
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908799 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 360

Improving Map Reduce Performance using LATE

scheduling in big data

Suyash Mishra

Computer sciences

Noida International University

Greater Noida, India

Dr Anuranjan Misra

Computer sciences

Noida International University

Greater Noida, India

Dr Suryakant yadav

Computer sciences

Noida International University

Greater Noida, India.

Abstract—The volume of data produced and used in today’s

world has been growing very rapidly which has forced industry

to explore data for better business decision making and incase

profit by focusing more on customer needs. MapReduce is the

core-processing engine of Hadoop, which accommodate rapidly

increasing demands on computing resources required by massive

data sets. Highly scalability of the MapReduce processing, allows

parallel and distributed processing on multiple computing.

Normally Hadoop implementation considers that underline

cluster nodes are same in computing ability, configurations and

storage. However, this homogeneity of cluster is not necessary

every case and performance of MapReduce degrades and suffers

due to various limitations in heterogeneous environments where

underline nodes have different capability. This paper talks about

how in heterogeneous environment, LATE (Longest

Approximate Time to End) scheduling performs better and

efficiently in comparison to other scheduling. LATE can improve

Hadoop response times by almost two times in a clusters.

Keywords—Big data, HDFS, Hadoop, Map-Reduce, Scheduling

Algorithm, LATE.

I. INTRODUCTION

Traditional data storage and processing capabilities were

limited and was dependent on underline hardware

configurations, storage and processing requirements, which

deemed to be very different from today. Due to increase in

data, volume and unstructured data traditional methods and

databases are facing huge threat to ingest and process Big

Data processing and storing demands.

Now a days Industry is focusing and making huge investment

to conclude how to make better use of Big Data and identify

beneficial business insights to lead a better business decisions

.Which help business or industry to increase profit.

MapReduce is a highly scalable programming model able to

process huge volume of data in parallel execution fashion on a

huge number of commodity computing nodes. Google [3] has

developed MapReduce paradigm was later used and

implemented in many open source projects, but the Apache

Hadoop harnessed processing most efficiently.

Now a days Industry is focusing and curious to know about

efficiently utilize Big Data and analyze to identify beneficial

business insights for making them quipped with viable and

better business decisions .Which in turn add value to their

business ,increase profit ,retain customers and make customers

happy with services they are offered.

Advancement in the technology has also brought flood of

unstructured data. Analysis of this data is important to extract

value from the abundance of data available. The rate at which

the data is growing is very high and unpredictable. Businesses

can use this data for multiple purpose. This data is further

utilized for conducting customer trend analysis, customer’s

sentiment analysis or to know customer feedback on service or

product Company is offering. Which can be further converted

into structured data-by-data analyst as per their convenience.

Big data is comprised of huge volume of structured, semi-

structured and unstructured data that used for data analytics

using various methods.

II. HADOOP

Hadoop is an open source-processing engine designed to

compute extremely large unstructured or semi structured

datasets efficiently. Hadoop follows distributed processing

mechanism, which offers resilience and scalability while

processing big data. Primarily Hadoop has two major

constituents HDFS and MapReduce. HDFS (Hadoop

distributed file system) manages data inspired from UNIX file

system responsible for storage management in structured

relational form or unstructured form and in any form in

between similarly. HDFS is a highly distributed file system

ensures highly computation of big data along with scalable

facility. The MapReduce programing model manages

applications on multiple distributed servers or user related

processing task in an efficient manner. This provides an

environment to execute a highly efficient data processing by

harnessing distributed processing feature, which is based on

divide and aggregate paradigm. HDFS gives liberty to user or

application programmer to capitalize unlimited storage need.

Figure1 below depicts both prime components of Hadoop

framework.

Fig. 1. Hadoop compnents

III. PROCESSING OF BIGDATA USING MAPREDUCE

In the MapReduce paradigm, MapReduce [2] has become the

prominent batch-processing model. MapReduce is a very

flexible programming method able to parallel process large

volume efficiently on large number of computing nodes.

MapReduce methodology consisting of map and reduce

functions, which allows application developers to customize

them as per their requirement. Along with providing faster

processing Map Reduce manages node failure and abstracting

design complexity from the programmer.

MapReduce has been developed for effective parallel

processing of big data by breaking the load into independent

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908799 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 361

sub units. Prominent benefit of MapReduce is that it conceals

system level implementations and complexities from

developer by allowing developer just to focus on its objective.

