
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 813

HTTP: A PROTOCOL FOR NETWORKED

INFORMATION

*Devadharshini Subiksha R

**Ajith kirthic TC

***Samritha V

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol with the

lightness and speed necessary for a distributed collaborative hypermedia

information system. It is a generic stateless object-oriented protocol, which may

be used for many similar tasks such as name servers, and distributed object-

oriented systems, by extending the commands, or "methods", used. . A feature of

HTTP is the typing and negotiation of data representation, allowing systems to be

built independently of the development of new advanced representations.

1. INTRODUCTION

HTTP is a protocol which allows the

fetching of resources, such as HTML

documents. It is the foundation of any

data exchange on the Web and it is a

client-server protocol, which means

requests are initiated by the recipient,

usually the Web browser. A complete

document is reconstructed from the

different sub-documents fetched, for

instance text, layout description,

images, videos, scripts, and more.

Clients and servers communicate by

exchanging individual messages (as

opposed to a stream of data). The

messages sent by the client, usually a

Web browser, are called requests and

the messages sent by the server as an

answer are called responses.

HTTP as an application layer

protocol, on top of TCP (transport

layer) and IP (network layer) and

below the presentation layer.

Designed in the early 1990s, HTTP is

an extensible protocol which has

evolved over time. It is an application

layer protocol that is sent over TCP,

or over a TLS-encrypted TCP

connection, though any reliable

transport protocol could theoretically

be used. Due to its extensibility, it is

used to not only fetch hypertext

documents, but also images and

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 814

videos or to post content to servers,

like with HTML form results. HTTP

can also be used to fetch parts of

documents to update Web pages on

demand.

1.1 PURPOSE

The name hypertext transfer protocol

refers to HTTP's role in transmitting

website data across the internet.

Hypertext refers to the standard form

of websites in which one page can

refer users to another page through

clickable hyperlinks, usually simply

called links. The purpose of the HTTP

protocol is to provide a standard way

for web browsers and servers to talk

to each other.

Web pages are designed using the

hypertext markup language, or

HTML, but HTTP is used today to

transfer more than simply HTML and

the cascading style sheets, or CSS,

used to indicate how pages should be

displayed. HTTP is also used to

transfer other content on websites

including images, video and audio

files.

1.2 REQUIREMENTS

The key words "MUST", "MUST

NOT", "REQUIRED", "SHALL",

"SHALL NOT", "SHOULD",

"SHOULD NOT",

"RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to

be interpreted as described in RFC

2119.

An implementation is not compliant if

it fails to satisfy one or more of the

MUST or REQUIRED level

requirements for the protocols it

implements. An implementation that

satisfies all the MUST or REQUIRED

level and all the SHOULD level

requirements for its protocols is said

to be "unconditionally compliant";

one that satisfies all the MUST level

requirements but not all the SHOULD

level requirements for its protocols is

said to be "conditionally compliant."

2. Components of HTTP-

based systems

HTTP is a client-server protocol:

requests are sent by one entity, the

user-agent (or a proxy on behalf of it).

Most of the time the user-agent is a

Web browser, but it can be anything,

for example a robot that crawls the

Web to populate and maintain a

search engine index.

Each individual request is sent to a

server, which handles it and provides

an answer, called the response.

Between the client and the server

there are numerous entities,

collectively called proxies, which

perform different operations and act

as gateways or caches, for example.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 815

In reality, there are more computers

between a browser and the server

handling the request: there are routers,

modems, and more. Thanks to the

layered design of the Web, these are

hidden in the network and transport

layers. HTTP is on top, at the

application layer. Although important

to diagnose network problems, the

underlying layers are mostly

irrelevant to the description of HTTP.

2.1 Client: the user-agent

The user-agent is any tool that acts on

the behalf of the user. This role is

primarily performed by the Web

browser; other possibilities are

programs used by engineers and Web

developers to debug their applications.

The browser is always the entity

initiating the request. It is never the

server (though some mechanisms

have been added over the years to

simulate server-initiated messages).

