RELATION BETWEEN CONVERGENCE AND TOPOLOGICAL SPACE

Ranjan kumar singh, Department of Mathematics.

RRM Campus Janakpur Nepal.

Abstract: This paper deals with the basic results of concerning various notation of convergence in topological space. He also defined the filters in topological space by defining a limit of the filter. Again, we observe that the generalize possibility of filter on some index set I and a map $I \rightarrow X$. We conclude that the general situation (a map from x an index set to x) which will speak about ideal convergence.

Keywords: Filter, Convergence, Topological space, Net, Hausdorff space.

INTRODUCTION:

In a topological space X, the closure of any subset S is the set of limits of convergent nets of elements of S. For a map f between the topological spaces X and Y, (a) f is continuous (b) If x is a net converging to X, then f(x) is a net converging to f(x) in Y.

Convergence of nets:

Definition: We say that (D, \leq) is a directed set, if \leq is a relation on D such that

- (1) $x \le y \land y \le z \implies x \le z$ for each x, y, $z \in Z$;
- (2) $x \le x$ for each $x \in D$;
- (3) For each x, $y \in D$ there exist $z \in D$ with $x \le D$ and $y \le Z$.

In other words a directed set is a set with a relation which is reflexive, transitive and upward directed.

Definition: A subset A of set D directed by \leq is confinal in D if for every $d \in D$ there exists an $a \in A$ such

that $d \leq a$.

A subset A of a directed set D is called residual if there is some $d_0 \in D$ such that $d \ge d_0$ implies $d \in A$.

Definition: A net in a topological space X is a map from any non-empty directed set Σ to x. It is denoted by $(\mathbf{x}_{\sigma})_{\sigma \in \Sigma}$

Definition: Let $(x_{\sigma})_{\sigma \in \Sigma}$ be a net in a topological space x is said to be convergent to $x \in X$ if for each neighbourhood U of x there exists $\sigma_0 \in \Sigma$ such that $X_{\sigma} \in \bigcup$ for each If a net $(x_{\sigma})_{\sigma \in \Sigma}$ converges to x, the point x is called a limit of this net. The set of all limits of a net is denoted by $\lim x_{\sigma}$.

Theorem: A point x belongs to A if and only if there exists a net consisting of elements of A which converges to x.

Theorem: A subset V of a topological space X is closed iff for each net $(x_{\sigma})_{\sigma \in \Sigma}$ such that $x_{\sigma} \in V$ for each $r \in \Sigma$ every limit of $(x_{\sigma})_{\sigma \in \Sigma}$ belongs to V as well.

Theorem: Let X, Y be topological spaces. A map $f:X \rightarrow Y$ is continuous iff whenever a net X_{σ} converges to x, the net $f(X_{\sigma})$ converges to f(x).

Several important notions, such as Hausdorffness and compactness can be characterizes with the help of nets.

Theorem: A topological space x Hausdorff \Leftrightarrow every net in z has at most one limit.

We say that the net $(Y_e)e \in E$ is finer than the net $(x_d)d \in D$ or subset of if there exists a function ϕ of E to D with following properties:-

(1) For every $d_{\circ} \in D$ there exists an $e_0 \in E$ such that ϕ (e) $\geq d_{\circ}$

(2) $X \phi_{(e)} = y_e \text{ for } e \in E.$

This definition can be formulated equivalently using the notion of co-final map.

Definition: A function f: $P \rightarrow D$ from a pre-ordered set to a directed set is cofinal if for each $d_{\circ} \in D$ there exists $P_{\circ} \in P$ such that $f(P) \ge d_{\circ}$ whenever $P \ge P_{\circ}$

Hence a net $\sigma^1: \Sigma^1 \to X$ is a subnet of a net $\sigma: \Sigma \to X$ x if there exists a co-final map $f: \Sigma^1 \to \Sigma$ with $\sigma^1 = \sigma_0 f$

Theorem: Every net (x_r) in X has a universal subnet. Any universal net converges to each of its cluster points (i.e., if it has a cluster point, it converges)

We can note that, for any map f:x \rightarrow y the image of a universal net in X is again a universal net in Y.

Remark: Sometimes the notion of the limit of a net of closed subsets of a topological space is defined as follows:

If $(Ad)_{d\in D}$ is a net of subsets of X then

(1) The lower closed limit Li A_d of (A_d) consist of all such point x that each neighbourhood of x intersect A_d for all d in some residual subset of A.

(2) The upper closed limit $L_s A_d$ of (A_d) consist of all such points x that each neighbourhood of x intersects A_d for all d in some cofinal subset of A.

(3) If $L_i A_d = L_s A_d$ then (A_d) is said to be kuratowski – Painleve Convergent.

Note that if we take $A_d = \{X_d\}$ then L_i (x_d) is precisely the set of all limits of (x_d) and L_s A_d is precisely the set of all cluster point of (x_d). What can be considered an advantage of this notation is that lim x_r one usually associates a point, where as L_i A_s is always a set.

Convergence of filters on $X_{\sigma} \rightarrow X$ **:**

Another common possibility used when dealing with the convergence in a topological space x is to consider filters on

Х.

Definition: A filter on a set x is a subset \mathcal{F} of p (x) such that

(1) $\phi \notin \mathcal{F}$

(2) $A, B, \in \mathcal{F} \Longrightarrow A \cap B \in \mathcal{F};$

 $(3) \qquad A \in \mathcal{F} \land A \subset B \Longrightarrow B \in \mathcal{F}.$

Remark: Let us note that it is possible to define a filter in a subfamily R of P (X) which has largest element . In this case, we need to reformulate the second part of condition (3) $A \subset B \in R$. Hence it is possible to define a filter in the family closed sets X, which is used in the definition of wallman compactification of a T₁ - space.

Example: Let X be a topological space. A neighbourhood filter N(x) of a point $x \in X$ is the set of all neighbourhood of x. (Neighbourhood of x is any sub-set V of X such there exists an open set U with $x \in \bigcup \subset V$.

Conclusion: We conclude that the convergence of nets describes completely the topology of X and also the convergence in a topological of X and also the convergence in a topological space x is to consider filter on Y.

Refrences

(1)	James, I.M	: "Topological and uniform spaces" springer verlag, Berlin 1987.
(2)	Isbll, J.R.	: Topological spaces Amer, Math. Soc. Survey, providence, 1964.
(3)	Kelley,J.L.	: General Topology ,Van Nostrand, New-York, 1955.
(4)	Kothe, G	: 'Topological vector spaces, springer verlag 1968.
(5)	Jha, K. k.	: Advance General Topology,Nav Bharat Prakashan 1977.

