria is a common and life-threatening disease in many tropical and subtropical areas. There are currently over 100 countries and territories where there is a risk of malaria transmission, and these are visited by more than 125 million international travellers every year. Each year many international travellers fall ill with malaria while visiting countries/territories where malaria is endemic, and well over 10 000 are reported to become ill with malaria after returning home; however, underreporting means that the real figure may be considerably higher. International travellers to countries/territories with ongoing local malaria transmission arriving from countries with no transmission are at high risk of malaria infection and its consequences because they lack immunity. Migrants from countries/territories with malaria transmission living in malaria-free countries and returning to their home countries to visit friends and relatives are similarly at risk because of waning or absent immunity. Travellers who fall ill during travel may find it difficult to access reliable medical care. Travellers who develop malaria upon returning to a country that is malaria-free face particular problems: medical personnel may be unfamiliar with malaria, the diagnosis may be delayed, and effective antimalarial medicines may not be registered and/or available, resulting in progression to fatality rates.-severe and complicated malaria and, consequently, high case Fever occurring in a traveller

within 3 months of leaving a country in which there is risk of malaria is a potential medical emergency and should be investigated urgently to exclude malaria. In the absence of rapid access to reliable diagnostic facilities, stand-by emergency treatment (SBET) is indicated.

In Present study we have assessed the fungal metaboliteinspired molecules (Cladosporin stereoisomers) as potential lead antimalarials. Novel synthetic routes were developed in the laboratory to access this natural product. In addition, the team has synthesized all the possible stereoisomers of Cladosporin using novel synthetic organic chemistry protocols. After the successful synthesis of all eight compounds (called Cladologs), the teams tested it against malaria parasites to address their potency. Enzyme and structure-based studies were done to address mechanistic details of the drug interactions. The important cladologs were co-crystallized with the target enzyme lysyl-tRNA synthetase of malaria parasite in order to provide atomic details. The bases for wide differences in antimalarial potency between various sterioisomeric forms of cladosporin using an elegant chemistry, strong biochemisty and modern structure-based methods. Three categories of molecules as potent, moderately potent and non-potent were identified based on target binding and parasite killing. The demonstrations validated two most potent stereoisomers of cladosporin so this information will allow their development for drug-like properties. The significance of chirality in modern drug discovery has also been highlighted through these efforts.

Materials and Methodology: Protein Sequence retrieval and Primary analysis:

Protein sequence of protein minor nucleoprotein Cladosporin (ribosomal protein S5 [*Aspergillus flavus*]) was retrieved from Gene bank database. The physicochemical analysis were calculated by ProtParam tool (http://web.expasy.org/protparam/), including *pI*, total number of negatively and positively charged residues, the instability index (II), aliphatic index, and grand average of hydrophilic (GRAVY).

Structural Charecterization:

Similarity search was carried out by using BLAST software (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins).

SOPMA (Geourjon and Deléage, 1995) server (https://npsaprabi.ibcp.fr/cgi-

www.jetir.org (ISSN-2349-5162)

bin/npsa_automat.pl?page=npsa_sopma.html). SOPMA is using homologue method of Levin *et al.* According to this method; short homologous sequence of amino acids will tend to form similar secondary structure. As well it also done by using Phyre2 (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=inde x) software and visualized by using Chimera

Homology modeling and Model evaluation:

(https://www.cgl.ucsf.edu/chimera/) software.

Homology modeling was used for determining 3D structure of protein. Then, BLASTP was performed against PDB (Protein Databank, Bernstein *et al.*, 1977) to retrieve the best suitable templates for homology modeling. Preferred hit contains maximum identity and lowest e-value that it was used as a template. The modeling of the 3D structure of the protein was performed by using Swiss-Modeler (<u>http://swissmodel</u>. expasy.org/) program (Arnold *et al.*, 2006; Bordoli *et al.*, 2009).

