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Abstract—The volume of data produced and used in today’s 

world has been growing very rapidly which has  forced industry 

to explore data  for  better business decision making and incase 

profit by focusing more on customer needs. MapReduce is the 

core-processing engine of Hadoop, which accommodate rapidly 

increasing demands on computing resources required by massive 

data sets. Highly scalability of the MapReduce processing, allows 

parallel and distributed processing on multiple computing. 

Normally Hadoop implementation considers that underline 

cluster nodes are same in computing ability, configurations and 

storage. However, this homogeneity of cluster is not necessary 

every case and performance of MapReduce degrades and suffers 

due to various limitations in heterogeneous environments where 

underline nodes have different capability. This paper talks about 

how in heterogeneous environment, LATE (Longest 

Approximate Time to End) scheduling performs better and 

efficiently in comparison to other scheduling. LATE can improve 

Hadoop response times by almost two times in a clusters.   

Keywords—Big data, HDFS, Hadoop, Map-Reduce, Scheduling 

Algorithm, LATE. 

I.  INTRODUCTION  

Traditional data storage and processing capabilities were 

limited and was dependent on underline hardware 

configurations, storage and processing requirements, which 

deemed to be very different from today. Due to increase in 

data, volume and unstructured data traditional methods and 

databases are facing huge threat to ingest and process Big 

Data processing and storing demands.  

Now a days Industry is focusing and making huge investment 

to conclude how to make better use of Big Data and identify 

beneficial business insights to lead a better business decisions 

.Which help business or industry to increase profit. 

MapReduce is a highly scalable programming model able to 

process huge volume of data in parallel execution fashion on a 

huge number of commodity computing nodes. Google [3] has 

developed MapReduce paradigm was later used and 

implemented in many open source projects, but the Apache 

Hadoop harnessed processing most efficiently.  

 

Now a days Industry is focusing and curious to know about 

efficiently utilize Big Data and analyze to identify beneficial 

business insights for making them quipped with viable and 

better business decisions .Which in turn add value to their 

business ,increase profit ,retain customers and make customers 

happy with services they are offered. 

Advancement in the technology has also brought flood of 

unstructured data. Analysis of this data is important to extract 

value from the abundance of data available. The rate at which 

the data is growing is very high and unpredictable. Businesses 

can use this data for multiple purpose. This data is further   

utilized for conducting customer trend analysis, customer’s 

sentiment analysis or to know customer feedback on service or 

product Company is offering. Which can be further converted 

into structured data-by-data analyst as per their convenience. 

 

Big data is comprised of huge volume of structured, semi-

structured and unstructured data that used for data analytics 

using various methods.  

II.  HADOOP 

Hadoop is an open source-processing engine designed to 

compute extremely large unstructured or semi structured 

datasets efficiently. Hadoop follows distributed processing 

mechanism, which offers resilience and scalability while 

processing big data. Primarily Hadoop has two major 

constituents HDFS and MapReduce. HDFS (Hadoop 

distributed file system) manages data inspired from UNIX file 

system responsible for storage management in structured 

relational form or unstructured form and in any form in 

between similarly. HDFS is a highly distributed file system 

ensures highly computation of big data along with scalable 

facility. The MapReduce programing model manages 

applications on multiple distributed servers or user related 

processing task in an efficient manner. This provides an 

environment to execute a highly efficient data processing by 

harnessing distributed processing feature, which is based on 

divide and aggregate paradigm.  HDFS gives liberty to user or 

application programmer to capitalize unlimited storage need. 

Figure1 below depicts both prime components of Hadoop 

framework. 

 

 

Fig. 1. Hadoop compnents 

III. PROCESSING OF BIGDATA USING MAPREDUCE 

In the MapReduce paradigm, MapReduce [2] has become the 

prominent batch-processing model. MapReduce is a very 

flexible programming method able to parallel process large 

volume efficiently on large number of computing nodes.  