To present a Web page, the browser

sends an original request to fetch the

HTML document that represents the

page. It then parses this file, making

additional requests corresponding to

execution scripts, layout information

(CSS) to display, and sub-resources

contained within the page (usually

images and videos). The Web browser

then mixes these resources to present

to the user a complete document, the

Web page. Scripts executed by the

browser can fetch more resources in

later phases and the browser updates

the Web page accordingly.

A Web page is a hypertext document.

This means some parts of displayed

text are links which can be activated

(usually by a click of the mouse) to

fetch a new Web page, allowing the

user to direct their user-agent and

navigate through the Web. The

browser translates these directions in

HTTP requests, and further interprets

the HTTP responses to present the

user with a clear response.

2.2 The Web server

On the opposite side of the

communication channel, is the server,

which serves the document as

requested by the client. A server

appears as only a single machine

virtually: this is because it may

actually be a collection of servers,

sharing the load (load balancing) or a

complex piece of software

interrogating other computers (like

cache, a DB server, or e-commerce

servers), totally or partially generating

the document on demand.

A server is not necessarily a single

machine, but several server software

instances can be hosted on the same

machine. With HTTP/1.1 and the

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 816

Host header, they may even share the

same IP address.

2.3 Proxies

Between the Web browser and the

server, numerous computers and

machines relay the HTTP messages.

Due to the layered structure of the

Web stack, most of these operate at

the transport, network or physical

levels, becoming transparent at the

HTTP layer and potentially making a

significant impact on performance.

Those operating at the application

layers are generally called proxies.

These can be transparent, forwarding

on the requests they receive without

altering them in any way, or non-

transparent, in which case they will

change the request in some way

before passing it along to the server.

Proxies may perform numerous

functions:

 Caching (the cache can be public or

private, like the browser cache)

 Filtering (like an antivirus scan or

parental controls)

 Load balancing (to allow multiple

servers to serve the different

requests)

 Authentication (to control access to

different resources)

 Logging (allowing the storage of

historical information)

2.4 Working

HTTP uses a client-server model

where-

 Web browser is the client.

 Client communicates with the

web server hosting the website.

Whenever a client requests some

information (say clicks on a

hyperlink) to the website server.

The browser sends a request message

to the HTTP server for the requested

objects.

Then-

 HTTP opens a connection

between the client and server

through TCP.

 HTTP sends a request to the

server which collects the

requested data.

 HTTP sends the response with

the objects back to the client.

 HTTP closes the connection.

3. HTTP CONNECTIONS

HTTP connections can be of two

types-

 Non-persistent HTTP connection

 Persistent HTTP connection

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 817

3.1 Non-persistent HTTP

connection

 Non-persistent HTTP connection is

one that is used for serving exactly

one request and sending one

response.

 HTTP server closes the TCP

connection automatically after

sending a HTTP response.

 A new separate TCP connection is

used for each object.

 HTTP 1.0 supports non-persistent

connections by default.

Example-

Suppose a request has been made for a

HTML page that contains 10 images

(called objects).

Then,

With non-persistent connection, all

the 11 objects (1 page + 10 images)

will be sent one by one.

For getting each object, a new

separate connection will be opened

and used.

3.2 Persistent HTTP connection

 Persistent HTTP connection is one

that can be used for serving

multiple requests.

 HTTP server closes the TCP

connection only when it is not

used for a certain configurable

amount of time.

 A single TCP connection is used

for sending multiple objects one

after the other.

 HTTP 1.1 supports persistent

connections by default.

Example-

Suppose a request has been made for a

HTML page that contains 10 images

(called objects).

Then,

With persistent connection, all the 11

objects (1 page + 10 images) will be

sent one after the other using a single

TCP connection.

4. BASIC FEATURES OF

HTTP

There are three basic features that

make HTTP a simple but powerful

protocol:

HTTP is connectionless: The HTTP

client, i.e., a browser initiates an

HTTP request and after a request is

made, the client waits for the

response. The server processes the

request and sends a response back

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 818

after which client disconnect the

connection. So client and server

knows about each other during current

request and response only. Further

requests are made on new connection

like client and server are new to each

other.

