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Abstract:  A major goal of unsupervised learning is to get data representations that are useful for subsequent tasks, without access 

to supervised labels during training. Typically, this involves minimizing a surrogate objective, like the negative log likelihood of a 

generative model, with the hope that representations useful for subsequent tasks will arise as a side effect. during this work, we 

propose instead to directly target later desired tasks by meta-learning an unsupervised learning rule which results in 

representations useful for those tasks. Specifically, we target semi-supervised classification performance, and that an algorithm – 

an unsupervised weight update rule – that produces representations useful for this task. Additionally, we constrain our 

unsupervised update rule to a be a biologically-motivated, neuron-local function, which enables it to generalize to different neural 

network architectures, datasets, and data modalities. We show that the meta-learned update rule produces useful features and 

sometimes outperforms existing unsupervised learning techniques. We further show that the meta-learned unsupervised update 

rule generalizes to coach networks with different widths, depths, and nonlinearities. It also generalizes to coach on data with 

randomly permuted input dimensions and even generalizes from image datasets to a text task. 

 

IndexTerms – Artificial Intelligence, Supervised Learning, Neural Network, Architectures, Datasets. 

I. INTRODUCTION 

Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-

output pairs.[1] It infers a function from labeled training data consisting of a set of training examples.[2] In supervised learning, 

each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory 

signal). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for 

mapping new examples. An optimal scenario will allow for the algorithm to correctly determine the class labels for unseen 

instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way 

(see inductive bias). The parallel task in human and animal psychology is often referred to as concept learning. 

Unsupervised learning is a type of self-organized Hebbian learning that helps find previously unknown patterns in data set 

without pre-existing labels. It is also known as self-organization and allows modeling probability densities of given inputs.[1] It is 

one of the main three categories of machine learning, along with supervised and reinforcement learning. Semi-supervised learning 

has also been described, and is a hybridization of supervised and unsupervised techniques. 

Two of the main methods used in unsupervised learning are principal component and cluster analysis. Cluster analysis is used in 

unsupervised learning to group, or segment, datasets with shared attributes in order to extrapolate algorithmic relationships.[2] 

Cluster analysis is a branch of machine learning that groups the data that has not been labelled, classified or categorized. Instead of 

responding to feedback, cluster analysis identifies commonalities in the data and reacts based on the presence or absence of such 

commonalities in each new piece of data. This approach helps detect anomalous data points that do not fit into either group. 

A central application of unsupervised learning is in the field of density estimation in statistics,[3] though unsupervised learning 

encompasses many other domains involving summarizing and explaining data features. It could be contrasted with supervised 

learning by saying that whereas supervised learning intends to infer a conditional probability distribution {\textstyle 

p_{X}(x\,|\,y)}{\textstyle p_{X}(x\,|\,y)} conditioned on the label {\textstyle y}{\textstyle y} of input data; unsupervised learning 

intends to infer an a priori probability distribution {\textstyle p_{X}(x)}{\textstyle p_{X}(x)}. 

 

II. RELATED WORK 

2.1 SCALING UP REPRESENTATION LEARNING FOR NATURAL LANGUAGE 

Learning representations of natural language has been shown to be useful for a wide range of NLP tasks and has been widely 

adopted (Mikolov et al., 2013; Le & Mikolov, 2014; Peters et al., 2018; Devlin et al., 2019; Radford et al., 2018; 2019). One of the 

most significant changes in the last two years is the shift from pre-training word embeddings, whether standard (Mikolov et al., 

2013; Pennington et al., 2014) or contextualized (McCann et al., 2017; Peters et al., 2018), to full-network pre-training followed by 

task-specific fine-tuning (Radford et al., 2018; Devlin et al., 2019). In this line of work, it is often shown that larger model size 

improves performance. For example, Devlin et al. (2019) show that across three selected natural language understanding tasks, 

using larger hidden size, more hidden layers, and more attention heads always leads to better performance. However, they stop at a 

hidden size of 1024. We show that, under the same setting, increasing the hidden size to 2048 leads to model degradation and hence 

worse performance. Therefore, scaling up representation learning for natural language is not as easy as simply increasing model 

size. In addition, it is difficult to experiment with large models due to computational constraints, especially in terms of GPU/TPU 

memory limitations. Given that current state-of-the-art models often have hundreds of millions or even billions of parameters, we 

can easily hit memory limits. To address this issue, Chen et al. (2016) propose a method called gradient checkpointing to reduce the 

memory requirement to be sublinear at the cost of an extra forward pass. Gomez et al. (2017) propose a way to reconstruct each 

layer’s activations from the next layer so that they do not need to store the intermediate activations. Both methods reduce the 

memory consumption at the cost of speed. In contrast, our parameter-reduction techniques reduce memory consumption and 

increase training speed. 
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2.2 CROSS-LAYER PARAMETER SHARING 

The idea of sharing parameters across layers has been previously explored with the Transformer architecture (Vaswani et al., 

2017), but this prior work has focused on training for standard encoderdecoder tasks rather than the pretraining/finetuning setting. 

