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Abstract:   Classification of image data is more enthusiastic and challenging data mining technique. In this study, we used 

supervised learning mechanism, classification on color image data which consists of huge set of samples. We experiment on input 

data with a sequence of convolution and max pooling layers with a sequence of filters in each layers to study the local pattern 

matching of images. Then it is compared with a fully connected Feed Forward Neural Network architecture to better understand 

the performance of CNN. Convolutional Neural Networks is a Deep learning algorithm which can take image data as input, 

process, and classify it under certain categories. 

 

IndexTerms - conv2D, dense, Deep learning, flatten, image classification, keras, pooling, padding, strides, Tensor flow. 

I. INTRODUCTION 

 

An image is represented by its resolution hxwxd(h-Height, w-Width, d-Dimension). For example an image with 5x5x3 is an 

array of matrix of  RGB(3 referes to RGB value) and an image of 5x5x1 is an array of matrix of grayscale image. Deep learning 

CNN models trained by passing input image through a series of convolution layers with filters, Pooling, Fully connected layers and 

a Softmax function is applied to classify an image object with probabilistic values between 0 and 1. The complete flow of CNN to 

process and classify an input image object is given in the below figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Convolution Neural Network to process and classify an image data 

 

 

II. EXPERIMENTAL PROCEDURE 

Input Dataset 

CIFAR101-3 is a huge data set of 600004 color images each of size 32x32x3 and 10 different classes. Each image is one of the 10 

different classes. Among this, 50000 samples were used for training the model and the remaining 10000 samples were used for 

testing the classification accuracy of the CNN model.   

 

Experimental Setup 

Experiment is done in Colab notebook with Tensorflow backend. 

 

Importing Tensorflow 

from __future__ import absolute_import, division, print_function, unicode_literals 

!pip install tensorflow-gpu==2.0.0-beta1 

from tensorflow import keras 

from tensorflow.keras import datasets, layers, models 

import datetime, os 

import tensorflow as tf 

 

Importing necessary libraries  
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import matplotlib.pyplot as plt 

import numpy as np 

import matplotlib.pyplot as plt 

import numpy as np 

% matplotlib inline 

from keras.models import Sequential 

from keras.layers.convolutional import Convolution2D, MaxPooling2D 

from keras.layers import Activation, Flatten, Dense, Dropout 

from keras.layers.normalization import BatchNormalization 

from keras.utils import np_utils 

 

Importing dataset 

Cross validation is the general strategy used to split the data into training and test datasets. Cifar10 data set is available with 

splitting of 50000 samples for training and 10000 samples for testing. We only required loading the data set from tensorflow keras 

dataset 

 

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.cifar10. 

load_data() 

 

Here, train_images is a tensor of shape (50000,32,32,3) which represents that 50000 images each of size 32x32x3 (Figure 3 (a) ). 

train_labels is a tensor of shape (50000,1) which represents that 50000 images each with one class attribute. Similarly test_images 

and test_labels are also tensors of shapes (10000,32,32,3) and (10000,1) respectively. We can see the sample images of each of 

the 10 classes from figure2.  

 

 
 

Figure 2:  sample images of each class 

Data Preprocessing 

We have to normalize the pixel values of the image to be in between 0 and 1, thus image data is being pre-processed.  

train_images = train_images / 255 

test_images = test_images / 255 

 

Then the class labels of both training and test data samples are converted into binary class labels  

 

train_labels = np_utils.to_categorical(train_labels, num_classes) 

test_labels = np_utils.to_categorical(test_labels, num_classes) 

 

 

Now the convolutional base model is constructed with a stack of Conv2D and MaxPooling2D layers. CNN takes an input tensor 

of shape (iamge_height, image_width, color_channels), we do this by passing the argument input_shape to the first layer.  

Convolution operation involves a filter which captures local pattern and applied it on the image. The filter is a3D tensor of 

specific height, width and depth. Each entry in the filter is the real number. The entries in the filter are learned during CNN 

transition. The filter slides across width, height and depth starting at all possible positions through a local 3D patch of surrounding 

features. In case of color images, for every image we have 3 channels: red, green and blue. We are taking a standard 3x3 filter 

with 3 channels (3x3x3). We are transforming each patch with convolution filter into a number or 1D array. To understand what 

happens when we position the filter on a particular patch of an image, the weights (w1,w2……w9) in the 9 positions of the filter 

mapped into a patch of image with 9 input values (x1,x2….x9). The linear combination of weights with input values; 
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w1x1+w1x2+……………+w9x9, and a bias term b, will be added. When we apply ‘relu’ activation on this linear combination 

which will gives a scalar value for a given positioning of a patch on the image.    