HTTP is media independent: It

means, any type of data can be sent by

HTTP as long as both the client and

the server know how to handle the

data content. It is required for the

client as well as the server to specify

the content type using appropriate

MIME-type.

HTTP is stateless: As mentioned

above, HTTP is connectionless and it

is a direct result of HTTP being a

stateless protocol. The server and

client are aware of each other only

during a current request. Afterwards,

both of them forget about each other.

Due to this nature of the protocol,

neither the client nor the browser can

retain information between different

requests across the web pages.

5. HTTP - SECURITY

HTTP is used for communications

over the internet, so application

developers, information providers,

and users should be aware of the

security limitations in HTTP/1.1. This

discussion does not include definitive

solutions to the problems mentioned

here but it does make some

suggestions for reducing security

risks.

5.1 Personal Information Leakage

HTTP clients are often privy to large

amount of personal information such

as the user's name, location, mail

address, passwords, encryption keys,

etc. So you should be very careful to

prevent unintentional leakage of this

information via the HTTP protocol to

other sources.

 All the confidential information

should be stored at the server in

encrypted form.

 Revealing the specific software

version of the server might allow

the server machine to become more

vulnerable to attacks against

software that is known to contain

security holes.

 Proxies that serve as a portal

through a network firewall should

take special precautions regarding

the transfer of header information

that identifies the hosts behind the

firewall.

 The information sent in the 'From'

field might conflict with the user's

privacy interests or their site's

security policy, and hence, it

should not be transmitted without

the user being able to disable,

enable, and modify the contents of

the field.

 Clients should not include a

Referrer header field in a (non-

secure) HTTP request, if the

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 819

referring page was transferred with

a secure protocol.

 Authors of services that use the

HTTP protocol should not use GET

based forms for the submission of

sensitive data, because it will cause

the data to be encoded in the

Request-URI.

5.2 File and Path Names Based

Attack

The document should be restricted to

the documents returned by HTTP

requests to be only those that were

intended by the server administrators.

For example, UNIX, Microsoft

Windows, and other operating

systems use '..' as a path component to

indicate a directory level above the

current one. On such a system, an

HTTP server MUST disallow any

such construct in the Request-URI, if

it would otherwise allow access to a

resource outside those intended to be

accessible via the HTTP server.

5.3 DNS Spoofing

Clients using HTTP rely heavily on

the Domain Name Service, and are

thus generally prone to security

attacks based on the deliberate mis-

association of IP addresses and DNS

names. So clients need to be cautious

in assuming the continuing validity of

an IP number/DNS name association.

If HTTP clients cache the results of

host name lookups in order to achieve

a performance improvement, they

must observe the TTL information

reported by the DNS. If HTTP clients

do not observe this rule, they could be

spoofed when a previously-accessed

server's IP address changes.

5.4 Location Headers and Spoofing

If a single server supports multiple

organizations that do not trust one

another, then it MUST check the

values of Location and Content

Location headers in the responses that

are generated under the control of said

organizations to make sure that they

do not attempt to invalidate resources

over which they have no authority.

5.5 Authentication Credentials

Existing HTTP clients and user agents

typically retain authentication

information indefinitely. HTTP/1.1

does not provide a method for a server

to direct clients to discard these

cached credentials which are a big

security risk.

There are a number of works around

to the parts of this problem, and so it

is recommended to make the use of

password protection in screen savers,

idle time-outs, and other methods that

mitigate the security problems

inherent in this problem.

5.6 Proxies and Caching

HTTP proxies are men-in-the-middle,

and represent an opportunity for man-

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 820

in-the-middle attacks. Proxies have

access to security-related information,

personal information about individual

users and organizations, and

proprietary information belonging to

users and content providers.

Proxy operators should protect the

systems on which proxies run, as they

would protect any system that

contains or transports sensitive

information.

Caching proxies provide additional

potential vulnerabilities, since the

contents of the cache represent an

attractive target for malicious

exploitation. Therefore, cache

contents should be protected as

sensitive information.