Different from our observations, Dehghani et al. (2018) show that networks with cross-layer parameter sharing (Universal 

Transformer, UT) get better performance on language modeling and subject-verb agreement than the standard transformer. Very 

recently, Bai et al. (2019) propose a Deep Equilibrium Model (DQE) for transformer networks and show that DQE can reach an 

equilibrium point for which the input embedding and the output embedding of a certain layer stay the same. Our observations show 

that our embeddings are oscillating rather than converging. Hao et al. (2019) combine a parameter-sharing transformer with the 

standard one, which further increases the number of parameters of the standard transformer. 

 

2.3 SENTENCE ORDERING OBJECTIVES 

ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text. Several researchers have 

experimented with pretraining objectives that similarly relate to discourse coherence. Coherence and cohesion in discourse have 

been widely studied and many phenomena have been identified that connect neighboring text segments (Hobbs, 1979; Halliday & 

Hasan, 1976; Grosz et al., 1995). Most objectives found effective in practice are quite simple. Skipthought (Kiros et al., 2015) and 

FastSent (Hill et al., 2016) sentence embeddings are learned by using an encoding of a sentence to predict words in neighboring 

sentences. Other objectives for sentence embedding learning include predicting future sentences rather than only neighbors (Gan et 

al., 2017) and predicting explicit discourse markers (Jernite et al., 2017; Nie et al., 2019). Our loss is most similar to the sentence 

ordering objective of Jernite et al. (2017), where sentence embeddings are learned in order to determine the ordering of two 

consecutive sentences. Unlike most of the above work, however, our loss is defined on textual segments rather than sentences. 

BERT (Devlin et al., 2019) uses a loss based on predicting whether the second segment in a pair has been swapped with a segment 

from another document. We compare to this loss in our experiments and find that sentence ordering is a more challenging 

pretraining task and more useful for certain downstream tasks. Concurrently to our work, Wang et al. (2019) also try to predict the 

order of two consecutive segments of text, but they combine it with the original next sentence prediction in a three-way 

classification task rather than empirically comparing the two. 

 

III. EXPERIMENTAL DESIGN 

Considered methods. All the considered methods augment the VAE loss with a regularize: The β-VAE (Higgins et al., 2017a), 

introduces a hyper parameter in front of the KL regularize of vanilla VAEs to constrain the capacity of the VAE bottleneck. The 

AnnealedVAE (Burgess et al., 2017) progressively increase the bottleneck capacity so that the encoder can focus on learning one 

factor of variation at the time (the one that most contribute to a small reconstruction error). The FactorVAE (Kim & Mnih, 2018) 

and the β-TCVAE (Chen et al., 2018) penalize the total correlation (Watanabe, 1960) with adversarial training (Nguyen et al., 

2010; Sugiyama et al., 2012) or with a tractable but biased Monte-Carlo estimator respectively. The DIP-VAE-I and the DIP-VAE-

II (Kumar et al., 2017) both penalize the mismatch between the aggregated posterior and a factorized prior. Implementation details 

and further discussion on the methods can be found in Appendix B and G.  

 

Considered metrics. The BetaVAE metric (Higgins et al., 2017a) measures disentanglement as the accuracy of a linear classifier 

that predicts the index of a fixed factor of variation. Kim & Mnih (2018) address several issues with this metric in their FactorVAE 

metric by using a majority vote classifier on a different feature vector which accounts for a corner case in the BetaVAE metric. The 

Mutual Information Gap (MIG) (Chen et al., 2018) measures for each factor of variation the normalized gap in mutual information 

between the highest and second highest coordinate in r(x). Instead, the Modularity (Ridgeway & Mozer, 2018) measures if each 

dimension of r(x) depends on at most a factor of variation using their mutual information. The Disentanglement metric of Eastwood 

& Williams (2018) (which we call DCI Disentanglement for clarity) computes the entropy of the distribution obtained by 

normalizing the importance of each dimension of the learned representation for predicting the value of a factor of variation. The 

SAP score (Kumar et al., 2017) is the average difference of the prediction error of the two most predictive latent dimensions for 

each factor. Implementation details and further descriptions can be found in Appendix C.  