MapReduce methodology consisting of map and reduce 

functions, which allows application developers to customize 

them as per their requirement. Along with providing faster 

processing Map Reduce manages node failure and abstracting 

design complexity from the programmer.  

MapReduce has been developed for effective parallel 

processing of big data by breaking the load into independent 
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sub units. Prominent benefit of MapReduce is that it conceals 

system level implementations and complexities from 

developer by allowing developer just to focus on its objective. 

MapReduce is a two-phase approach: Map and Reduce. Every 

Map phase takes input files present into various nodes of 

distributed file system. If Map function does, co- located with 

data partition system will attempt to move data portion to node 

where Map function exists with data portion to reduce data 

movement. Hence MapReduce backs concept of as “Moving 

data closer to compute” to optimize execution time.   Post 

Map function finishes its processing, reduce function is then 

further run on all values having same interim key value and 

output  key/value pairs as the result. The MapReduce 

framework based on master/slave architecture having a one 

node acting as master has Job Tracker and several slave nodes, 

which runs assigned task, and Tasktrackers, one per node in 

the cluster, maintain their status. The Job Tracker acts as 

communicator between users who submits the job and the 

underline pool of hardware. Job Tracker accepts users 

assigned map/reduce jobs to the and further jobs are executed 

on sequence of submission first come/first-served basis. The 

Job Tracker does resource management required for map, 

reduce steps, allocated, and monitor slave nodes executing 

allocated task via tasktrackers. The Tasktrackers accepts and 

run tasks allocated by JobTracker, manages data movement 

among the map, and reduce step.  

 

Whole processing can be elaborated in detail as per below 

processing sequence it has been explained in figure2. 

1. Map – Input data is first accepted by master node, 

which divides data file into smaller datasets, and 

move them to slave nodes. A slave node may 

reiterate the process leading to a multilevel tree 

structure. Map accept similar type of data and gives a 

list of output. 

2. Map logic execution – Map logic will run once for 

every key value and generates output ordered by key 

values. 

3. Reduce phase execution – the MapReduce system 

identify a node to run Reduce function, assigns the  

key value to each processor, and provides that node 

with all the Map-generated data allocated by same  

key value. 

4. Execute Reduce code – Reduce is executed only once 

for each key value produced by the Map stage. 

5. Produce the result – Final output is generated by 

consolidating all the Reduce output, and sorts them 

by key. 

 

Below diagram Figure2, elaborates word count example 

of MapReduce processing. 

 

 
 

Fig. 2. Steps of Mapredcue execution 

 

In a homogeneous environment, all nodes have equal 

computing speed and disk capacity. In case of node, failure 

happens MapReduce attempts to reruns failed tasks on a 

different node, which is idle/less-occupied at that moment. In 

some instances a node is executing a task very poorly or 

slowly known as straggler task, in that case Map Reduce kick-

off a speculative copy of slow running task (“backup task”) on 

another node, which can finish task quickly job will be as slow 

as the misbehaving task ,if no speculative task is there. 

Straggling tasks can also be triggered due to impaired 

hardware and slowness This can improve job processing by 

44%.In Heterogeneous environment lack of proper mechanism 

to address speculative task may increase processing time due 

to difference in nodes storage and processing capability. 

 

IV. SPEECULATIVE EXECUTION IN HADOOP 

When a node is idle, HADOOP selects that idle node for 

processing basis on below three events. Highest priority is 

assigned first to failed tasks .Then next priority is given to a 

task currently in non-execution status. For maps, nodes having 

local data is first picked-up. In last, Hadoop identify a task to 

re-run slow running task. Hadoop monitors task passage using 

a score between zero and one to pick a speculative task. Input 

data read determine map task progress score .However reduce 

task who, processing is divided into three steps, each step earn 

1/3 of the score:  

 

a) Accept input step, Task receives map outputs.  

b) Order step, Sort Map output by key. 

c) Reduce step, User-developed logic will be applied on 

map results list with each key.  