Molecular Docking:

Molecular docking is an attractive scaffold to understand drugbiomolecular interactions for the rational drug design and discovery, as well as in the mechanistic study by placing a molecule (ligand) into the preferred binding site of the target specific region of the DNA/protein (receptor) mainly in a non-covalent fashion to form a stable complex of potential efficacy and more specificity. The information obtained from the docking technique can be used to suggest the binding energy, free energy and stability of complexes. At present, docking technique is utilized to predict the tentative binding parameters of ligand-receptor complex beforehand.in this project docking was carried out between Cladosporin and ribosomal proteins5 to find proper drug structure for future applications.

Binding site Prediction:

The binding site of Cladosporin protein was predicted by RaptorX server (http://raptorx.uchicago.edu/BindingSite/). The binding site shows the small pockets of the tertiary structure where ligands bind to using the weak forces.

1] Organism : Aspergillus flavus

2] Protein : ribosomal protein S5

3] Accession id: Gen Bank: RAQ63165.1

4] Sequence:

>RAQ63165.1 ribosomal protein S5 [Aspergillus flavus]

JETIR1908684Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org513

MADAAPRGRGGFGSRGDRGGDRGRGRGRRGRRGGK QEEKEWQPVTKLGRLVKAGKITSMEQIYLHSLPIKEY QIVDFFLPKLKDEVMKIKPVQKQTRAGQRTRFKAVVI IGDSEGHIGLGIKTSKEVATAIRAAITIAKLAVLPVRRG YWGSNLGEPHSLPVKQSAKCGSVSVRLIPAPRGTGLV ASPAVKRLLQLAGVQDAYTSSSGSTKTLENTLKATFL AVVNTYGFLTPNLWKETKLIRSPLEEFGDVLRQGKKY 5) Drug used:

- I) Source name : Aspergillus flavus
- II) **Chemical compound : Cladosporin**
- III) Pubchem id: 13990016
- IV) Molecular Formula: C₁₆H₂₀O₅
- Cladosporin V) **Chemical Names:** Asperentin UNII-81PR0D5FI4 81PR0D5FI4 35818-31-6

VI) **Related compounds with annotation:**

- 1. Taleranol
- 2 Mellein

www.jetir.org (ISSN-2349-5162)

(4S)-8,16,18-Trihydroxy-4-methyl-3oxabicyclo[12.4.0]octad eca-1(14),15,17-trien-2one

4. Altenuene

3.

5. Isocoumarin, 3,4dihydro-6,8-dihydroxy-3-(6-methyl-tetrahydro-2H-pyran-2-yl)

Results and discussion:

Protein Sequence retrieval and Primary analysis:

The physicochemical analysis of Ribosomal Protein S5 protein was performed using Protparam and results were shown in Table 1. Protein contains 259 amino acids with molecular weight 28274.85 Dalton and Theoretical pI 10.54

	2. Mellein	
Sr.No.	Parameters	Values
1	Molecular weight	28274.85 D
2	Theoretical pi	10.54
3	Instability index	37.17
4	Extinction coefficients	25440
5	Total number of negatively charged residues (Asp + Glu):	21
6	Total number of positively charged residues (Arg + Lys):	47
7	Aliphatic index:	86.22
8	GRAVY -	-0.396

Table 3. Physico-chemical properties of Ribosomal Protein

Protparam tool computed that the protein is basic in nature and stable on the basis of parameters Theoretical pi and instability index. According to the GRAVY index protein is hydrophilic. The aliphatic index of a protein is 86.22 which defined as the relative volume occupied by aliphatic side chains (alanine, valine, isoleucine, and leucine). The total number of positively charged residues (Arg+Lys 47) was found higher than the total number of negatively charged residues (Asp+Glu 21).

Structural Characterization:

The secondary structure of the protein was predicted using SOPMA server. It was observed that predominant with alpha helix (33.98%) followed by random coil (41.31%), and extended strand (15.83%). Random coils have important functions in proteins for flexibility and conformational changes such as enzymatic turnover (Buxbaum, 2007).