MapReduce is a two-phase approach: Map and Reduce. Every

Map phase takes input files present into various nodes of

distributed file system. If Map function does, co- located with

data partition system will attempt to move data portion to node

where Map function exists with data portion to reduce data

movement. Hence MapReduce backs concept of as “Moving

data closer to compute” to optimize execution time. Post

Map function finishes its processing, reduce function is then

further run on all values having same interim key value and

output key/value pairs as the result. The MapReduce

framework based on master/slave architecture having a one

node acting as master has Job Tracker and several slave nodes,

which runs assigned task, and Tasktrackers, one per node in

the cluster, maintain their status. The Job Tracker acts as

communicator between users who submits the job and the

underline pool of hardware. Job Tracker accepts users

assigned map/reduce jobs to the and further jobs are executed

on sequence of submission first come/first-served basis. The

Job Tracker does resource management required for map,

reduce steps, allocated, and monitor slave nodes executing

allocated task via tasktrackers. The Tasktrackers accepts and

run tasks allocated by JobTracker, manages data movement

among the map, and reduce step.

Whole processing can be elaborated in detail as per below

processing sequence it has been explained in figure2.

1. Map – Input data is first accepted by master node,

which divides data file into smaller datasets, and

move them to slave nodes. A slave node may

reiterate the process leading to a multilevel tree

structure. Map accept similar type of data and gives a

list of output.

2. Map logic execution – Map logic will run once for

every key value and generates output ordered by key

values.

3. Reduce phase execution – the MapReduce system

identify a node to run Reduce function, assigns the

key value to each processor, and provides that node

with all the Map-generated data allocated by same

key value.

4. Execute Reduce code – Reduce is executed only once

for each key value produced by the Map stage.

5. Produce the result – Final output is generated by

consolidating all the Reduce output, and sorts them

by key.

Below diagram Figure2, elaborates word count example

of MapReduce processing.

Fig. 2. Steps of Mapredcue execution

In a homogeneous environment, all nodes have equal

computing speed and disk capacity. In case of node, failure

happens MapReduce attempts to reruns failed tasks on a

different node, which is idle/less-occupied at that moment. In

some instances a node is executing a task very poorly or

slowly known as straggler task, in that case Map Reduce kick-

off a speculative copy of slow running task (“backup task”) on

another node, which can finish task quickly job will be as slow

as the misbehaving task ,if no speculative task is there.

Straggling tasks can also be triggered due to impaired

hardware and slowness This can improve job processing by

44%.In Heterogeneous environment lack of proper mechanism

to address speculative task may increase processing time due

to difference in nodes storage and processing capability.

IV. SPEECULATIVE EXECUTION IN HADOOP

When a node is idle, HADOOP selects that idle node for

processing basis on below three events. Highest priority is

assigned first to failed tasks .Then next priority is given to a

task currently in non-execution status. For maps, nodes having

local data is first picked-up. In last, Hadoop identify a task to

re-run slow running task. Hadoop monitors task passage using

a score between zero and one to pick a speculative task. Input

data read determine map task progress score .However reduce

task who, processing is divided into three steps, each step earn

1/3 of the score:

a) Accept input step, Task receives map outputs.

b) Order step, Sort Map output by key.

c) Reduce step, User-developed logic will be applied on

map results list with each key.

In every stage processing percentage is calculated which

depends upon the processed data . If a task is half completed

then copy step progress score is 1/ 2 * 1/3=1/6 ,While a task

till order step is 1/3 +[1/2*1/3]=1/2 , task till reduce step

scores 1/ 3 + 1/ 3 + [1/ 2 * 1/ 3]) = 5 /6 . Hadoop job tacker

monitors average progress score of each tasks (maps and

reduces) to conclude a maximum time given for speculative

execution. Task beyond the cut-off time is considered as

“Slow” tasks. The speculative scheduling Works efficiently

better is homogenous environments as due to same underline

capacity and processing capability tasks begin and finishes

approximately in same amount times and then speculation

begins for task taking more than cut-off time. FIFO is used to

determine when multiple jobs are running.

Hadoop scheduler adheres below implicit assumptions while

working on speculative scheduling.

a) All nodes are of same processing capacity

b) Due to same processing ability of nodes, each task

will take same amount of time to finish

c) To launch a speculative task on a new node no

additional cost is required, though using this nodes

will be optimally utilized.

d) A task’s progress score dependents on the task it has

completed among copy, sort and reduce phases and

every step spent 1/3 of the total CPU time.

e) Task secure minimum score is likely to be a straggler

task.

f) Tasks using similar jobs among map or reduce

assumed to take same amount of time.