In every stage processing percentage is calculated which 

depends upon the processed data . If a task is half completed 

then copy step progress score is 1/ 2 * 1/3=1/6  ,While a task 

till  order step is 1/3 +[1/2*1/3]=1/2 ,  task till reduce step 

scores 1/ 3 + 1/ 3 + [ 1/ 2 * 1/ 3]) = 5 /6 . Hadoop job tacker 

monitors average progress score of each tasks (maps and 

reduces) to conclude a maximum time given for speculative 

execution. Task beyond the cut-off time is considered as 

“Slow” tasks. The speculative scheduling Works efficiently 

better is homogenous environments as due to same underline 

capacity and processing capability tasks begin and finishes 

approximately in  same amount times and then speculation 

begins  for task taking more than cut-off time. FIFO is used to 

determine when multiple jobs are running. 

 

Hadoop scheduler adheres below implicit assumptions while 

working on speculative scheduling. 

 

a) All nodes are of same processing capacity 

b) Due to same processing ability of nodes, each task 

will take same amount of time to finish 

c) To launch a speculative task on a new node no 

additional cost is required, though using this nodes 

will be optimally utilized. 

d) A task’s progress score dependents on the task it has 

completed among copy, sort and reduce phases and 

every step spent 1/3 of the total CPU time.  

e) Task secure minimum score is likely to be a straggler 

task. 

f) Tasks using similar jobs among map or reduce 

assumed to take same amount of time.  

 

Now above assumption of Hadoop processing works quite 

well in Homogeneous environment however, assumptions 1 
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and 2 suffers processing in heterogeneous cluster. However, 

Assumptions 3, 4 and 5 can violateds in a homogeneous 

environment as well and can contribute performance 

degradation. This is why Yahoo disabled speculative tasks on 

some jobs because it performance, and started other 

approaches to monitors faulty nodes. Similarly Facebook 

disables speculation for reduce tasks [16].Tasks in 

MapReduce should not be large task else complete job 

processing and derail data parallelism concept. For an ideal 

MapReduce job, the breaking input into equal parts and the 

distribution of keys between reduce does approximately same 

work. In case of heterogeneous environment, its complex to 

utilize the capability of every node efficiently this may cause 

performance degradation. 

V. MAPREDCUE ASSUMPTIONS VIOLETION IN 

HETEROGENEOUS ENVIROUNMENT 

 

A. HETEROGENITY   

Generally, Hadoop considers that all underline machines of a 

data cluster are same and possess same execution power and 

capacity. However in actual there may be multiple versions 

and verity of hardware in data cluster. However in case of a 

virtualized data on individual physical network center many 

virtual nodes operates e.g., Amazon EC2, colocation of VMs 

may cause heterogeneity [8].   

There are multiple processes advocated for improving 

MapReduce execution in heterogeneous environments. Each 

approach aims to improve one of underperforming areas of 

Map reduce features in a heterogeneous cluster.  

 

Below are two prominent algorithms identified to boost 

processing are categorized as below:   

 

 Data Locality Algorithms.  

 Fault Tolerance Algorithms.   

 

B. DATA LOCALITY ALGORITHMS    

In case of homogeneous environment, all nodes are believed 

to have equal processing capability and storage. However In 

heterogeneous cluster having various nodes with varying 

processing a good CPU node can finish task quicker than 

lesser efficient CPU node. Data placement strategy play vital 

role to determine how data placement can be optimized in 

Heterogeneous Clusters to improve MapReduce performances. 

This ensures moving logic closer to data as this saves time and 

increase processing remarkably. This reduces network 

congestion and enhances the system processing. 

 

C. DATA PLACEMENT IN HETEROGENEOUS    HADOOP 

CLUSTERS 

In heterogeneous Hadoop data cluster, a highly efficient 

machine can complete execution of local data quickly in 

comparison to slow processing node. Once faster node 

complete its processing of data present on local disk, the fast 

node helps, start manage and process incomplete data in 

distant slow machine. Cross exchange of data across nodes 

adds lot of network overhead and decreased performance a lot 

also data transfer cost is high if the volume of transferred data 

is big. Various algorithms designed to minimize data 

movement between slow and fast nodes in a heterogeneous 

clustering.  