Data sets. We consider four data sets in which x is obtained as a deterministic function of z: dSprites (Higgins et al., 2017a), 

Cars3D (Reed et al., 2015), SmallNORB (LeCun et al., 2004), Shapes3D (Kim & Mnih, 2018). We also introduce three data sets 

where the observations x are stochastic given the factor of variations z: Color-dSprites, Noisy-dSprites and Scream-dSprites. In 

Color-dSprites, the shapes are colored with a random color. In Noisy-dSprites, we consider white-colored shapes on a noisy 

background. Finally, in Scream-dSprites the background is replaced with a random patch in a random color shade extracted from 

the famous The Scream painting (Munch, 1893). The dSprites shape is embedded into the image by inverting the color of its pixels. 

Further details on the preprocessing of the data can be found in Appendix H.  

Inductive biases. To fairly evaluate the different approaches, we separate the effect of regularization (in the form of model choice 

and regularization strength) from the other inductive biases (e.g., the choice of the neural architecture). Each method uses the same 

convolutional architecture, optimizer, hyperparameters of the optimizer and batch size. All methods use a Gaussian encoder where 

the mean and the log variance of each latent factor is parametrized by the deep neural network, a Bernoulli decoder and latent 

dimension fixed to 10. We note that these are all standard choices in prior work (Higgins et al., 2017a; Kim & Mnih, 2018).  

We choose six different regularization strengths, i.e., hyperparameter values, for each of the considered methods. The key idea was 

to take a wide enough set to ensure that there are useful hyperparameters for different settings for each method and not to focus on 

specific values known to work for specific data sets. However, the values are partially based on the ranges that are prescribed in the 

literature (including the hyperparameters suggested by the authors). We fix our experimental setup in advance and we run all the 

considered methods on each data set for 50 different random seeds and evaluate them on the considered metrics. The full details on 

the experimental setup are provided in the Appendix G. Our experimental setup, the limitations of this study, and the differences 

with previous implementations are extensively discussed 

http://www.jetir.org/
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IV. LITERATURE REVIEW 

Table 4.1: META-LEARNING UPDATE RULES FOR UNSUPERVISED REPRESENTATION LEARNING 

 

 

Table 4.2: A SURVEY OF ARTIFICIAL INTELLIGENCE FOR PROGNOSTICS 

 

 

Table 4.3: CHALLENGING COMMON ASSUMPTIONS IN THE UNSUPERVISED LEARNING OF DISENTANGLED 

REPRESENTATIONS 

 

TITLE AUTHOR 
PUB. & 

YEAR 
CONCLUSION FUTURE WORK 

Meta-Learning 

Update Rules  

For 

Unsupervised 

Representation 

Learning 

Luke Metz 

Niru Maheswaranathan 

Brian Cheung 

Jascha Sohl-Dickstein 

ICLR 2019 Target semi-supervised 

classification performance, 

and we metalearn an algorithm 

– an unsupervised weight 

update rule – that produces 

representations useful for this 

task. Additionally, we 

constrain our unsupervised 

update rule to a be a 

biologically-motivated, 

neuron-local function, which 

enables it to generalize to 

different neural network 

architectures, datasets, and 

data modalities. 

We show that the meta-learned 

update rule produces useful 

features and sometimes 

outperforms existing 

unsupervised learning 

techniques. We further show 

that the meta-learned 

unsupervised update rule 

generalizes to train networks 

with different widths, depths, 

and nonlinearities. It also 

generalizes to train on data with 

randomly permuted input 

dimensions and even 

generalizes from image datasets 

to a text task 

TITLE AUTHOR 
PUB. & 

YEAR 
CONCLUSION FUTURE WORK 

A Survey of 

Artificial 

Intelligence for 

Prognostics 

Mark Schwabacher   

Kai Goebel 

ICLR 2019 They concluded that 

prognostics is extremely 

difficult, and noted that 

although much research had 

been done in the area, we were 

not aware of any deployed 

prognostic systems that take 

advantage of measured 

characteristics of the systems 

being monitored (but there are 

of course deployed life usage 

models). In the two years 

since then, we have been 

encouraged to see that more 

researchers have gotten to the 

point of building prototype 

systems that make predictions 

of remaining useful life. Other 

researches have built 

prototype systems that 

estimate the current level of 

degradation on a numerical 

scale, without making the final 

step of predicting the 

remaining useful life (Brown 

et al., 2006. 

The question of what to do after 

detecting a failure precursor. 