Now above assumption of Hadoop processing works quite

well in Homogeneous environment however, assumptions 1

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908799 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 362

and 2 suffers processing in heterogeneous cluster. However,

Assumptions 3, 4 and 5 can violateds in a homogeneous

environment as well and can contribute performance

degradation. This is why Yahoo disabled speculative tasks on

some jobs because it performance, and started other

approaches to monitors faulty nodes. Similarly Facebook

disables speculation for reduce tasks [16].Tasks in

MapReduce should not be large task else complete job

processing and derail data parallelism concept. For an ideal

MapReduce job, the breaking input into equal parts and the

distribution of keys between reduce does approximately same

work. In case of heterogeneous environment, its complex to

utilize the capability of every node efficiently this may cause

performance degradation.

V. MAPREDCUE ASSUMPTIONS VIOLETION IN

HETEROGENEOUS ENVIROUNMENT

A. HETEROGENITY

Generally, Hadoop considers that all underline machines of a

data cluster are same and possess same execution power and

capacity. However in actual there may be multiple versions

and verity of hardware in data cluster. However in case of a

virtualized data on individual physical network center many

virtual nodes operates e.g., Amazon EC2, colocation of VMs

may cause heterogeneity [8].

There are multiple processes advocated for improving

MapReduce execution in heterogeneous environments. Each

approach aims to improve one of underperforming areas of

Map reduce features in a heterogeneous cluster.

Below are two prominent algorithms identified to boost

processing are categorized as below:

 Data Locality Algorithms.

 Fault Tolerance Algorithms.

B. DATA LOCALITY ALGORITHMS

In case of homogeneous environment, all nodes are believed

to have equal processing capability and storage. However In

heterogeneous cluster having various nodes with varying

processing a good CPU node can finish task quicker than

lesser efficient CPU node. Data placement strategy play vital

role to determine how data placement can be optimized in

Heterogeneous Clusters to improve MapReduce performances.

This ensures moving logic closer to data as this saves time and

increase processing remarkably. This reduces network

congestion and enhances the system processing.

C. DATA PLACEMENT IN HETEROGENEOUS HADOOP

CLUSTERS

In heterogeneous Hadoop data cluster, a highly efficient

machine can complete execution of local data quickly in

comparison to slow processing node. Once faster node

complete its processing of data present on local disk, the fast

node helps, start manage and process incomplete data in

distant slow machine. Cross exchange of data across nodes

adds lot of network overhead and decreased performance a lot

also data transfer cost is high if the volume of transferred data

is big. Various algorithms designed to minimize data

movement between slow and fast nodes in a heterogeneous

clustering.

D. INITIAL DATA PLACEMENT

Other approach, which divides a big input dataset into a

number of same size small datasets. One of node holds

responsibility of data distribution of file segments across the

nodes of the cluster. In heterogeneous nodes, it follows round-

robin algorithm to selects nodes base on their computing

capacity. Based on computing power data segments are

assigned e.g. high computing node is expected to process bulk

segments. In addition, less computing power node must

process a small number of file segments for better and

efficient processing.

E. DATA RETRANSFER

Input file portions scattered by the initial data placement

algorithm above might be unfruitful due to the below

following reasons:

a) Fresh data inserted to already present input file.

b) Reorganization is required if data is deleted from

already present input File.

c) New node with additional data is included into

cluster. There are various dynamic data load-

balancing algorithms has been implemented to

identify file fragments based on nodes processing

capability.

VI. DATA LOCALITY AWARE TASK SCHEDULING FOR

HETEROGENEOUS ENVIRONMENTS

Zhuoyao zhang [10] proposed a method in a homogeneous

cluster to optimize data locality of Map reduce Approach

consider an assumption that each node have same processing

capacity and finishes assigned task in same time. However this

assumption cannot be correct in heterogeneous environment

due to numerous factors due to having varying processing

speed of the connected various dissimilar nodes .This requires

a dynamic work load kind of mechanism where a node act as

resource manager and assigns the task based on node

processing capability and maintain status

In a heterogeneous Hadoop cluster, X. Zhang et al. [10]

suggested a data locality aware scheduling method. This

method considers two performance indicators, which affects

efficiency of map tasks one wait time to begin processing

while second is transmission time. Execution-waiting time is

the lowest wait time task for a task before it can be

rescheduled to node having data for processing. Transmission

time is a time taken to transfer input data to node task is

scheduled.