6. HTTP – PARAMETERS

6.1 HTTP Version

HTTP uses a <major>.<minor>

numbering scheme to indicate

versions of the protocol. The version

of an HTTP message is indicated by

an HTTP-Version field in the first

line. Here is the general syntax of

specifying HTTP version number:

HTTP-Version = "HTTP" "/"

1*DIGIT "." 1*DIGIT

Example:

HTTP/1.0 (or) HTTP/1.1

6.2 Uniform Resource Identifiers

Uniform Resource Identifiers (URI)

are simply formatted, case-insensitive

string containing name, location, etc.

to identify a resource, for example, a

website, a web service, etc. A general

syntax of URI used for HTTP is as

follows:

URI = "http:" "//" host [":" port] [

abs_path ["?" query]]

Here if the port is empty or not given,

port 80 is assumed for HTTP and an

empty abs_path is equivalent to an

abs_path of "/". The characters other

than those in the reserved and unsafe

sets are equivalent to their ""%" HEX

HEX" encoding.

Example:

The following two URIs are

equivalent:

http://abc.com:80/~smith/home.html

http://ABC.com/%7Esmith/home.html

6.3 Date/Time Formats

All HTTP date/time stamps MUST be

represented in Greenwich Mean Time

(GMT), without exception. HTTP

applications are allowed to use any of

the following three representations of

date/time stamps:

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 821

Sun, 06 Nov 1994 08:49:37 GMT ;

RFC 822, updated by RFC 1123

Sunday, 06-Nov-94 08:49:37 GMT ;

RFC 850, obsoleted by RFC 1036

Sun Nov 6 08:49:37 1994 ; ANSI

C's asctime() format

6.4 Character Sets

We use character sets to specify the

character sets that the client prefers.

Multiple character sets can be listed

separated by commas. If a value is not

specified, the default is the US-ASCII.

Example :

Following are the valid character sets:

US-ASCII (or) ISO-8859-1 (or) ISO-

8859-7

6.5 Content Encodings

A content encoding value indicates

that an encoding algorithm has been

used to encode the content before

passing it over the network. Content

coding are primarily used to allow a

document to be compressed or

otherwise usefully transformed

without losing the identity.

All content-coding values are case-

insensitive. HTTP/1.1 uses content-

coding values in the Accept-Encoding

and Content-Encoding header fields

which we will see in the subsequent

chapters.

Example:

Following are the valid encoding

schemes:

Accept-encoding: gzip (or)

Accept-encoding: compress (or)

Accept-encoding: deflate

6.6 Media Types

HTTP uses Internet Media Types in

the Content-Type and Accept header

fields in order to provide open and

extensible data typing and type

negotiation. All the Media-type values

are registered with the Internet

Assigned Number Authority (IANA).

The general syntax to specify media

type is as follows:

media-type = type "/" subtype *(";"

parameter)

The type, subtype, and parameter

attribute names are case--insensitive.

Example :

Accept: image/gif

6.7 Language Tags

HTTP uses language tags within the

Accept-Language and Content-

Language fields. A language tag is

composed of one or more parts: a

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 822

primary language tag and a possibly

empty series of subtags:

language-tag = primary-tag *("-"

subtag)

White spaces are not allowed within

the tag and all tags are case-

insensitive.

Example:

Example tags include:

en, en-US, en-cockney, i-cherokee, x-

pig-latin

where any two-letter primary-tag is an

ISO-639 language abbreviation and

any two-letter initial subtag is an ISO-

3166 country code.

7. HTTP MESSAGES

HTTP messages, as defined in

HTTP/1.1 and earlier, are human-

readable. In HTTP/2, these messages

are embedded into a binary structure,

a frame, allowing optimizations like

compression of headers and

multiplexing. Even if only part of the

original HTTP message is sent in this

version of HTTP, the semantics of

each message is unchanged and the

client reconstitutes (virtually) the

original HTTP/1.1 request. It is

therefore useful to comprehend

HTTP/2 messages in the HTTP/1.1

format.

There are two types of HTTP

messages, requests and responses,

each with its own format.

7.1 Requests

An example HTTP request:

Requests consist of the following

elements:

 An HTTP method, usually a verb

like GET, POST or a noun like

OPTIONS or HEAD that defines

the operation the client wants to

perform. Typically, a client wants

to fetch a resource (using GET) or

post the value of an HTML form

(using POST), though more

operations may be needed in other

cases.