 

D. INITIAL DATA PLACEMENT   

Other approach, which divides a big input dataset into a 

number of same size small datasets. One of node holds 

responsibility of data distribution of file segments across the 

nodes of the cluster. In heterogeneous nodes, it follows round-

robin algorithm to selects nodes base on their computing 

capacity. Based on computing power data segments are 

assigned e.g. high computing node is expected to process bulk 

segments. In addition, less computing power node must 

process a small number of file segments for better and 

efficient processing.   

E.  DATA RETRANSFER   

Input file portions scattered by the initial data placement 

algorithm above might be unfruitful due to the below 

following reasons: 

 

a) Fresh data inserted to already present input file. 

b) Reorganization is required if data is deleted from 

already present input File. 

c) New node with additional data is included into 

cluster. There are various dynamic data load-

balancing algorithms has been implemented to 

identify file fragments based on nodes processing 

capability.   

VI. DATA LOCALITY AWARE TASK SCHEDULING FOR 

HETEROGENEOUS ENVIRONMENTS   

Zhuoyao zhang [10] proposed a method in a homogeneous 

cluster to optimize data locality of Map reduce Approach 

consider an assumption that each node have same processing 

capacity and finishes assigned task in same time. However this 

assumption cannot be correct in heterogeneous environment 

due to numerous factors due to having varying processing 

speed of the  connected various dissimilar nodes .This requires 

a dynamic work load kind of mechanism where  a node act as 

resource manager and assigns the task based on  node 

processing capability and maintain status     

In a heterogeneous Hadoop cluster, X. Zhang et al. [10] 

suggested a data locality aware scheduling method. This 

method considers two performance indicators, which affects 

efficiency of map tasks one wait time to begin processing 

while second is transmission time. Execution-waiting time is 

the lowest wait time task for a task before it can be 

rescheduled to node having data for processing. Transmission 

time is a time taken to transfer input data to node task is 

scheduled.   

 

The objective is to attain an equilibrium between wait time 

and transmission time during execution in order to achieve 

optimal execution time by scheduling a task to a node. In a 

lifecycle of   task processing, highest priority assigned to node 

where input data locally present. If no such tasks, then pick up 

the job having data present in the closest to requesting node. 

Further waiting time calculation is done and assessment of 

data transfer time of the assigned task is performed. If waiting 

time, is less than data transfer time then algorithm schedules 

task on node keeps corresponding input data, else task to be 

scheduled on requesting node.   

VII. FAULT TOLERANCE ALGORITHMS  (LATE) 

Primary benefit of Map reduce is its ability to identify, 

manage node failures and conceals the logical complexity 

from the users to manage node failures. Effective management 

of tasks by a task scheduler increases Hadoop’s performance 

considering cluster is homogenous having all nodes similar 

processing and storage allowing tasks make progress linearly. 
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Hadoop’s scheduler decides based on progress score check to 

decide when to re-run a long running task speculatively which 

looks to slowing overall job progress. Speculative tasks 

triggered based on an algorithm, which compares each task’s 

progress to the average execution of other task. In 

homogeneous environment, this approach performs better due 

clear identification of straggler tasks. Due to data locality and 

other violation of other assumptions in heterogeneous 

environment Hadoop’s scheduler performance downgrades.   

Here we will talk about the algorithms used to enhance fault 

tolerance support in the heterogeneous cluster of Hadoop. 

 

Longest Approximate Time to End Algorithm (LATE) utilize 

idle nodes efficiently by allocating tasks .Hadoop allocates a 

task using one of three approaches. Any failed task gets 

highest priority next priority is given to task is waiting status, 

then  map tasks who have local data on this machine. Last 

priority is assigned to speculative tasks.    