The objective is to attain an equilibrium between wait time

and transmission time during execution in order to achieve

optimal execution time by scheduling a task to a node. In a

lifecycle of task processing, highest priority assigned to node

where input data locally present. If no such tasks, then pick up

the job having data present in the closest to requesting node.

Further waiting time calculation is done and assessment of

data transfer time of the assigned task is performed. If waiting

time, is less than data transfer time then algorithm schedules

task on node keeps corresponding input data, else task to be

scheduled on requesting node.

VII. FAULT TOLERANCE ALGORITHMS (LATE)

Primary benefit of Map reduce is its ability to identify,

manage node failures and conceals the logical complexity

from the users to manage node failures. Effective management

of tasks by a task scheduler increases Hadoop’s performance

considering cluster is homogenous having all nodes similar

processing and storage allowing tasks make progress linearly.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908799 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 363

Hadoop’s scheduler decides based on progress score check to

decide when to re-run a long running task speculatively which

looks to slowing overall job progress. Speculative tasks

triggered based on an algorithm, which compares each task’s

progress to the average execution of other task. In

homogeneous environment, this approach performs better due

clear identification of straggler tasks. Due to data locality and

other violation of other assumptions in heterogeneous

environment Hadoop’s scheduler performance downgrades.

Here we will talk about the algorithms used to enhance fault

tolerance support in the heterogeneous cluster of Hadoop.

Longest Approximate Time to End Algorithm (LATE) utilize

idle nodes efficiently by allocating tasks .Hadoop allocates a

task using one of three approaches. Any failed task gets

highest priority next priority is given to task is waiting status,

then map tasks who have local data on this machine. Last

priority is assigned to speculative tasks.

Hadoop computes a turnaround time for speculative

processing by averaging each type of tasks (maps and reduces)

progress percentage. A task having less progress percentage in

comparison to its category average will be marked as a

straggler. LATE identify task which will finish is longest

approximate time and will run that speculatively. LATE

computes the task’s completion time as per progress score

provided by Hadoop. Which further computes the task

progress rate of each task along with calculation of task’s

competition time.

VIII. LATE SCHEDULAR

LATE is abbreviation of Longest Approximate Time to End.

This approach performs efficiently in homogeneous

environment where all cluster nodes assumed to have same

processing speeds and no cost overhead while launching a

speculative task on another idle /less utilized node. Different

methods for calculating time left can be added into LATE.

First method known as simple heuristic method which

computes the progress rate of each task as Progress Score/T,

T is the time since task is in execution, and then computes the

time to finish as (1 − Progress Score)/Progress Rate. This has

assumption that tasks execution rate is approximately same.

However, in some cases, heuristic approach may fail to give

desired result, but it is successful in typical Hadoop jobs.

Speculative task should be launched in faster computing nodes

in order to finish them quickly using a simple method to not

launch speculative tasks especially on slow machines.

Suggested heuristic approach gives improved results in

comparison to a speculative task to the first available machine

on data cluster. Alternate solution is to create speculative task

more than one replica, but this consumes many unnecessary

resources. Finally, two heuristics are followed to take care of

cost overhead as below:

1. Numbers of speculative tasks allowed executing at a

time, which is known as Speculative Cap.

2. Correct computation of slow running task to decide

node is “enough slow” to be speculated to avid

redundant launching of speculative tasks.

 LATE algorithm behaves as follows:

 When a node is requested to execute as fresh task having

currently running task less than computed speculative cap.

Speculative tasks running then following are the conditions,

which are considered to execute fresh task on that node:

1. If nodes progress is less than Slow Node, Threshold

ignore the request, as this will degrade the

performance.

2. Correct ranking of task currently in execution and

based on time left before speculation cut-off time.

3. Kick-off a copy of the highest-ranked task, which

has progress rate less than Slow Task cut-off

execution timed.

 LATE algorithm works similar to Hadoop’s scheduler, wait

for until threshold time to a task to complete before deciding

for speculation. In order to achieve optimum result, three

numbers for LATE is to keep Speculative Cap to 10% of

current task slots and allocate the Slow Node Threshold and

Slow Task running cut-off to the 25% of node processing

limit and task progress rates.

A. Benefits of LATE algorithm into MapReduce processing

LATE has improved MapReduce performance significantly. It

has improved MapReduce performance in heterogeneous

environment where each nodes has varying processing

capability by re-launching slowest tasks only less in number.