Sr.No.	Parameters	Values
1	Alpha Helix	80
2	Bita Sheets	23
3	Random coils	107
4	Extended strand	41

Table 4. Secondary structure of protein using SOPMA

Phyre2 Secondary structure prediction:

According to structure prediction by Phyre2 ribosomal s5 protein is known to antagonize interferon signaling by binding host karyopherin a proteins, The crystal structures and accompanying biochemical analysis map differences between pathogenic and nonpathogenic viruses, offer templates for drug design, and provide the three dimensional framework necessary for biological dissection of the many functions of ribosomal S5 protein.

www.jetir.org (ISSN-2349-5162)

Secondary structure with Helix.

Homology modeling and Model evaluation:

The SWISS-MODEL homology modeling program was used for the predicting of three dimensional structures of the Ribosomal s5 proteins (Figure 5). BLASTP was performed against PDB (Protein Databank, Bernstein *et al.*, 1977) to retrieve the best suitable templates for homology modeling. Preferred hit contains maximum identity and lowest e-value that it was used as a template PDBe 3iZb. A (small subunit protein 40s) was selected as template with 100% sequence identity to query sequence. The quality and validation of the model was evaluated by Ramachandran plot analysis using PDBsumserver (Figure 5&6). Based on Ramachandran plot

www.jetir.org (ISSN-2349-5162)

analysis **118** structures of resolution of at least **2.0** Angstroms and *R*-factor no greater than **20.0** a good quality model would be expected to have over **90%** in the most favored regions

(A,B,L) it also showed that only 4.2% residues in outlier region, 16.9% allowed region indicating that the models were of reliable and good quality.

BLASTRP Results:

Query 181 GTGLVASPAWKRLLQLAGVQGAYTSSSGSTKTLENTLKATFLAVVNTYGFLTPNLWETK 248 GTGLVASPAWKRLLQLAGVQGAYTSSSGSTKTLENTLKATFLAVVNTYGFLTPNLWETK SBjct 237 GTGLVASPAWKRLLQLAGVQGAYTSSSGSTKTLENTLKATFLAVVNTYGFLTPNLWETK 276

