A CLASS OF UNIVALENT FUNCTIONS WITH NEGATIVE MISSING EVEN COEFFICIENTS DEFINED BY SALAGEAN DERIVATIVE

AMRUTA PATIL ${ }^{1}$, S. M. KHAIRNAR ${ }^{2}$ AND B.R. AHIRRAO ${ }^{3}$
${ }^{1}$ Department of Mathematics, AISSMS, Institute of Information Technology, Shivajinagar, Pune - 411001,, India
2 Department of Engineering Sciences, D. Y. Patil School of Engineering, Lohegaon-411047, Pune, India
${ }^{3}$ Department of Mathematics, Z. B. Patil College, Dhule - 424002, India.

Abstract

In this article we have define a subclass $s(\gamma, \alpha, \mu, \lambda)$ of univalent functions with negative odd coefficients defined by Salagean derivative operator in the unit disk $U=\{z \in C:|z|<1\}$. We have obtained different properties like coefficient inequality distribution theorem, radii of starlikeness, convexity, close to convexity and close to starlikeness and hadamard product for class $s(\gamma, \alpha, \mu, \lambda)$.

Keywords : Univalent function, Salagean derivative, Distribution theorem, Closure theorem.

1. Introduction

A denote the class of function of the form

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}(1)
$$

which are analytic and univalent in open unit disk $U=\{z \in C:|z|<1\}$. $f(z)$ is given by (1) and $g(z)$ is in class A defined by

$$
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k},(2)
$$

then Hadamard product of f and g is

$$
\left(f^{*} g\right)(z)=z+\sum_{k=2}^{\infty}\left(a_{k} b_{k}\right) z^{k}, \quad z \in U .(3)
$$

Let S denote the subclass of A consisting of a function of the form,

$$
\begin{equation*}
f(z)=z-\sum_{k=1}^{\infty} a_{2 k+1} z^{2 k+1}, a_{2 k+1} \geq 0 . \tag{4}
\end{equation*}
$$

aim to study the subclass $S(\gamma, \alpha, \mu, \lambda)$ consisting of function $f \in S$ and satisfying,

$$
\left|\frac{\gamma\left((D(z))^{\prime}-\frac{D(z)}{z}\right)}{\alpha(D(z))^{\prime}+(1-\gamma) \frac{D(z)}{z}}\right|<\mu, \quad z \in U(5)
$$

for $0 \leq \gamma<1,0 \leq \alpha<1,0<\mu<1$ and $D(z)$ is Salagean derivative defined by

$$
\begin{gather*}
D^{0} f(z)=f(z), \quad F^{1} f(z)=z f^{1}(z) \cdots \\
\cdots D(z)=D\left(D^{\lambda-1} f(z)\right)=z-\sum_{k=1}^{\infty}(2 k+1)^{2 k+1} z^{2 k+1} . \tag{6}
\end{gather*}
$$

2. Coefficient Inequality

In the following theorem we obtain a necessary and sufficient condition for function to be class $S(v, \alpha, \mu, \lambda)$.
Theorem 2.1 : Let function f defined by (4). Then $f \in S(\gamma, \alpha, \lambda)$ if and only if

$$
\sum_{k=1}^{\infty}[2 k \gamma+\mu(\alpha(2 k+1)+(1-\gamma))](2 k+1)^{2 k+1} \leq \mu(\alpha+(1-\gamma))
$$

where $0<\mu<1,0 \leq \gamma<1,0 \leq \alpha<1$ and $\gamma>-1$. The result is sharp for the function

$$
f(z)=z-\frac{\mu(\alpha+1-\gamma)}{[2 k \gamma+\mu((2 k+1) \alpha+(1-\gamma))](2 k+1)^{\lambda}} z^{2 k+1}, k \geq 1
$$

Proof: Suppose that the inequality holds true and $|z|=1$. Then we obtain

$$
\begin{aligned}
& \left|\gamma(D(z))^{\prime}-\frac{D(z)}{z}\right|-\mu\left|\alpha(D(z))^{\prime}+(1-\gamma) \frac{D(z)}{z}\right| \\
& =\left|\sum_{k=1}^{\infty} \gamma(-2 k)(2 k+1)^{2 k+1} z^{2 k}\right| \\
& \leq \sum_{k=1}^{\infty}(2 k+1)^{\lambda}[2 k \gamma+\mu((2 k+1) \alpha+1-\gamma)] a_{2 k+1}-\mu(\alpha+(1-\gamma)) \leq 0 .
\end{aligned}
$$

