
© 2019 JETIR June 2019, Volume 6, Issue 6                                          www.jetir.org (ISSN-2349-5162) 

JETIR1908782 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 255 
 

A CLASS OF UNIVALENT FUNCTIONS WITH 

NEGATIVE MISSING EVEN COEFFICIENTS 

DEFINED BY SALAGEAN DERIVATIVE  

AMRUTA PATIL
1
, S. M. KHAIRNAR

2
 AND B.R. AHIRRAO

3  

 1
 Department of Mathematics, AISSMS, 

Institute of Information Technology, 

Shivajinagar, Pune - 411001„ India  
2
 Department of Engineering Sciences,  

D. Y. Patil School of Engineering, Lohegaon-411047, Pune, India 
3
 Department of Mathematics,  

Z. B. Patil College, Dhule - 424002, India. 

Abstract 

In this article we have define a subclass s(,,,) of univalent functions with negative odd coefficients defined by 

Salagean derivative operator in the unit disk U={zC:|z|<1}. We have obtained different properties like coefficient 

inequality distribution theorem, radii of starlikeness, convexity, close to convexity and close to starlikeness and 

hadamard product for class s(,,,).  
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1. Introduction  

A denote the class of function of the form  

 f(z)=z+ 
k=2


 a

k
zk(1) 

which are analytic and univalent in open unit disk U={zC:|z|<1}.  

f(z) is given by (1) and g(z) is in class A defined by  

 g(z)=z+ 
k=2


 b

k
zk,(2) 

then Hadamard product of f and g is  

 (f*g)(z)=z+ 
k=2


 (a

k
b

k
)zk,‘  zU.(3) 

Let S denote the subclass of A consisting of a function of the form,  

 f(z)=z 
k=1


 a

2k+1
z2k+1,  a

2k+1
0.(4) 

aim to study the subclass S(,,,) consisting of function fS and satisfying,  

 









 

 








(D(z))' 
D(z)

z

(D(z))'+(1) 
D(z)

z

<,   zU(5)  

for 0<1,0<1,0<<1 and D(z) is Salagean derivative defined by  

 D0f(z)=f(z),     F1f(z)=zf1(z)  

 D(z)=D(D1f(z))=z 
k=1


 (2k+1)2k+1z2k+1.(6) 
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2. Coefficient Inequality  

In the following theorem we obtain a necessary and sufficient condition for function to be class S(v,,,).  

Theorem 2.1 : Let function f defined by (4). Then f S(,, ) if and only if  

 
k=1


 [2k+((2k+1)+(1))](2k+1)2k+1(+(1)),  

where 0<<1,0<1,0<1 and >1. The result is sharp for the function  

 f(z)=z 
(+1)

[2k+((2k+1)+(1))](2k+1)
z2k+1,  k1. 

Proof : Suppose that the inequality holds true and |z|=1. Then we obtain  

 

   








(D(z))' 
D(z)

z
 









(D(z))'+(1) 
D(z)

z
 

   = 











 
k=1


 (2k)(2k+1)2k+1z2k  

    

    
k=1


 (2k+1)[2k+((2k+1)+1)]a

2k+1
(+(1))0. 

Hence by maximum modulus principle f S(,,,).  

assume that f S(,,,) so that  

 









 

(D())' 
D(z)

z

(D(z))'+(1) 
D(z)

z

<,   zU.  

Hence  

 








(D(z))' 
D(z)

z
< 









(D(z))'+(1) 
D(z)

z
. 

Thus,  

 
k=1


 [2k+((2k+1)+(1))](2k+1)2k+1(+(1)). 

Therefore,  

 a
2k+1

 
(+(1))

[2k+((2k+1)+(1))](2k+1)
. 

Corollary 2.1 : Let the function fS(,,,) then  

 a
2k+1

 
(+(1))

[2(+((2k+1)+(1)))](2k+1)
. 

3. Distortion and Covering Theorem  

We introduce the growth and distortion theorems for the functions in the class S(,,,).  

Theorem 3.1 : Let function f S(,,,) then,  

 |z| 
(+(1))

(2+(3+1))3
|f(z)||z|+ 

(+(1))

(2+(3+1))3
|z|3.(7) 

The result is sharp to attained  

 f(z)=z 
(+(1))

(2+(3+1))3
z3. 

Proof : Let  
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 f(z) = z 
k=1


 a

2k+1
z2k+1 

 |f(z)| = 











z 
k=1


 a

2k+1
z2k+1  

   |z|+ 
k=1


 a

2k+1
|z2k+1| 

 |f(z)|  |z|+|z|3 
k=1


 a

2k+1
. 

By Theorem 2.1, we get  

 
k=1


 a

2k+1
 

(+(1))

(2+(3+1))3
.(8) 

Thus  

 |f(z)||z|+ 
(+(1))

(2+(3+1))3
|z|3. 