Query 241 LIRSPLEEFGDVLHQCKKY 259 LIRSPLEEFGDVLHQGKKY 259 Sejct 277 LIRSPLEEFGDVLHQGKKY 295

& Download + GenPeot Graphics

▼ Next ▲ Previous →Descriptions

Des	criptions Graphic Summary Alignments Taxonomy						
Sec	quences producing significant alignments Drumbur	- Ha	nage	Colum	NS -	Show [100 0
0	select all . 0 sequences selected Ginth						
	Description	Max	Test. Stars	Query Cover	E value	Per linet	Accession
0	403 ribosomai antein Dependika fanus AF70	521	.571	100%	0.0	100 00%	NDC07577.1
10	435 relevant outers 52 Materialian proces 52847	521	621	100%	0.0	100.00%	NP 001827263 1
lä	405 resource waters 52 Macarahia sonia MRSE 12137)	121	521	100%	.00	100.00%	10-01540114E 1
lõ	diseased asstern 05 Meromative Jamitre Sol	521	521	100%	0.0	100.00%	37 52230 (132.1
	Standard autori 31.5 terrind distant autori, Neuralia agravitan 55-0	521	821	100%	0.0	195.67%	KINETHER 1
C	425 recoursed action 32 Desceptus effectuae CBS 707 79	529	505	100%	0.0	96.53%	Pre-91231.1
	Institute al antesis ASENCERAFT_\$1471 Housewhat acutestic ATCC 19872	125	509	100%	0.0	96.52%	31 ⁰ 020202344.1
0	Construction and an and a second statement of the second	501	600	1075	0.0	97.51%	3P 00606711
0	425. rózsunaj zomen 52. Hozerpilus terreus NY/2624	587	507	100%	0.0	17.32%	89_001217278.3
0	400 domartal activit Manarabia functional	526	606	100%	00	9644%	101250205.1
0	rthonormal protein (Neurophia sambalik)	506	500	100%	0.0	16.54%	89923143.1
0	Altheorem and the second s	525	505	100%	26-110	96.53%	08037330.1
0	Instituted other FDE, 2010 Femilikan paakum 114-2	504	504	100%	3+110	96.54%	EP531029.1
	Instathatust erates PENNIE_s219525311 Pensitian espenane	654	554	100%	i+100	00.54%	39,022401411.1
0	All storums waters 52 Percentus utranset	504	1009	107%	54-100	96.175	SACINGS 1
0	dicates and and a show that a chose and a set of the se	525	505	100%	6e-100	96.54%	EEE EEE
1	Mill Second States			1000	2.5		
	A Download - Gentheat Graphics		T Ner	di		Descript	2005
	405 ribosomal protein, partial [Aspergillus flavus AF70]						
	Sequence ID: KOC07577.1 Length: 295 Rumber of Matches: 1						
	Range 1: 17 to 295 GenPect: Statistics / feet March Allech						
	Score Expect Method Eductives Days 521 bfts(1343) 0.0 Compositional matrix educt. 259/259(100%) 259/259(100%) 0/259(0%)						
	Query 1 MADAAPRONGEFGSRCORGEORGRORGERGERGEKGEEKENQPVTKLGRLVKAGKITSME 60						
	MADALPHENGGFGSRGDRGGDRGAGNGRRGRRGGRGEEEEMDPVTKLGRLVKAGKITSHE Sbjct 37 MADALPRGRGGFGSRGDRGGDRGAGNGRRGRRGGRGEEKENDPVTKLGRLVKAGKITSHE 96						
	Query 61 QTYLH5LP1KEYQTVDFFLPKLKDEVWKTKPVQKQTRAGQRT#FKAVVTIGD5EGHIGLG 120						
	Sbjet 97 QIVLHSLPIKEYQIVOFFLSKLKDEVWIKIYKVKQTRAGQTR#KAVVIIGDSEGHIGLG 156						
	Query 121 IKTSKEVATAIRAAITIAKLAVLPVRAGYAGSHLGEPHSLPVKQSAKCGSVSVALIPAPR 188						
	IKTSKEVATAIRAAITIAKLAVLPVRRGYMGSMLGEPHSLPVRGSARCGSVSVHLIPAPR Sbjct 157 IKTSREVATAIRAAITIAKLAVLPVRGYMGSMLGEPHSLPVRGSARCGSVSVHLIPAPR 216						

SWISS modeling results

The SWISS-MODEL template library (SMTL version 2019-08-14, PDB release 2019-08-09) was searched with BLAST (<u>Camacho</u> <u>et al.</u>) and HHBlits (<u>Remmert et al.</u>) for evolutionary related structures matching the target sequence in Table T1. For details on the template search, see Materials and Methods. Overall 664 templates were found (Table T2).

Models:

The following models were built (see Materials and Methods "Model Building"):

Model #0)1	File	Built	with	Oligo-State	9	Liga	nds GM	IQE	QMEAN
- And	1	<u>PDB</u>	ProM 2.0.0.	od3 Version	monomer		Non	e 0.75	5	-9.78
QMEAN			-9	.78						
Cβ			-5	.13						
All Atom			-6	.21						
solvation			-5	.04						
corsion		1	-7	.45		LK	. /			
Template	Seq Identity	Oligo- state	Found by	Method	Resolution	Seq Similarity	Range	Coveraş	ge De	scription
4v3p.5.A	59.53	monomer	HHblits	ЕМ	34.00Å	0.48	1 - 258	0.99	405 pro	S ribosomal tein S2
			T.				Y			

2/

quality model would be expected to have over 90% in the

most favoured regions [A,B,L].