Hence by maximum modulus principle $f \in S(\gamma, \alpha, \mu, \lambda)$.
assume that $f \in S(\gamma, \alpha, \mu, \lambda)$ so that

$$
\left|\frac{\gamma(D())^{\prime}-\frac{D(z)}{z}}{\alpha(D(z))^{\prime}+(1-\gamma) \frac{D(z)}{z}}\right|<\mu, \quad z \in U .
$$

Hence

$$
\left|\gamma(D(z))^{\prime}-\frac{D(z)}{z}\right|<\mu\left|\alpha(D(z))^{\prime}+(1-\gamma) \frac{D(z)}{z}\right| .
$$

Thus,

$$
\sum_{k=1}^{\infty}[2 k \gamma+\mu(\alpha(2 k+1)+(1-\gamma))](2 k+1)^{2 k+1} \leq \mu(\alpha+(1-\gamma))
$$

Therefore,

$$
a_{2 k+1} \leq \frac{\mu(\alpha+(1-\gamma))}{[2 k \gamma+\mu(\alpha(2 k+1)+(1-\gamma))](2 k+1)^{\lambda}} .
$$

Corollary 2.1 : Let the function $f \in S(\gamma, \alpha, \mu, \lambda)$ then

$$
a_{2 k+1} \leq \frac{\mu(\alpha+(1-\gamma))}{[2(\gamma+\mu(\alpha(2 k+1)+(1-\gamma)))](2 k+1)^{\lambda}} .
$$

3. Distortion and Covering Theorem

We introduce the growth and distortion theorems for the functions in the class $S(\gamma, \alpha, \mu, \lambda)$.
Theorem 3.1 : Let function $f \in S(\gamma, \alpha, \mu, \lambda)$ then,

The result is sharp to attained

$$
f(z)=z-\frac{\mu(\alpha+(1-\gamma))}{(2 \gamma+\mu(3 \alpha+1-\gamma)) 3^{z^{2}}}{ }^{3} .
$$

Proof: Let

$$
\begin{aligned}
f(z) & =z-\sum_{k=1}^{\infty} a_{2 k+1} z^{2 k+1} \\
|f(z)| & =\left|z-\sum_{k=1}^{\infty} a_{2 k+1} z^{2 k+1}\right| \\
& \leq|z|+\sum_{k=1}^{\infty} a_{2 k+1}\left|z^{2 k+1}\right| \\
|f(z)| & \leq|z|+|z|^{3} \sum_{k=1}^{\infty} a_{2 k+1} .
\end{aligned}
$$

By Theorem 2.1, we get

$$
\sum_{k=1}^{\infty} a_{2 k+1} \leq \frac{\mu(\alpha+(1-\gamma))}{(2 \gamma+\mu(3 \alpha+1-\gamma)) 3^{\lambda}} .(8)
$$

Thus

$$
|f(z)| \leq|z|+\frac{\mu(\alpha+(1-\gamma))}{(2 \gamma+\mu(3 \alpha+1-\gamma)) 3^{\lambda}}|z|^{3} .
$$

Also

$$
|f(z)| \geq|z|-\frac{\mu(\alpha+(1-\gamma))}{(2 \gamma+\mu(3 \alpha+1-\gamma)) 3^{\lambda}}|z|^{3} .
$$

Therefore,

$$
|z|-\frac{\mu(\alpha+(1-\gamma))}{(2 \gamma+\mu(3 \alpha+1-\gamma)) 3^{\lambda}|z|^{3} \leq|f(z)| \leq|z|+\frac{\mu(\alpha+(1-\gamma))}{(2 \gamma+\mu(3 \alpha+1-\gamma)) 3^{\lambda}} . . . ~ . ~}
$$

Theorem 3.2 : Let $f \in S(\gamma, \alpha, \mu, \lambda)$ then,

$$
1-\frac{\mu(\alpha+(1-\gamma))}{[2 \gamma+\mu(3 \alpha+1-\gamma)] 3^{\lambda}}|z|^{2} \leq\left|f^{\prime}(z)\right| \leq 1+\frac{\mu(\alpha+(1-\gamma))}{[2 \gamma+\mu(3 \alpha+1-\gamma)] 3^{\lambda}}| |^{2}
$$

with equality for,

$$
f(z)=z-\frac{\mu(\alpha+(1-\gamma))}{[2 \gamma+\mu(3 \alpha+1-\gamma)] 3^{z^{2}}}{ }^{3} .
$$