Considering impact on response time, LATE selects slowest

tasks for next execution.

To avoid resource contention LATE caps on number of

speculative. However, Hadoop's scheduler comes with a fixed

number, which launch all slow tasks and have an equal

probability of being launched. This causes exuberant number

of speculated tasks.

Computing estimated remaining time instead of computing

progress rate, LATE speculatively selects and executes tasks

having possibility to optimize job response time, rather than

picking up any slow tasks.

B. Estimating Finish Times

Estimate the time remaining to finish task equal to (1 −

Progress marks)/Progress Rate. This heuristic works well in

most of the scenarios. There are some situations where this

heuristic approach will not correctly estimate finish time .As

in typical MapReduce, such situations do not occur frequently

as elaborated below, we have used the simple heuristic as

described above as per below result conducted by Matei

Zaharia [18] .

Fig. 3. Processing time using LATE algorithms

How the progress rate examining might underperform, take a

situation have two steps, which runs at different rates. Case

one when task’s progress score increases by 5% per second in

the first step, maximum to 50%, and then reduces by 1% in the

second stage. Task takes ten seconds in the first stage and

fifty-seconds in the next stage, or sixty seconds total to

complete. If two copies T1 and T2 of a tasks are launched, one

at time zero and other at ten second, and check their progress

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908799 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 364

rates after twenty seconds. Figure3 mimic this scenario. At

time twenty, T1 completes first stage and processed one fifth

of second stage, makes progress score as 60%, with progress

rate equal to 60/20s = 3%/s. Meanwhile, T2 just completes

first stage making progress rate equal to 50/10s = 5%/s. The

estimated time left for T1 equal to [100 – 60]/ [3/s] = 13.3s.

The estimated time left for T2 is equal to [100−50]/[5/s] = 10s.

Therefore, it is computed that T2 will finish earlier than T1,

normally in reality T2 finishes after T1. This happens due

task’s progress rate decreases throughout its lifetime and is not

related to actual progress. There could be task finishes second

step faster there would be no problem. Hence, a correct

estimation of longer time left in first step will better estimate

of finish times more accurately.

 There can be scenarios when a reduce task takes more time

and running slowly than the Map tasks, a complex heuristic

design can help accurate calculations of finish time. This will

consider each phase independently to estimate completion

time. To consider per-phase progress rate gives better

completed or in-progress steps for that task and for steps yet to

be started by using average progress rate of steps of other

reduce tasks.

This heuristic assumes a slow performing task in some step

will run faster in other step. Challenge with advised step -

aware heuristic is dependency on historical averages of

progress rates per step. In future work there is plan to

investigate the finish time efficiently.

complete. If two copies T1 and T2 of a tasks are launched, one

at time zero and other at ten second, and check their progress

rates after twenty seconds. Figure3 mimic this scenario. At

time twenty, T1 completes first stage and processed one fifth

of second stage, makes progress score as 60%, with progress

rate equal to 60/20s = 3%/s. Meanwhile, T2 just completes

first stage making progress rate equal to 50/10s = 5%/s. The

estimated time left for T1 equal to [100 – 60]/ [3/s] = 13.3s.

The estimated time left for T2 is equal to [100−50]/[5/s] = 10s.

Therefore, it is computed that T2 will finish earlier than T1,

normally in reality T2 finishes after T1. This happens due

task’s progress rate decreases throughout its lifetime and is not

related to actual progress. There could be task finishes second

step faster there would be no problem. Hence, a correct

estimation of longer time left in first step will better estimate

of finish times more accurately.

 There can be scenarios when a reduce task takes more time

and running slowly than the Map tasks, a complex heuristic

design can help accurate calculations of finish time. This will

consider each phase independently to estimate completion

time. To consider per-phase progress rate gives better

completed or in-progress steps for that task and for steps yet to

be started by using average progress rate of steps of other

reduce tasks.

This heuristic assumes a slow performing task in some step

will run faster in other step. Challenge with advised step -

aware heuristic is dependency on historical averages of

progress rates per step. In future work there is plan to

investigate the finish time efficiently.