Also  

 |f(z)||z| 
(+(1))

(2+(3+1))3
|z|3. 

Therefore,  

 |z| 
(+(1))

(2+(3+1))3
|z|3|f(z)||z|+ 

(+(1))

(2+(3+1))3
. 

Theorem 3.2 : Let f S(,,,) then,  

 1 
(+(1))

[2+(3+1)]3
|z|2|f'(z)|1+ 

(+(1))

[2+(3+1)]3
|z|2 

with equality for,  

 f(z)=z 
(+(1))

[2+(3+1)]3
z3. 

Proof : Note that  

 

   3[2+(3+1)] 
k=1


 (2k+1)a

2k+1
 

    
k=1


 (2k+1)[2k+((2k+1)+1)](2k+1)2k+1 

   (+1). 

    
k=1


 (2k+1)a

2k+1
 

(+1)

[2+(3+1)]3
.(9) 

Theorem 2.1,  

 

 |f'(z)| = 











1 
k=1


 (2k+1)a

2k+1
z2k  
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   1+|z|2 
k=1


 (2k+1)a

2k+1
. 

From (9)  

 |f'(z)|1+ 
(+1)

[2+(3+1)]3
|z|2.(10) 

Similarly,  

 |f'(z)|= 











1 
k=1


 (2k+1)a

2k+1
z2k  

 |f'(z)|1 
(+1)

[2+(3+1)]3
  |z|2.(11) 

By combining (10) and (11) we get,  

 1 
(+1)

[2+(3+1)]3
|z|2|f'(z)|1+ 

(+1)

[2+(3+1)]
|z|2. 

4. Radii of Starlikeness, Convexity, Close to Convexity and Close to Starlikeness 

Theorem 4.1 : Let f S(,,,) then f is starlike in |z|<R
1
 of order ,0<1 where,  

 R
1
=inf

k
 








 
(1)(2k+1)[2k+((2k+1)+1)]

(2k+1)(+1)

1/2k

,  k1.(12) 

Proof : Let f is starlike of order =del,0<1 if Re 








 
zf'(z)

z
>.  

is enough to show that,  

 

 








 
zf'(z)

f(z)
1  = 











 

1 
k=1


 (2k+1)a

2k+1
z2k

1 
k=1


 a

2k+1
z2k

1  

  = 











 

 
k=1


 2ka

2k+1
z2k

1 
k=1


 a

2k+1
z2k

 

   

 
k=1


 2ka

2k+1
|z|2k

1 
k=1


 a

2k+1
|z|2k

. 

Thus  

 








 
zf'(z)

f(z)
1 1. 

That is  
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k=1


 (2k)a

2k+1
|z|2k

1 
k=1


 a

2k+1
|z|2k

1 

 
k=1


 (2k+1)a

2k+1
|z|2k1 

    
k=1


  

(2k+1)

(1)
a

2k+1
|z|2k1.(13) 

By Theorem 2.1, equation (13) becomes true if,  

 
(2k+1)

(1)
|z|2k 

(2k+1)[2k+((2k+1)+1)]

(+1)
 

or if  

 |z| 








 
(1)(2k+1)[2k+((2k+1)+1)]

(2k+1)(+(1))

 
1

2k

,  k1.(14) 

Theorem 4.2 : Let f S(,,,). Then f is convex in |z|<R
2
 of order ,0<1 where  

 R
2
=inf

k
 








 
(1)(2k+1)[2k+((2k+1)+1)]

(2k+1)(2k+1)(+1)
,   k1.(15) 

Proof : Let f is convex in |z|<R
2
 of order ,0<1 if  

 Re 








1+ 
zf''(z)

f'(z)
>. 

Thus it is enough to show that  

 

 








 
zf''(z)

f'(z)
 = 











 

 
k=1


 2k(2k+1)a

2k+1
z2k

1 
k=1


 (2k+1)a

2k+1
z2k

 

   

 
k=1


 2k(2k+1)a

2k+1
|z|2k

1 
k=1


 (2k+1)a

2k+1
|z|2k

. 

Thus  

 








 
zf''(z)

f'(z)
1  if‘  

k=1


  

(2k+1)(2k+1)a
2k+1

|z|2k

1
1.(16) 

Hence by Theorem 2.1, (16) will be true if  

 
(2k+1)(2k+1)|z|2k

1
 

[2k+((2k+1)+1)](2k+1)

(+1)
,k1 

or if,  

 |z|2k 








 
(1)(2k+1)[2k+((2k+1)+1)]

(2k+1)(2k+1)(+1)
,  k1.(17) 

Theorem 4.3 : Let f S(,,,). Then f is close to convex in |z|<R
3
 of order ,0<1, where,  
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 R
3
=inf

k
 








 
(1)(2k+1)+1[2k+((2k+1)+1)]

(+1)

1/2k

,  k1.(18) 

Proof : Let f is close to convex in |z|<R
3
 of order ,0<1 if Re{f'(z)}>.  

is enough to show that,  

 

 |f'(z)1| = 











 
k=1


 (2k+1)a

2k+1
z2k  

   
k=1


 (2k+1)a

2k+1
|z|2k. 