Structure validation by Ramachandran plot:

PROCHECK statistics

1. Ra

1. Ramachandran Plot statistics	2. O-Factors
No. of	Average Parameter Score Score
residues %-tage	Dihedral angles:-
Most favoured regions [A,B,L] 2394 72.7%	** Phi-psi distribution -0.81*
Additional allowed regions [a,b,l,p] 530 16.1%	Chi1-chi2 distribution -0.66*
Generously allowed regions [~a,~b,~l,~p] 228 6.	9% Chi1 only -0.37
Disallowed regions [XX] 142 4.3%*	Chi3 & chi4 0.39
	Omega -1.30**
Non-glycine and non-proline residues 3294 100.	0% -0.75*
	=====
End-residues (excl. Gly and Pro) 64	Main-chain covalent forces:-
	Main-chain bond lengths -2.64**
Glycine residues 259	Main-chain bond angles -3.88**
Proline residues 140	-3.36**
Total number of residues 3757	
	OVERALL AVERAGE -1.78**

0 E. ...

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and *R*-factor no greater than 20.0 a good

G-factors provide a measure of how **unusual**, or out-of-theordinary, a property is.

Values below -0.5* - unusual

Values below -1.0** - highly unusual

www.jetir.org (ISSN-2349-5162)

Important note: The main-chain bond-lengths and bond angles are compared with the Engh & Huber (1991) ideal values derived from small-molecule data. Therefore, structures refined using different restraints may show apparently large deviations from normality.

Binding site prediction:

	708			%.inge	8.8			
	code	Madel	Longh	klendty	overlap	2-50009	Ligaruh	Proficio nume
	1(四)(王)		254	71.5%	243	1418.2		Localization of the small subunit ribesonial proteins into a cryo-em map of sac/haterovices receivelate translating 80s rb.
2	3mb(E)		283	81.5%	272	1255.0		Localization of the small subunit ribosonial proteins into a cryo-em map of
100	11-127		22.7	176-316	1200	1.1.1.1	1000	procum aestryum translaring ous ribosome.
3	240(4)		226	73.0%	222	1245.6	ANP:	Structure of the 40s above 1 post-splitting complex in hoosome recycling and translation initiation
1.4	Sum(C)		247.	75.4%	311	10357		Crypern structure of 40e-eiftig-eift complex from vegast
. 6	300405		217	75.4%	244	(1167		Crypen structure of 40e-edt-off a meinitation complex
- 2	Contain 1		242	78.464		1005.0		Distant on of the open situation and an an inches second size a real more than
10	STREET.		15	1000				complex with the cricket paralysis virus res
1.	381(C)		217	75.4%	211	1339.7	MET	Crypern structure of a partial yeast 48s preinitiation complex.
8.	(emi(R)		220	72.7%	220	1331.1		Cryo-em structure of a late pre-40s ribosomal subunit from saccharomyce
	3622(8)	X	218	72.9%	218	1327.5	CHOC:	Yealet 80s ribosome. This entry consists of the 40s subunit a first 80s in the
		109/ 4-003A						asummetric unit.
10	3x30(R)	¥-	216	77.184	215	1327.5	04400	Yeard Site ritronance. This entry poneists of the J/Is subunit a second Site in
100	(and a second	100 × 1014		1000	A	100010		the approximation could
122		109.4.0015	1.10	41.14	1000		da an	The applications with
11	310107	A	417	14.470	411	1042.9	CHAR	crystal structure or acomponycin bound to the yeast suit r
		176y 2 800A	124	1.111			10.0	김 양동 영상 방법에 많은 것을 다 많은 것은 것은 것을 잘 못했다.
12	11000	Xt	207	74,4%	- 211	1373.9	CHOC	Crystal structure of lactimizantycin bound to the yeas! 80s r
		19/ 2.80A						
13.	448.9601	X-	217	74.4%	211	1023-2	CHE	Crystal structure of cycloheximide bound to the yearst 90e it
		100 7 90A						
14	20200	8-	217	74.451	1111	1375.0	CHECK	Crystal attorture of contributions beyond to the yearst 604 in
100	Strates	Attest of the		0.007	10.000	10000	10000	on how persons is a show south of our of the state when
40		THY A DUM	in the second	41.14	1000			The short of the state of the s
10.	2805((v)		417	14.476	411	1060.0		The appointe of the encaryonic represente at 1.0 a resolution easy contains
11.1	012.024	1287 3-DOM		20.05	1.1.1	Sec.		proteins of the 40s suburit, ribbsome a
36,	2,50(\$)	1. At	217	78,8%	510	1323.9		The structure of the eukaryotic robecine at 3.0 a resolution entry contains
		19/ 3.00A						proteins of the 40e subunit, ribosome b
17.	(LAND)	X+	317	74.4%	211	1025.9	CHOL	Crystal structure of lycome bound to the years one ribosom
		rily 3.00A						The first of some of the state
16	Summing.	X.	217	74.4%	211	11213-0	CHEC	Crustal shurture of accome bound to the vessel DOs intosom
100	Sector M	A10.0 (199	10.5%	2007	1000	10000	1000	and any second
100	ALLANTIN	and Streets	100	44.444	444	****	dial a	Country also also at any second in her part in the user's life store
10	anticul		417	14.4%	417	146.0.9	Carlor C	chilares activities or suscenders benue to use leave any unde-
		1989 3 DOA		27.11	1.1.1	in the second	100	
30	84100	Xr.	50.	74.4%	211	1123.9	CHEC	Crystal situctore of areapmycin bound to the yeast 306 ribos
		18/ 3.00A						
21.	#_HOD>	X.	217	74.4%	211	1123.9	CHOL:	Crystal structure of homohamingtonies bound to the years! 80
	-	rity 3 00A						
32.	4100101	×.	217	74.4%	211	1223-5	CHER	Crustal structure of homonavinotoning nound to the valest #0
1	and a state of the	Able Course	1915	1000		1.1.1.1	10.50	and the second of the second
-	A Martin	and strength	217	24.46	244	1111-	dial of	Constal short so of conjusters C toward to the used Mr. of
	That ((a))	and in parts	437	14.4.0	411	THE R. P.	Party.	rectame according to and increase in control to any lawer one u
		THV 3 DOA						