The research in AI planning 

and scheduling could be very 

relevant to planning 

maintenance actions or 

replanning the mission. Some 

research has been done in 

automatically planning the 

recovery actions to take after 

diagnosing a failure 

Verification and validation 

(V&V). The complexity of AI 

systems makes them very 

difficult to verify and validate 

before deployment. AIbased 

V&V may offer the potential to 

help solve this problem. Some 

research has been done in using 

the AI approach to verifying 

diagnostics models 

TITLE AUTHOR 
PUB. & 

YEAR 
CONCLUSION FUTURE WORK 

Challenging 

Common 

Assumptions in 

the Unsupervised 

Learning of 

Disentangled 

Representations 

Francesco Locatello 

Stefan Bauer 

Mario Lucic 

Gunnar Rätsch 

Sylvain Gelly 

Bernhard Schölkopf 

Olivier Bachem 

PMLR 2019 First theoretically show that 

the unsupervised learning of 

disentangled representations is 

fundamentally impossible 

without inductive biases. We 

then performed a large-scale 

empirical study with six state-

of-the-art disentanglement 

Our study also highlights the 

need for a sound, robust, and 

reproducible experimental setup 

on a diverse set of data sets in 

order to draw valid conclusions. 

We have observed that it is easy 

to draw spurious conclusions 

from experimental results if one 

http://www.jetir.org/
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Table 4.4 : THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE, TRAINABLE NEURAL NETWORKS 

 

 

 

 

 

 

 

Table 4.4 : XLNet: Generalized Autoregressive Pretraining for Language Understanding 

 

methods, six disentanglement 

metrics on seven data sets and 

conclude the following: (i) A 

factorizing aggregated 

posterior does not seem to 

necessarily imply that the 

dimensions in the 

representation uncorrelated. 

(ii) Random seeds and 

hyperparameters seem to 

matter more than the model 

but tuning seem to require 

supervision. (iii) We did not 

observe that increased 

disentanglement implies a 

decreased sample complexity 

of learning downstream tasks 

only considers a subset of 

methods, metrics and data sets. 

Hence, we argue that it is 

crucial for future work to 

perform experiments on a wide 

variety of data sets to see 

whether conclusions and 

insights are generally 

applicable. 

TITLE AUTHOR 
PUB. & 

YEAR 
CONCLUSION FUTURE WORK 

THE LOTTERY 

TICKET 

HYPOTHESIS: 

FINDING 

SPARSE, 

TRAINABLE 

NEURAL 

NETWORKS 

Jonathan Frankle 

Michael Carbin 

ICLR 2019 The initialization that gives 

rise to a winning ticket is 

arranged in a particular sparse 

architecture. Since we uncover 

winning tickets through heavy 

use of training data, we 

hypothesize that the structure 

of our winning tickets encodes 

an inductive bias customized 

to the learning task at hand. 

Cohen & Shashua (2016) 

show that the inductive bias 

embedded in the structure of a 

deep network determines the 

kinds of data that it can 

separate more parameter-

efficiently than can a shallow 

network; although Cohen & 

Shashua (2016) focus on the 

pooling geometry of 

convolutional networks, a 

similar effect may be at play 

with the structure of winning 

tickets, allowing them to learn 

even when heavily pruned. 

The winning tickets we find 

have initializations that allow 

them to match the performance 

of the unpruned networks at 

sizes too small for randomly-

initialized networks to do the 

same. In future work, we intend 

to study the properties of these 

initializations that, in concert 

with the inductive biases of the 

pruned network architectures, 

make these networks 

particularly adept at learning. 

On deeper networks (Resnet-18 

and VGG-19), iterative pruning 

is unable to find winning tickets 

unless we train the networks 

with learning rate warmup. In 

future work, we plan to explore 

why warmup is necessary and 

whether other improvements to 

our scheme for identifying 

winning tickets could obviate 

the need for these 

hyperparameter modifications 

TITLE AUTHOR PUB. & YEAR CONCLUSION FUTURE WORK 

XLNet: 

Generalized 

Autoregressive 

Pretraining for 

Language 

Understanding 

Zhilin Yang 

Zihang Dai 

Yiming Yang 

Jaime Carbonell 

Ruslan 

Salakhutdinov 

Quoc V. Le 

arXiv:1906.08237v1 

[cs.CL] 19 Jun 2019 

XLNet is a generalized AR 

pretraining method that uses 

a permutation language 

modeling objective to 

combine the advantages of 

AR and AE methods. The 

neural architecture of XLNet 

is developed to work 

seamlessly with the AR 

objective, including 

integrating Transformer-XL 

and careful design of the 

we envision applications of 

XLNet to a wider set of tasks 

such as vision and 

reinforcement learning. 
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two-stream attention 

mechanism. XLNet achieves 

state-of-the-art results 

various tasks with 

substantial improvement. In 

the future,  
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