Proof : Note that

$$
\begin{aligned}
& \quad 3^{\lambda}[2 \gamma+\mu(3 \alpha+1-\gamma)] \sum_{k=1}^{\infty}(2 k+1) a_{2 k+1} \\
& \leq \sum_{k=1}^{\infty}(2 k+1)[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)](2 k+1)^{2 k+1} \\
& \leq \mu(\alpha+1-\gamma) . \\
& \therefore \quad \sum_{k=1}^{\infty}(2 k+1) a_{2 k+1} \leq \frac{\mu(\alpha+1-\gamma)}{[2 \gamma+\mu(3 \alpha+1-\gamma)] 3^{\lambda}} .(9)
\end{aligned}
$$

Theorem 2.1,

$$
\left|f^{\prime}(z)\right|=\left|1-\sum_{k=1}^{\infty}(2 k+1) a_{2 k+1} z^{2 k}\right|
$$

$$
\leq \quad 1+|z|^{2} \sum_{k=1}^{\infty}(2 k+1) a_{2 k+1} .
$$

From (9)

$$
\left|f^{\prime}(z)\right| \leq 1+\frac{\mu(\alpha+1-\gamma)}{[2 \gamma+\mu(3 \alpha+1-\gamma)] 3^{\lambda}}|z|^{2} .(10)
$$

Similarly,

$$
\begin{array}{r}
\left|f^{\prime}(z)\right|=\left|1-\sum_{k=1}^{\infty}(2 k+1) a_{2 k+1} z^{2 k}\right| \\
\left|f^{\prime}(z)\right| \geq 1-\frac{\mu(\alpha+1-\gamma)}{[2 \gamma+\mu(3 \alpha+1-\gamma)] 3^{\lambda}}|z|^{2} .(11)
\end{array}
$$

By combining (10) and (11) we get,

$$
1-\frac{\mu(\alpha+1-\gamma)}{[2 \gamma+\mu(3 \alpha+1-\gamma)] 3^{\lambda}}|z|^{2} \leq\left|f^{\prime}(z)\right| \leq 1+\frac{\mu(\alpha+1-\gamma)}{[2 \alpha+\mu(3 \alpha+1-\gamma)]}|z|^{2} .
$$

4. Radii of Starlikeness, Convexity, Close to Convexity and Close to Starlikeness

Theorem 4.1 : Let $f \in S(\gamma, \alpha, \mu, \lambda)$ then f is starlike in $|z|<R_{1}$ of order $\delta, 0 \leq \delta<1$ where,

$$
\begin{equation*}
R_{1}=\inf _{k}\left\{\frac{(1-\delta)(2 k+1)^{\lambda}[2 k \gamma+\mu((2 k+1) \alpha+1-\gamma)]}{(2 k+1-\delta) \mu(\alpha+1-\gamma)}\right\}^{1 / 2 k}, k \geq 1 . \tag{12}
\end{equation*}
$$

Proof : Let f is starlike of order $=d e l, 0 \leq \delta<1$ if $\operatorname{Re}\left\{\frac{z f^{f}(z)}{z}\right\}>\delta$.
is enough to show that,

$$
\begin{aligned}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| & =\left|\begin{array}{|l}
\frac{1-\sum_{k=1}^{\infty}(2 k+1) a_{2 k+1} z^{2 k}}{1-\sum_{k=1}^{\infty} a_{2 k+1} z^{2 k}}-1
\end{array}\right| \\
& =\left|\begin{array}{l}
-\sum_{k=1}^{\infty} 2 k a_{2 k+1} z^{2 k} \\
1-\sum_{k=1}^{\infty} a_{2 k+1} z^{2 k}
\end{array}\right| \\
& \leq \frac{1-\sum_{k=1}^{\infty} a_{2 k+1}|z|^{2 k}}{}
\end{aligned}
$$