Molecular Docking:

Molecular docking was done by using online free software for docking Swiss Dock. This website provides an access to **SwissDock**, a web service to predict the molecular interactions that may occur between a target protein and a small molecule. **S3DB**, a database of manually curated target and ligand structures, inspired by the Ligand-Protein <u>Database</u>. SwissDock is based on the docking software <u>EADock DSS</u>, whose algorithm consists of the following steps:

- Many binding modes are generated either in a box (local docking) or in the vicinity of all target cavities (blind docking).
- Simultaneously, their <u>CHARMM</u> energies are estimated on a grid.
- 3. The binding modes with the most favorable energies are evaluated with <u>FACTS</u>, and clustered.
- The most favorable clusters can be visualized online and downloaded on your computer.

Target for Docking Crystal structure of Cladosporin.-4YCU

48 48 40 40 40 40 40 40 40 40 40 40	
402 402 403 403 403 403 403 403 403 403	
▲昭 →拾 →招 →記 →記 →記 →記 →記 →記 →記 →記 →記 →記	
427 437 437 437 437 437 437 437 437 437	
432 432 432 432 432 432 433 433	
48 48 48 48 48 48 48 48 48	
4.82 4.82 4.82 4.82 4.82 4.01 4.02	
407 427 427 427 427	
4 42 4 32 4 42 4 42 4 42	
-422 Aut 422 422	
402 402 402	
4.02 -4.02	
-4.92	
40	
-4.32	
442	
412	
-442	
-4.01	
-431	
4.01	
48 8	
	Au Au

X 🖸 ViewDock File Select Actions Presets Tools Help File Compounds Column Selection Chimera HBonds Movie Cluster FullFitness RMSD 899.2411 1.958146 899.2411 1.958146 -899.2411 1.958146 0 -899.2411 1.958146 -899.2411 1.958146 -897.98193 1.955181 -896.4241 1.908421 -896.104 1.908421 Chimera Model #1.34 REMARK Energy: -1.579 RMSD: 1.958146 REMARK SimpleFitness: REMARK 1.5797 FullFitness: -899.2-InterFull: -120.127 IntraFull: 106.299 REMARK 899.2411 REMARK REMARK REMARK solvFull: -1035.06 Change Compound State Command: select ligand Viable Oeleted Purged Active models: 🔽 0 🖂 1 T8 F9 F Hide Quit Help Session written 12 9.7

http://www.swissdock.ch/img/material/viewdock.jpg Image address.