 

 

Figure 3: (a) 32x 32 images with 3 channels 

          (b) 3x3 filter with 3 channels 

 

In convolution operation, we define a bunch of filters and each filter is used to calculate activation at a particular point in the 

image. To slide each filter across image, strides will be used. The output of convolution operation is usually smaller than the size of 

the input image. In order to keep the output of the same shape as the input we use padding. Apart from convolution the second 

important operation in CNN is called pooling. Pooling aggressively down sample the output of convolution and stride helps us to 

calculate the next position to place the filter across each axis starting from the current position. The default value for stride is 1, we 

can specify different stride across each axis but, that is used quite rarely. Stride convolution down sample the size by the factor 

proportional to stride. With a 32x32 image and a 3x3 filter, stride=1 shifts filter to the right by one column, thus it will continue till 

the last column, once finished it will shift downwards by one row. This is how we slide the filter across the image and try to match 

the pattern in the image. 

 

We have 32X32x3 image and 3X3X3 filter (figure 3). Then we will be able to position the filter at 30 possible positions along 

the width as well as height. Thus 30X30x1 is the output of the convolution (see Table 1). In convolution we use k different filters. 

All these filters can be defined with conv2D layer. In conv2D (no_of_filters, filter_size, activaion_function, input_shape. depth size 

is usually not mentioned in the filter_size. After applying the convolution, we observed that the input get shrunk by some amount 

(see Table 1). If we don’t want the input get shrunk, we use padding by adding some dummy columns and rows for the input and 

then apply convolution on it. For a convolution of 3X3 filter, we add a dummy column to the left and right and a dummy row to the 

top and bottom of the image, which ensure that the shape of the output is same as the shape of the input. 

 

Model building 

model = models.Sequential() 

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) 

model.add(layers.Conv2D(32, (3, 3), activation='relu',)) 

model.add(layers.MaxPooling2D((2, 2))) 

model.add(layers.Conv2D(64, (3, 3), activation='relu',)) 

model.add(layers.Conv2D(64, (3, 3), activation='relu',)) 

model.add(layers.MaxPooling2D((2, 2))) 

model.add(layers.Conv2D(128, (3, 3), activation='relu',)) 

model.add(layers.Conv2D(128, (3, 3), activation='relu',)) 

 

Table 1: Model summary with a sequence of convolution and max pooling layers 

 
Model: "sequential" 

______________________________________________________________ 

Layer (type)                 Output Shape              Param #    

============================================================== 

conv2d (Conv2D)              (None, 30, 30, 32)        896        

______________________________________________________________ 

conv2d_1 (Conv2D)            (None, 28, 28, 32)        9248       

______________________________________________________________ 
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max_pooling2d (MaxPooling2D) (None, 14, 14, 32)        0          

______________________________________________________________ 

conv2d_2 (Conv2D)            (None, 12, 12, 64)        18496      

____________________________________________________________ 

conv2d_3 (Conv2D)            (None, 10, 10, 64)        36928      

______________________________________________________________ 

max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)          0          

______________________________________________________________ 

conv2d_4 (Conv2D)            (None, 3, 3, 128)         73856      

______________________________________________________________ 

conv2d_5 (Conv2D)            (None, 1, 1, 128)         147584     

============================================================== 

Total params: 287,008 

Trainable params: 287,008 

Non-trainable params: 0 

 

In the above, you can see that the output of every Conv2D and MaxPooling2D layer is a 3D tensor of shape (height, width, 

channels). The width and height dimensions tend to shrink as we go deeper in the network. The number of output channels for each 

Conv2D layer is controlled by the first argument (e.g., 32 or 64 or 128). Typically, as the width and height shrink, we can afford 

computationally to add more output channels in each Conv2D layer.  

 

To complete our model, we will feed the last output tensor from the convolution base of shape (1, 1, 128)) into one or more 

Dense layers3 to perform classification. Dense layers take vectors as inputs which are 1D, while the current output is a 3D tensor 

(see Table 2). First, we will flatten or unroll the 3D output to 1D, then add one or more dense layers on top. CIFAR10 has 10 output 

classes, so we use a final dense layer with 10 outputs and ‘softmax’ activation. 