Thus

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\delta .
$$

That is

$$
\begin{align*}
& \sum_{k=1}^{\infty}(2 k) a_{2 k+1}|z|^{2 k} \\
& 1-\sum_{k=1}^{\infty} a_{2 k+1}|z|^{2 k} \\
& \sum_{k=1}^{\infty}(2 k+1-\delta) a_{2 k+1}|z|^{2 k} \leq 1-\delta \\
\therefore \quad & \sum_{k=1}^{\infty} \frac{(2 k+1-\delta)}{(1-\delta)} a_{2 k+1}|z|^{2 k} \leq 1 .(
\end{align*}
$$

By Theorem 2.1, equation (13) becomes true if,

$$
\frac{(2 k+1-\delta)}{(1-\delta)}|z|^{2 k} \leq \frac{(2 k+1)^{\lambda}[2 k \gamma+\mu((2 k+1) \alpha+1-\gamma)]}{\mu(\alpha+1-\gamma)}
$$

or if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\delta)(2 k+1)^{\lambda}[2 k \gamma+\mu((2 k+1) \alpha+1-\gamma)]}{(2 k+1-\delta) \mu(\alpha+(1-\gamma))}\right]^{\frac{1}{2 k}}, k \geq 1 . \tag{14}
\end{equation*}
$$

Theorem 4.2 : Let $f \in S(\gamma, \alpha, \mu, \lambda)$. Then f is convex in $|z|<R_{2}$ of order $\delta, 0 \leq \delta<1$ where

$$
\begin{equation*}
R_{2}=\inf _{k}\left\{\frac{(1-\delta)(2 k+1)^{\lambda}[2 k \gamma+\mu((2 k+1) \alpha+1-\gamma)]}{(2 k+1)(2 k+1-\delta) \mu(\alpha+1-\gamma)}\right\}, \quad k \geq 1 . \tag{15}
\end{equation*}
$$

Proof : Let f is convex in $|z|<R_{2}$ of order $\delta, 0 \leq \delta<1$ if

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\delta
$$

Thus it is enough to show that

$$
\begin{aligned}
&\left|\frac{z f^{\prime \prime}(z)}{f(z)}\right|=\left|\frac{-\sum_{k=1}^{\infty} 2 k(2 k+1) a_{2 k+1} z^{2 k}}{1-\sum_{k=1}^{\infty}(2 k+1) a_{2 k+1} z^{2 k}}\right| \\
& \quad \leq \frac{\sum_{k=1}^{\infty} 2 k(2 k+1) a_{2 k+1}|z|^{2 k}}{1-\sum_{k=1}^{\infty}(2 k+1) a_{2 k+1}|z|^{2 k}}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1-\delta \text { if } \quad \sum_{k=1}^{\infty} \frac{(2 k+1)(2 k+1-\delta) a_{2 k+1}|z|^{2 k}}{1-\delta} \leq 1 .(\tag{16}
\end{equation*}
$$

Hence by Theorem 2.1, (16) will be true if

$$
\frac{(2 k+1)(2 k+1-\delta)|z|^{2 k}}{1-\delta} \leq \frac{[2 k \gamma+\mu((2 k+1) \alpha+1-\gamma)](2 k+1)^{\lambda}}{\mu(\alpha+1-\gamma)}, k \geq 1
$$

or if,

$$
\begin{equation*}
|z|^{2 k} \leq\left[\frac{(1-\delta)(2 k+1)^{\lambda}[2 k \gamma+((2 k+1) \alpha+1-\gamma)]}{(2 k+1)(2 k+1-\delta) \mu(\alpha+1-\gamma)}\right], k \geq 1 . \tag{17}
\end{equation*}
$$

Theorem 4.3 : Let $f \in S(\gamma, \alpha, \mu, \lambda)$. Then f is close to convex in $|z|<R_{3}$ of order $\delta, 0 \leq \delta<1$, where,

$$
\begin{equation*}
R_{3}=\inf _{k}\left\{\frac{(1-\delta)(2 k+1)^{\lambda+1}[2 k \gamma+\mu(\alpha(2 k+1)+1-\alpha)]}{\mu(\alpha+1-\gamma)}\right\}^{1 / 2 k}, k \geq 1 \tag{18}
\end{equation*}
$$

Proof : Let f is close to convex in $|z|<R_{3}$ of order $\delta, 0 \leq \delta<1$ if $\operatorname{Re}\left\{f^{\prime}(z)\right\}>\delta$.
is enough to show that,

$$
\begin{aligned}
\left|f^{\prime}(z)-1\right| & =\left|-\sum_{k=1}^{\infty}(2 k+1) a_{2 k+1} z^{2 k}\right| \\
& \leq \sum_{k=1}^{\infty}(2 k+1) a_{2 k+1}|z|^{2 k} .
\end{aligned}
$$