Thus  

 |f'(z)1|1 

if  

 
k=1


  

(2k+1)a
2k+1

|z|2k

1
1.(19) 

Hence by Theorem 2.1, (19) will be true if  

 
(2k+1)|z|2k

1
 

(2k+1)[2k+((2k+1)+1)]

(+1)
 

or if  

 |z| 








 
(1)(2k+1)+1[2k+((2k+1)+1)]

(+1)

1/2k

,k1.(20) 

Theorem 4.4 : Let f S(,,,). Then f is close to starlike in |z|<R
4
 of order ,0<1 where  

 R
4
=inf

k
 








 
(1)(2k+1)[2k+((2k+1)+1)]

(+1)

1/2k

,  k1.(21) 

Proof : Let f S(,,,) is close to starlike in |z|<R
4
 of order ,0<1, if  

 Re 








 
f(z)

z
>. 

It is enough to show that,  

 








 
f(z)

z
1 = 

k=1


 a

2k+1
z2k|. 

 








 
f(z)

z
1  

k=1


 a

2k+1
|z|2k. 

Thus  

 








 
f(z)

z
1 1  if‘   

k=1


 a

2k+1
|z|2k1.(22) 

Hence by Theorem 2.1, (22) will be true if  

 
|z|2k

1
 

[2k+((2k+1)+1)](2k+1)

(+1)
 

or if  

 |z| 








 
(1)(2k+1)[2k+((2k+1)+1)]

(+1)

1/2k

,‘  k1.(23) 
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5. Closure Theorem  

Theorem : Let 𝑓𝑖𝜖 𝑆(𝛾, 𝛼, 𝜇, 𝛿), 𝑖 = 1,2, … , 𝑠. Then  

 g(z)= 
i=1

s
 c

i
f
i
(z)S(,,,).  

For f
i
(z)=z 

k=1


 a

k,i
z2k+1  where 

i=1

s
 c

i
=1.  

Proof :  

 

 g(z) = 
j=1

s
 c

i
f
i
(z) 

  = z 
k=1


  

i=1

s
 c

i
a

k,i
z2k+1  

  = z 
k=1


 e

k
z2k+1 

where  

 e
k
= 

i=1

s
 c

i
a

k,i
.  

Thus g(z)S(,,,) if  

 
k=1


  

[2k+((2k+1)+1)](2k+1)

(+1)
  e

k
1 

that is if  

 

   
k=1


  

i=1

s
  

[2k+((2k+1)+1)](2k+1)

(
1
)

  c
i
a

k,i
 

   = 
i=1

s
 c

i
 
k=1


  

[2k+((2k+1)+1)](2k+1)

(+1)
a

k,i
 

i=1

s
 c

i
=1.  

Theorem 5.2 : Let f, g S(,,,). Then  

 h(z)=Z 
k=1


 (a

2

2k+1+b
2

2k+1)Z
2k+1 

belongs to S(,,,) where  

  
4k2(+1)

[2k+((2k+1)+1)]2(2k+1)22(+1)((2k+1)+1)
. 

Proof : Let f, g S(,,,), so by Theorem 2.1  

 
k=1


  








 
[2k+((2k+1)+1)](2k+1)

(+1)
a

2k+1

2

1 

and  

 
k=1


  








 
[2k+((2k+1)+1)](2k+1)

(+1)
b

2k+1

2

1. 
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From above equations we get,  

 
k=1


  








 
[2k+((2k+1)+1)](2k+1)

(+1)

2

(a
2

2k+1+b
2

2k+1)2. 

 
k=1


  

1

2
 








 
[2k+((2k+1)+1)](2k+1)

(+1)

2

(a
2

2k+1+b
2

2k+1)1.(24) 

But h(z)S(,,,) if and only if,  

 
k=1


  

[2k+((2k+1)+1)](2k+1)

(+1)
(a

2

2k+1+b
2

2k+1)1(25) 

where 0<<1, however (24) implies (25) of  

 
[2k+((2k+1)+1)](2k+1)

(+1)
 

1

2
 








 
[2k+((2k+1)+1)](2k+1)

(+1)

2

 

we get  

  
4k2(+1)

[2k+((2k+1)+1)]2(2k+1)22(+1)((2k+1)+1)
. 
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