Hadoop computes a turnaround time for speculative 

processing by averaging each type of tasks (maps and reduces) 

progress percentage. A task having less progress percentage in 

comparison to its category average will be marked as a 

straggler. LATE identify task which will finish is longest 

approximate time and will run that speculatively. LATE 

computes the task’s completion time as per progress score 

provided by Hadoop. Which further computes the task 

progress rate of each task along with calculation of task’s 

competition time. 

 

 

VIII. LATE SCHEDULAR  

LATE is abbreviation of Longest Approximate Time to End. 

This approach performs efficiently in homogeneous 

environment where all cluster nodes assumed to have same 

processing speeds and no cost overhead while launching a 

speculative task on another idle /less utilized node. Different 

methods for calculating time left can be added into LATE. 

First method known as simple heuristic method which 

computes the progress rate of each task as Progress Score/T,  

T is the time since task is in execution, and then computes the 

time to finish as (1 − Progress Score)/Progress Rate. This has 

assumption that tasks execution rate is approximately same. 

However, in some cases, heuristic approach may fail to give 

desired result, but it is successful in typical Hadoop jobs. 

Speculative task should be launched in faster computing nodes 

in order to finish them quickly using a simple method to not 

launch speculative tasks especially on slow machines. 

 

Suggested heuristic approach gives improved results in 

comparison to a speculative task to the first available machine 

on data cluster. Alternate solution is to create speculative task 

more than one replica, but this consumes many unnecessary 

resources. Finally, two heuristics are followed to take care of 

cost overhead as below: 

1. Numbers of speculative tasks allowed executing at a 

time, which is known as Speculative Cap. 

2. Correct computation of slow running task to decide 

node is “enough slow” to be speculated to avid 

redundant launching of speculative tasks. 

 LATE algorithm behaves as follows: 

 

 When a node is requested to execute as fresh task having 

currently running task less than computed speculative cap. 

Speculative tasks running then following are the conditions, 

which are considered to execute fresh task on that node:  

1. If nodes progress is less than Slow Node, Threshold 

ignore the request, as this will degrade the 

performance.  

2. Correct ranking of task currently in execution and 

based on time left before speculation cut-off time. 

3. Kick-off   a copy of the highest-ranked task, which 

has progress rate less than Slow Task cut-off 

execution timed. 

 LATE algorithm works similar to Hadoop’s scheduler, wait 

for until threshold time to a task to complete before deciding 

for speculation. In order to achieve optimum result, three 

numbers for  LATE is  to keep Speculative Cap to 10% of 

current task slots and allocate  the Slow Node Threshold and 

Slow Task running cut-off  to the 25% of node processing 

limit  and task progress rates.   

 

A. Benefits of LATE algorithm into MapReduce processing 

LATE has improved MapReduce performance significantly. It 

has improved MapReduce performance in heterogeneous 

environment where each nodes has varying processing 

capability by re-launching slowest tasks only less in number. 

Considering impact on response time, LATE selects slowest 

tasks for next execution. 

To avoid resource contention LATE caps on number of 

speculative. However, Hadoop's scheduler comes with a fixed 

number, which launch all slow tasks and have an equal 

probability of being launched. This causes exuberant number 

of speculated tasks.   

 

Computing estimated remaining time instead of computing 

progress rate, LATE speculatively selects and executes tasks 

having possibility to optimize job response time, rather than 

picking up any slow tasks.  

 

B. Estimating Finish Times 

Estimate the time remaining to finish task equal to (1 − 

Progress marks)/Progress Rate. This heuristic works well in 

most of the scenarios. There are some situations where this 

heuristic approach will not correctly estimate finish time .As 

in typical MapReduce, such situations do not occur frequently 

as elaborated below, we have used the simple heuristic as 

described above as per below result conducted by Matei 

Zaharia [18] .  