Thus

$$
\left|f^{\prime}(z)-1\right| \leq 1-\delta
$$

if

$$
\sum_{k=1}^{\infty} \frac{(2 k+1) a_{2 k+1}|z|^{2 k}}{1-\delta} \leq 1 .(19)
$$

Hence by Theorem 2.1, (19) will be true if

$$
\frac{(2 k+1)|z|^{2 k}}{1-\delta} \leq \frac{(2 k+1)^{\lambda}[2 k \gamma+\mu(\alpha(2 k+1)+1-\alpha)]}{\mu(\alpha+1-\gamma)}
$$

or if

$$
|z| \leq\left[\frac{(1-\delta)(2 k+1)^{\lambda+1}[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)]}{\mu(\alpha+1-\gamma)}\right]^{1 / 2 k}, k \geq 1 .(20)
$$

Theorem 4.4 : Let $f \in S(\gamma, \alpha, \mu, \lambda)$. Then f is close to starlike in $|z|<R_{4}$ of order $\delta, 0 \leq \delta<1$ where

$$
\begin{array}{r}
R_{4}=\inf _{k}\left\{\frac{(1-\delta)(2 k+1)^{\lambda}[2 k \gamma+\mu(\alpha(2 k+1}{\mu(\alpha+1-\gamma)}\right. \\
f \in S(\gamma, \alpha, \mu, \lambda) \text { is close to starlike in }|z|<i \\
\operatorname{Re}\left\{\frac{f(z)}{z}\right\}>\delta .
\end{array}
$$

It is enough to show that,

$$
\begin{aligned}
& \left|\frac{f(z)}{z}-1\right|=\sum_{k=1}^{\infty} a_{2 k+1} z^{2 k} . \\
& \left|\frac{f(z)}{z}-1\right| \leq \sum_{k=1}^{\infty} a_{2 k+1}|z|^{2 k} .
\end{aligned}
$$

Thus

$$
\left|\frac{f(z)}{z}-1\right| \leq 1-\delta \text { if } \quad \sum_{k=1}^{\infty} a_{2 k+1}|z|^{2 k} \leq 1-\delta .(22)
$$

Hence by Theorem 2.1, (22) will be true if

$$
\frac{|z|^{2 k}}{1-\delta} \leq \frac{[2 k \gamma+\mu(\alpha(2 k+1)+1-\alpha)](2 k+1)^{\lambda}}{\mu(\alpha+1-\gamma)}
$$

or if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\delta)(2 k+1)^{\lambda}[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)]}{\mu(\alpha+1-\gamma)}\right]^{1 / 2 k}, \mathfrak{c} k \geq 1 . \tag{23}
\end{equation*}
$$

5. Closure Theorem

Theorem : Let $f_{i} \in S(\gamma, \alpha, \mu, \delta), i=1,2, \ldots, s$. Then

$$
g(z)=\sum_{i=1}^{S} c_{i} f_{i}(z) \in S(\gamma, \alpha, \mu, \lambda) .
$$

For $f_{i}(z)=z-\sum_{k=1}^{\infty} a_{k, l} z^{2 k+1}$ where $\sum_{i=1}^{S} c_{i}=1$.

Proof :

$$
\begin{aligned}
g(z) & =\sum_{j=1}^{S} c_{l i}(z) \\
& =z-\sum_{k=1}^{\infty} \sum_{i=1}^{s} c_{i} a_{k, l} z^{2 k+1} \\
& =z-\sum_{k=1}^{\infty} e_{z^{2}} z^{2 k+1}
\end{aligned}
$$

where

$$
e_{k}=\sum_{i=1}^{S} c_{i} a_{k, i}
$$

Thus $g(z) \in S(\gamma, \alpha, \mu, \lambda)$ if

$$
\sum_{k=1}^{\infty} \frac{[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)](2 k+1)^{\lambda}}{\mu(\alpha+1-\gamma)} e_{k} \leq 1
$$

that is if

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \sum_{i=1}^{S} \frac{[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)](2 k+1)^{\lambda}}{\mu(\alpha-\gamma)} c_{i} a_{k, i} \\
& =\sum_{i=1}^{S} c_{i} \sum_{k=1}^{\infty} \frac{[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)](2 k+1)^{\lambda}}{\mu(\alpha+1-\gamma)} a_{k, i} \leq \sum_{i=1}^{S} c_{i}=1 .
\end{aligned}
$$

