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Abstract:In this paper, we introduce a new two parameter Half Logistic Rayleigh Distribution (HL-RD). 

Which propound a more adjustable mode for modelling simulated data. The recommended distribution 

reveals increasing, decreasing and bath-shaped probability Density, Distribution and Hazard Rate Functions. 

Some distributional properties of new model are investigated which include the Density Function, 

Distribution Function (DF), Quantile Function(QF), Moments, Moment Generating Function (MGF), 

Cumulative Generating Function (CGF) . The parameters involved in the model are estimated using 

Maximum Likelihood Estimation (MLE) method.  
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1. Introduction: 
The commonly used Lifetime distributions (Weibul, Logistic, Lomax, etc.,) have a restricted range of 

performance. Such type of distributions cannot give a better fit to model for all practical situations. 

Recently, several authors have developed a number of new families of statistical models by applying 

different techniques. Various techniques have been introduced in the literature to derive new flexible 

models as discussed by Lai (2013). Al-Awadhi and Ghitany (2001)  introduced the discrete Poisson–

Lomax distribution by using the Lomax distribution as a mixing distribution for the Poisson parameter. 

Beta-Pareto has been presented by Akinsete, Famoye and Lee (2008). Uniform Exponential Distribution 

(UED) and Exponential Pareto distribution (EPD) were introduced by Abed Al-Kadim and Abdalhussain 

Boshi(2013).  Sharma and Shanker (2013)  used a mixture of exponential (q) and gamma (2;q) to create a 

two-parameter Lindley distribution.  

 In this paper, we introduce new linear compound distribution as Half Logistic Rayleigh Distribution 

(HLRD) and discuss some of its properties, such as Distribution, Hazard Function, Quantile and Random 

Generation Moments, and its Moment Generating Function (MGF), Cumulative Generating Function 

(CGF). We estimate parameters by Maximum Likelihood method and also define Asymptotic Confidence 

bounds for Half Logistic Rayleigh Distribution. Finally we use Simulation study about the parameters 

estimation. 

2. The Probability density and Distribution functions of the HLRD 

2.1 HLRD Specifications 
In this section, we define new Scale (𝜃) and Shape (λ)two parameter distribution called Half Logistic 

Rayleigh Distribution with parameters  𝜃 and λ. The Probability Density Function (PDF), Cumulative 

Distribution Function (CDF), Survival Function (SF) and Hazard Function (HF) of the new model HLRD 

are respectively defined as follows: 

 A random variable X ~ HLRD(𝜃, 𝜆) has Probability density function and is in the form 
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         Where x > θ,  λ > 0  
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A random variable X ~HLRD (𝜃, 𝜆) correspond Cumulative Distribution Function is in the form 
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 Where x > θ,  λ > 0 

 

2.2Limits of the HLRD function 

The limit of the Probability Density Function is given by  
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3. Survival and Hazard Functions 

 3.1Survival Function 

If X ~ HLRD  ( , ) , then Survival Function of HLRD is given by  
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3.2Hazard Function 
If X ~ HLRD  ( , ) , then Hazard Function of HLRD is given by  
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Here  ( , )are Location and Scale parameters.   

4. Quantile Function and Random Generation 

  4.1Quantile Function 
If x  ~ HLRD  ( , ) , then Quantile Function is obtained as follows 

Q( x ;  , )  = 



1

logp  
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  4.2Random Generation 

Substitute F(x) = u in (2) , we obtain 

x  =  



1
2

1
logY  ...(8) 

 

Equation (8) can be used to simulate HLRvariable. 

 

5 Statistical Properties of HLRD 

5.1. Moments 

The following theorem gives moments of HLRD 
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Theorem:  

The rth moment about the origin of X ~ HLRD  ( , ) is given by  
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              Substitute (16) in(14) 
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5.2. Moment Generating Function 
Theorem2:- prove that  
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If X ~ HLRD  ( , ) , Moment Generating Function is given by  
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Substitute (23) and(24) in(22) 
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5.3. Cumulative Generating Function 
If X ~ HLRD  ( , )Cumulative Generating Function is given by 

 K ( )x t =log ( )xM t  
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6 Estimation of parameters of HLRD 

6.1. Maximum Likelihood method of estimation 
Let x1, x2,..., xn be a random sample of size n from  HLRD  ( , )  , then the likelihood function L of this 

sample is  defined as 
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Calculating the 1st and 2nd order partial derivative of (31) with respective to  ( , )  and then 1st order 

partial derivatives equating to zero we get the following equations 
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2nd order partial derivative is given by 
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6.2. Asymptotic Confidence bounds: 

Here we derive the asymptotic confidence bounds for unknown parameters 𝜃,   when 𝜃<x, 

 >0 The simplest large sample approach is to assume that the MLEs (θ,λ)are approximately normal with 

mean (𝜃,  ) and covariance matrix 𝐼0
−1, where 𝐼0

−1 is the inverse of the observed information matrix which 

defined as follows 
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Conclusions: 

 
In this paper, we introduced two parameter Half Logistic Rayleigh Distribution (HLRD). Some 

characteristics of new distribution, such as ordinary moments and generating functions are obtained. 
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