Conclusion

The Cladosporin (Rps5)protein is involve in the transcription of virus. The present study we analyzed the physicochemical properties of protein by using Protparam tool. The 3D structure of protein was predicted using SWISS MODEL server. The final model was further evaluated by using Procheck and Ramachandran plot analysis. Binding site of the protein was studied using PDBsum database. From the present study it has been concluded that ribosomal protein s5 protein can be used as target for the inhibition of virus. The molecular structural insight encompasses to the development of new drug for inhibition of protein by using Cladosporin.

References:

 Cutler SJ, Cutler HG. (1999) Biologically active natural products: pharmaceuticals. CRC Press, New York, USA, p5.

[2] Scott PM, van Walbeek W. (1971) Cladosporin a new antifungal metabolites from Cladosporin cladosporioids. The Journal of Antibiotics, XXIV, 747-755.

[3] Grove JF. (1972) New metabolic products of *Aspergillus flavus*. Part I Asperentin its methyl ethers and 5-hydroxyasperentin. Journal of the Chemical Society, Perkin Transactions 1, 19, 2400-2406.

[4] Springer JP, Cutler HG, Crumley FG, Cox RH, Davis EE, Thean JE.(1981) Plant growth regulatory effects and stereochemistry of cladosporin. Journal of Agricultural Food Chemistry, 29, 853-855.

[5] Ellestad GA, Mirando P, Kunstmann MP. (1973) Structure of the metabolite LL-S490p from an unidentified Aspergillus species. Journal of Organic Chemistry, 58, 4204-4205.

[6] John M, Krohn K, Florke U, Hans-Jurgen A, Draeger S, Schulz B. (1999)
Biologically active secondary metabolites from fungi. 12.1 Oidiolactones A-F, labdane diterpene derivatives isolated from *Oidiodendron truncata*.
Journal of Natural Products, 62, 1218-1221. [7] Wang S, Li X-M, Teuscher F, Li DL, Diesel A, Ebel R, Proksch P, Wang BG. (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from *Chaetomium globosum*, an endophytic fungus derived from the marine red alga *Polysiphonia urceolata*. Journal of Natural Products, 69, 1622-1625.

www.jetir.org (ISSN-2349-5162)

[8] Flewelling AJ, Johnson JA, Gray CA. (2013) Antimicrobials from the marine algal endophyte *Penicillium sp.* Natural Product Communications, 8, 373-374.

[9] Podojil M, Sedmera P, Vokoun J, Betina V, Baráthová H, Ďuračková Z, Horáková K, Nemec P. (1978) Eurotium (*Aspergillus*) repens metabolites and their biological activity. Folia Microbiology, 23, 438-443.

[10] Hoepfner D, McNamara CW, Lim CS, Studer C, Riedl R, Aust T, McCormack SL, Plouffe DM, Meister S, Schuierer S, Plikat U, Hartmann N, Staedtler F, Cotesta S, Schmitt EK, Petersen F, Supek F, Glynne RJ, Tallarico JA, Porter JA, Fishman MC, Bodenreider C, Diagana TT, Movva NR, Winzeler EA. (2012) Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin. Cell Host & Microbe, 11, 654-63.

[11] Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin HD, Dugan FM, Schroers HJ, Braun U, Crous PW. (2010) Species and ecological diversity within the *Cladosporium cladosporioides* complex (Davidiellaceae, Apnodiales). Studies in Mycology, 67, 1-94.

[12] Ellis MB. (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute.

[13] Rahalison L, Hamburger M, Hostettmann K, Monod M, Frenk E. (1991)A bioautographic agar overlay method for the detection of antifungal compounds from higher plants. Phytochemical Analysis, 2, 199-203.

[14] Danelutte AP, Lago JH, Young MC, Kato MJ. (2003) Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth. Phytochemistry, 64, 555-559.