 

model.add(layers.Flatten()) 

model.add(layers.Dense(64, activation='relu')) 

model.add(layers.Dense(10, activation='softmax')) 

 

Table 2: Summary of the complete CNN model 
Model: "sequential" 

______________________________________________________________ 

Layer (type)                 Output Shape              Param #    

============================================================== 

conv2d (Conv2D)              (None, 30, 30, 32)        896        

______________________________________________________________ 

conv2d_1 (Conv2D)            (None, 28, 28, 32)        9248       

______________________________________________________________ 

max_pooling2d (MaxPooling2D) (None, 14, 14, 32)        0          

______________________________________________________________ 

conv2d_2 (Conv2D)            (None, 12, 12, 64)        18496      

______________________________________________________________ 

conv2d_3 (Conv2D)            (None, 10, 10, 64)        36928      

______________________________________________________________ 

max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64)          0          

______________________________________________________________ 

conv2d_4 (Conv2D)            (None, 3, 3, 128)         73856      

______________________________________________________________ 

conv2d_5 (Conv2D)            (None, 1, 1, 128)         147584     

______________________________________________________________ 

flatten (Flatten)            (None, 128)               0          

______________________________________________________________ 

dense (Dense)                (None, 64)                8256       

______________________________________________________________ 

dense_1 (Dense)              (None, 10)                650        

============================================================== 

Total params: 295,914 

Trainable params: 295,914 

Non-trainable params: 0 

______________________________________________________________ 
 

 

Now the model is compiled with adam optimizer, categorical_ crossentropy loss function, and accuracy as a metric  
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model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 

 

Then the model is trained for 10 epochs and evaluated with test data to calculate test_loss and test_accuracy.  

history = model.fit(train_images, train_labels,validation_data = (test_images, test_la

bels), epochs=10) 

 

test_loss, test_acc = model.evaluate(test_images, test_labels) 

print("Test Accuracy : %.2f" %(test_acc*100}) 

print("Test Loss     : %.2f" %(test_loss*100)) 

 

The results obtained are:  
10000/10000 [==============================] - 1s 70us/sample - loss: 0.8186 - 

accuracy: 0.7449 

Test Accuracy :  74.48 

Test Loss     :  81.86 

 
 

Figure 4: (a) Model Accuracy w.r.t. Epochs    (b)       Model Loss w.r.t. Epochs 

 

 

 

III.  CLASSIFICATION WITH FULLY CONNECTED FEED FORWARD NEURAL NETWORK 

 

With an interest this architecture is compared with a fully connected feed forward neural network with a hidden layer of 128 

neurons.  In this architecture we observed 394k parameter which is high in number as compared with 295K parameters that we 

obtained in CNN architecture.  

model_ffnn = tf.keras.models.Sequential([ 

  tf.keras.layers.Flatten(input_shape=(32, 32, 3)), 

  tf.keras.layers.Dense(128, activation='relu'), 

  tf.keras.layers.Dropout(0.2), 

  tf.keras.layers.Dense(10, activation='softmax')]) 

 

model_ffnn.compile(optimizer='adam', 

              loss='sparse_categorical_crossentropy', 

              metrics=['accuracy']) 
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Table 3: Summary of the fully connected FFNN model 

 

 

Model: "sequential_2" 

______________________________________________________________ 
Layer (type)                 Output Shape              Param #    

============================================================== 

flatten_2 (Flatten)          (None, 3072)              0          

______________________________________________________________ 

dense_4 (Dense)              (None, 128)               393344     

______________________________________________________________ 

dropout_1 (Dropout)          (None, 128)               0          

______________________________________________________________ 

dense_5 (Dense)              (None, 10)                1290       

============================================================== 

Total params: 394,634 

Trainable params: 394,634 

Non-trainable params: 0 

______________________________________________________________ 
 

history = model_ffnn.fit(x_train, y_train, validation_data = (x_test, y_test), 

epochs=10) 

test_loss,test_acc = model_ffnn.evaluate(x_test, y_test) 

print("Test Accuracy : %.2f" %(test_acc*100)) 

print("Test Loss : %.2f" %(test_loss*100)) 

 
Test Accuracy : 37.72  

Test Loss : 173.60 

 

 
 

Figure 5: (a) Model Accuracy with fully connected FFNN    

        (b) Model Loss with fully connected FFNN  

IV.  RESULTS & DISCUSSION 

In this work we achieved best classification results with CNN rather than a classic fully connected Feed Forward Neural Network 

(Figure 4 and Figure 5). The number of parameters is also reduced with CNN architecture. In case of CNN we are defining 

patches, and we are taking an image patch and performing a convolution operation with a filter. Thus we perform a linear 

combination of each position in the image with each parameter in the filter. We performed linear combination followed by non-

linear activation. While in case of FFNN we take an entire image, flatten it which gives an array which is then passed through a 

hidden layer with 128 neurons and then it is given to a dense layer of 10 output neurons (Table 3) which will give output. We 

observed that CNN proceeds by capturing local patterns whereas in a fully connected FFNN, we learn that global patterning is 

involved.     
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