Theorem 5.2 : Let $f, g \in S(\gamma, \alpha, \mu, \lambda)$. Then

$$
h(z)=Z-\sum_{k=1}^{\infty}\left(a_{2 k+1}^{2}+b_{2 k+1}^{2}\right) Z^{2 k+1}
$$

belongs to $S(\gamma, \alpha, \ell, \lambda)$ where

$$
\lambda \geq \frac{4 k \gamma \mu^{2}(\alpha+1-\gamma)}{[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)]^{2}(2 k+1)^{\lambda}-2 \mu^{2}(\alpha+1-\gamma)(\alpha(2 k+1)+1-\gamma)} .
$$

Proof: Let $f, g \in S(\gamma, \alpha, \mu, \lambda)$, so by Theorem 2.1

$$
\sum_{k=1}^{\infty}\left\{\frac{[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)](2 k+1)^{\lambda}}{\mu(\alpha+1-\gamma)} a_{2 k+1}\right\}^{2} \leq 1
$$

and

$$
\sum_{k=1}^{\infty}\left\{\frac{[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)](2 k+1)^{\lambda}}{\mu(\alpha+1-\gamma)} b_{2 k+1}\right\}^{2} \leq 1 .
$$

From above equations we get,

$$
\begin{align*}
& \quad \sum_{k=1}^{\infty}\left\{\frac{[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)](2 k+1)^{\lambda}}{\mu(\alpha+1-\gamma)}\right\}^{2}\left(a_{2 k+1}^{2}+b_{2 k+1}^{2}\right) \leq 2 . \\
& \sum_{k=1}^{\infty} \frac{1}{2}\left\{\frac{[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)](2 k+1)^{\lambda}}{\mu(\alpha+1-\gamma)}\right\}^{2}\left(a_{2 k+1}^{2}+b_{2 k+1}^{2}\right) \leq 1 .(2 \tag{24}
\end{align*}
$$

But $h(z) \in S(\gamma, \alpha, \ell, \lambda)$ if and only if,

$$
\sum_{k=1}^{\infty} \frac{[2 k \gamma+\ell(\alpha(2 k+1)+1-\gamma)](2 k+1)^{\lambda}}{\ell(\alpha+1-\gamma)}\left(a_{2 k+1}^{2}+b_{2 k+1}^{2}\right) \leq 1(25)
$$

where $0<\ell<1$, however (24) implies (25) of

$$
\frac{[2 k \gamma+\ell(\alpha(2 k+1)+1-\gamma)](2 k+1)^{\lambda}}{\ell(\alpha+1-\gamma)} \leq \frac{1}{2}\left[\frac{[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)](2 k+1)}{\mu(\alpha+1-\gamma)}\right]^{2}
$$

we get

$$
\ell \geq \frac{4 k \gamma \mu^{2}(\alpha+1-\gamma)}{[2 k \gamma+\mu(\alpha(2 k+1)+1-\gamma)]^{2}(2 k+1)^{\lambda}-2 \mu^{2}(\alpha+1-\gamma)(\alpha(2 k+1)+1-\gamma)} .
$$

References

[1] Padmanabhan K. S. and Ganeshan M. S., Convolution of certain class of univalent functions with negative coefficients, Indian J. Pure and Appl. Math., 19(9) (Sept. 1998), 880-889.
[2] Andrews G. E., Askey R.and Roy R., Special Functions, Cambridge University Press, Cambridge, U.K.(1999).
[3] Darus M., Some subclasses of analytic functions, J. Math. Comp. Sci. (Math.Ser.), 16(8) (2003), 121-126.
[4] Atshan W. G. and Kulkarni S. R., On a new class of analytic functions with negative coefficients, Analele Universitătii Oradea, Fasc. Mathematica, Tom, XVI (2009), 43-51.
[5] Atshan W. G. and Ruaa Muslim Abd, New class of univalent functions with negative coefficients defied by Ruscheweyh derivative, Gen. Math. Notes, 18(2) (2013), 77-91.