[15] Lago JH, Ramos CS, Casanova DC, Morandim Ade A, Bergamo D C, Cavalheiro AJ, Bolzani Vda S, Furlan M, Guimarães EF, Young MC, Kato MJ. (2004) Benzoic acid derivatives from Piper species and their fungitoxic activity against *Cladosporium cladosporioides* and *C. sphaerospermum*. Journal of Natural Products, 67, 1783-1788.

[16] Benevides PJC, Young MCM, Giesbrecht AM, Roque NF, Bolzani VS.(2001) Antifungal polysulphides from Petiveria alliacea L. Phytochemistry, 57, 743-747.

[17] Vieira MR, Milheiro A, Pacheco FA. (2001) Phaeohyphomycosis due to *Cladosporium cladosporioides*. Medical Mycology, 39, 135-137.

[18] Kwon-Chung KJ, Schwartz IS, Rybak BJ. (1975) A pulmonary fungus ball produced by *Cladosporium cladosporioides*. American Journal of Clinical Pathology, 64, 564-568.

[19] Grove JF, Pople M. (1981) The insecticidal activity of some fungal dihydroisocoumarines. Mycopathologia, 76, 65-67.

[20] Anke H, Zaehner H, Koenig W. (1978) Metabolic products of microorganisms 170: On the antibiotic activity of cladosporin. Archives of Microbiology, 116, 253-257. 1600 Natural Product Communications Vol. 11 (10) 2016 Wang et al.

[21] Sakagami Y, Sano A, Hara O, Mikawa T, Marumo S. (1995) Cladosporol, β -1,3-glucan biosynthesis inhibitor isolated from fungus, *Cladosporium cladosporioides*. Tetrahedron Letters, 36, 1469-1472.

[22] Kobayashi E, Ando K, Nakano H, Iida T, Ohno, H, Morimoto M, Tamaoki T. (1989) Calphostins (UCN-1028), novel and specific inhibitors of protein kinase C. I. Fermentation, isolation, physico-chemical properties and biological activities. The Journal of Antibiotics, 42, 1470-1474.

[23] Hirota A, Isogai A, Sakai H. (1981) Structure of cladospolide A, a novel macrolide from *Cladosporium fulvum*. Agricultural and Biological Chemistry, 45, 799-800.

[24] Hirota A, Sakai H. Isogai A. (1985) New plant growth regulators, cladospolide A and B, macrolides produced by *Cladosporium cladosporioides*. Agricultural and Biological Chemistry, 49, 731-735.

[25] Wang XN, Radwan MM, Tarawneh AH, Gao JT, Wedge DE, Rosa LH, Cutler HG, Cutler SJ. (2013) Antifungal activity against plant pathogens of metabolites from the endophytic fungus *Cladosporium cladosporioides*. Journal of Agricultural and Food Chemistry, 61, 4551–4555

[26] Reese PB, Rawlings BJ, Ramer SE, Vederas JC. (1988) Comparison of stereochemistry of fatty acid and cladosporin biosynthesis in *Cladosporium cladosporioides* using 2H decoupled 'H, 13C NMR shift correlation. Journal of the American Chemical Society, 110, 316-318.

[27] Rawlings BJ, Reese PB, Ramer SE, Vederas JC. (1989) Comparison of fatty acid and polyketide biosynthesis stereochemistry of cladosporin and oleic acid formation in Cladosporium cladosporioides. Journal of the American Chemical Society, 111, 3382-3390.

[28] Hranueli D. (2001) Molecular biology of polyketide biosynthesis. Food Technology and Biotechnology, 39, 203-213.

[29] Cattel L, Grove JF, Shaw D. (1973) New metabolites products of *Aspergillus flavus*. Part III. biosynthesis of asperentin. Journal of the Chemical Society, Perkin Transactions 1, 2626-2629.

[30] Cochrane RVK, Sanichar R, Lambkin GR, Reiz B, Xu W, Tang Y, Vederas JC. (2016) Production of new cladosporin analogues by reconstitution of the polyketide synthases responsible for the biosynthesis of this antimalarial agent. Angewandte Chemie International Edition, 55, 664-668.

www.jetir.org (ISSN-2349-5162)