 

  
Fig. 3. Processing time using LATE algorithms  

 

How the progress rate examining might underperform, take a 

situation have two steps, which runs at different rates. Case 

one when task’s progress score increases by 5% per second in 

the first step, maximum to 50%, and then reduces by 1% in the 

second stage. Task takes ten seconds in the first stage and 

fifty-seconds in the next stage, or sixty seconds total to 

complete. If two copies T1 and T2 of a tasks are launched, one 

at time zero and other at ten second, and check their progress 
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rates after twenty seconds. Figure3 mimic this scenario. At 

time twenty, T1 completes first stage and processed one fifth 

of second stage, makes progress score as  60%, with  progress 

rate equal to  60/20s = 3%/s. Meanwhile, T2 just completes 

first stage making progress rate equal to 50/10s = 5%/s. The 

estimated time left for T1 equal to [100 – 60]/ [3/s] = 13.3s. 

The estimated time left for T2 is equal to [100−50]/[5/s] = 10s. 

Therefore, it is computed that T2 will finish earlier than T1, 

normally in reality T2 finishes after T1. This happens due 

task’s progress rate decreases throughout its lifetime and is not 

related to actual progress. There could be task finishes second 

step faster there would be no problem. Hence, a correct 

estimation of longer time left in first step will better estimate 

of finish times more accurately. 

 There can be scenarios when a reduce task takes more time 

and running slowly than the Map tasks, a complex heuristic 

design can help accurate calculations of finish time. This will 

consider each phase independently to estimate completion 

time. To consider per-phase progress rate gives better 

completed or in-progress steps for that task and for steps yet to 

be started by using average progress rate of steps of other 

reduce tasks.  

This heuristic assumes a slow performing task in some step 

will run faster in other step. Challenge with advised step -

aware heuristic is dependency on historical averages of 

progress rates per step. In future work there is plan to 

investigate the finish time efficiently. 

complete. If two copies T1 and T2 of a tasks are launched, one 

at time zero and other at ten second, and check their progress 

rates after twenty seconds. Figure3 mimic this scenario. At 

time twenty, T1 completes first stage and processed one fifth 

of second stage, makes progress score as  60%, with  progress 

rate equal to  60/20s = 3%/s. Meanwhile, T2 just completes 

first stage making progress rate equal to 50/10s = 5%/s. The 

estimated time left for T1 equal to [100 – 60]/ [3/s] = 13.3s. 

The estimated time left for T2 is equal to [100−50]/[5/s] = 10s. 

Therefore, it is computed that T2 will finish earlier than T1, 

normally in reality T2 finishes after T1. This happens due 

task’s progress rate decreases throughout its lifetime and is not 

related to actual progress. There could be task finishes second 

step faster there would be no problem. Hence, a correct 

estimation of longer time left in first step will better estimate 

of finish times more accurately. 

 There can be scenarios when a reduce task takes more time 

and running slowly than the Map tasks, a complex heuristic 

design can help accurate calculations of finish time. This will 

consider each phase independently to estimate completion 

time. To consider per-phase progress rate gives better 

completed or in-progress steps for that task and for steps yet to 

be started by using average progress rate of steps of other 

reduce tasks.  

 

This heuristic assumes a slow performing task in some step 

will run faster in other step. Challenge with advised step -

aware heuristic is dependency on historical averages of 

progress rates per step. In future work there is plan to 

investigate the finish time efficiently. 

 

IX. CONCLUSION AND FUTURE WORK 

MapReduce has been regarded as prominent programming 

paradigm to cope with Big data processing .Though 

MapReduce offers numerous advantages but there are few 

trade-offs faced in meeting, the rapidly growing  computing 

demands of Big Data in heterogeneous environment. There are 

many scheduling methodologies proposed .Our aim is to 

identify and categorize related scheduling algorithms, their 

capability to address MapReduce challenge to work efficiently 

in Heterogeneous environment. .This enables better planning 

of Big data projects. Future work on this will be develop a 

scheduling change in Hadoop MapReduce which will work 

efficiently using LATE scheduling approach as this is 

described as most suited approach among all proposed 

scheduling methodologies. In addition, investigation will be 

done to compute finish time estimation in more detail. 
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