IX. CONCLUSION AND FUTURE WORK

MapReduce has been regarded as prominent programming

paradigm to cope with Big data processing .Though

MapReduce offers numerous advantages but there are few

trade-offs faced in meeting, the rapidly growing computing

demands of Big Data in heterogeneous environment. There are

many scheduling methodologies proposed .Our aim is to

identify and categorize related scheduling algorithms, their

capability to address MapReduce challenge to work efficiently

in Heterogeneous environment. .This enables better planning

of Big data projects. Future work on this will be develop a

scheduling change in Hadoop MapReduce which will work

efficiently using LATE scheduling approach as this is

described as most suited approach among all proposed

scheduling methodologies. In addition, investigation will be

done to compute finish time estimation in more detail.

REFERENCES

[1] AdaptiveScheduler,https://issues.apache.org/jira/browse/MAPREDUCE-
1380

[2] Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on
large clusters. (December 2004)

[3] Hadoop MapReduce, http://hadoop.apache.org/mapreduce/

[4] Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma,
J., Murthy, R., Liu, H.: Data warehousing and analytics infrastructure at
facebook. In: Proceedings of the 2010 International Conference on
Management of Data, SIGMOD 2010, ACM 2010

[5] Ananthanarayanan, G., Kandula, S., Greenberg, A., Stoica, I., Lu, Y.,
Saha, B., Harris, E.: Reining in the outliers in map-reduce clusters using
mantri. In: OSDI 2010, pp. 1–16. USENIX Asoc., Berkeley (2010)

[6] Polo, J., Carrera, D., Becerra, Y., Steinder, M., Whalley, I.:
Performance-driven task co-scheduling for MapReduce environments.
In: Network Operations and Management Symposium, NOMS, pp. 373–
380. IEEE, Osaka (2010)

[7] Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S.,
Wu, K.-L., Balmin, A.: Flex: A Slot Allocation Scheduling Optimizer
for Mapreduce Workloads. In: Gupta, I., Mascolo, C. (eds.) Middleware
2010. LNCS, vol. 6452, pp. 1–20. Springer, Heidelberg (2010)

[8] Dynamic Proportional share scheduling in Hadoop Thomas sandholm
and Kevin Springer Berlin Heidelberg Volume 6253, 2010, pp 110-131

[9] Improving Map Reduce Performance through Data Placement in
Heterogeneous Hadoop Clusters- Jiong Xie, Shu Yin, Xiaojun Ruan,
Zhiyang Ding,

[10] An Empirical Analysis of Scheduling techniques for Real-time cloud
based data processing-linh T.X. Phan Zhuoyao zhang, Qi Zheng Boon
Thau Loo University of Pennsylvania

[11] Herodotou, H., and Babu, S. Profiling, what-if analysis, and cost-based
optimization of MapReduce programs. In Proc. Int’ Conf. on Very Large
Data Bases (VLDB) (2011).

[12] MapR. The executive’s guide to big data.
http://www.mapr.com/resources/white-papers. [21] Pettijohn, E., Guo,
Y., Lama, P., and Zhou, X. User-centric heterogeneity-aware mapreduce
job provisioning in the public cloud. In Proc. Int’l Conference on
Autonomic Computing (ICAC) (2014).

[13] Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B.,
and Babu, S. Starfish: A self-tuning system for big data analytics. In
Proc. Conference on Innovative Data Systems Research (CIDR) (2011).

[14] Jinda, A., Quian-Ruiz, J., and Dittrich, J. Trojan data layouts: Right
shoes for a running elephant. In Proc. of ACM Symposium on Cloud
Computing (SoCC) (2011).

[15] Lama, P., and Zhou, X. Aroma: Automated resource allocation and
configuration of mapreduce environment in the cloud. In Proc. Int’l
Conf. on Autonomic computing (ICAC) (2012).

[16] Li, X., Wang, Y., Jiao, Y., Xu, C., and Yu, W. Coomr: Cross-task
coordination for efficient data management in mapreduce programs. In
Proc. Int’l Conference for High Performance Computing, Networking,
Storage and Analysis (SC) (2013).

[17] Kambatla, K., Pathak, A., and Pucha, H. Towards optimizing hadoop
provisioning in the cloud. In Proc. USENIX HotCloud Workshop
(2009).

[18] Li, Z., Cheng, Y., Liu, C., and Zhao, C. Minimum standard deviation
difference-based thresholding. In Proc. Int’l Conference on Measuring
Technology and Mechatronics Automation (ICMTMA) (2010).

[19] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, Ion
Stoica https://cs.stanford.edu/~matei/papers/2008/osdi_late.pdf

http://www.jetir.org/
http://hadoop.apache.org/mapreduce/