 The path of the resource to fetch;

the URL of the resource stripped

from elements that are obvious

from the context, for example

without the protocol (http://), the

domain (here,

developer.mozilla.org), or the TCP

port (here, 80).

 The version of the HTTP protocol.

 Optional headers that convey

additional information for the

servers.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 823

 Or a body, for some methods like

POST, similar to those in

responses, which contain the

resource sent.

7.2 Responses

An example response:

Responses consist of the following

elements:

 The version of the HTTP protocol

they follow.

 A status code, indicating if the

request was successful, or not, and

why.

 A status message, a non-

authoritative short description of

the status code.

 HTTP headers like those for

requests.

 Optionally, a body containing the

fetched resource.

8. ADVANTAGES OF HTTP

Hypertext Transfer Protocol, better

known to millions of Web surfers as

HTTP, was invented in 1990 by Tim

Berners-Lee at the CERN

Laboratories in Geneva, Switzerland.

Today, it is the foundation of the

World Wide Web and the Hypertext

Markup Language or HTML. Three

versions of HTTP were developed:

0.9, 1.0 and 1.1. Both 1.0 and 1.1 are

in common usage today.

8.1 Identification

HTML was intended to be quick and

lightweight. Speed of delivery is

enabled by creating a notification of

file type in the header of the data

being transferred, known as MIME

type. This enables the receiving

application to quickly open the

incoming file without having to ask

the sender what application should be

used to read or view the contents of

the file.

8.2 Specialization

A Web page contains mixed elements

such as text and images. Each element

requires a different amount of

resources to store and download.

HTTP enables multiple connections to

download separate elements

concurrently, thus speeding up

transmission. Each element is

assigned its own particular file type

and therefore can be handled faster

and more efficiently by the receiving

computer.

8.3 Addressing

The addressing scheme used by HTTP

was also a revolutionary

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 824

advancement. When computers had to

be addressed using an IP address

consisting of a series of numbers, the

public found it difficult to engage

with the Internet. Mapping IP

addresses to easily recognizable

names made the World Wide Web

commercially viable.

8.4 Flexibility

With file type notification preceding

data transmission, the receiving

application has the option of quickly

downloading extensions or plug-ins if

additional capabilities are needed to

display the data. These add-ons

include Flash players and PDF

document readers.

8.5 Security

HTTP 1.0 downloads each file over an

independent connection and then

closes the connection. This reduces

the risk of interception during

transmission, as the connection does

not persist beyond the transfer of a

single element of a Web page.

Hypertext Transfer Protocol Secure

(HTTPS) encrypts the HTTP

exchange to add further security.

8.6 Ease of Programming

HTTP is coded in plain text and

therefore is easier to follow and

implement than protocols that make

use of codes that require lookups.

Data is formatted in lines of text and

not as strings of variables or fields.

8.7 Search Capabilities

Although HTTP is a simple

messaging protocol, it includes the

ability to search a database with a

single request. This allows the

protocol to be used to carry out SQL

searches and return results

conveniently formatted in an HTML

document.

8.8 Persistent Connections

One minor drawback of HTTP is the

need to create multiple connections in

order to transmit a typical Web page,

which causes an administrative

overhead. HTTP 1.1 has the ability to

maintain an open connection for

several requests. In addition, the

concept of "pipelining" was added,

enabling many requests to be sent to

the receiving computer before the first

request is served. These two measures

speed up the response time for

delivering a Web page.

9. DISADVANTAGES OF

HTTP

 Information sent via HTTP is not

encrypted and can pose a threat to

your privacy.

 Packet headers are larger than

other protocols as they are needed

for security and quality assurance

of the information being

transferred.

 Information sent through a

browser can expose your computer

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 825

to virtual threats. Such information

sent through your browser headers

can be the name of your computer,

your IP address, what OS you are

running and any other requested

information that the website you

have requested wants to know.

 Is slower than other native

protocols but is more secure,

reliable and can transfer larger

chunks of data.

10. HTTP METHODS

A request line has three parts,

separated by spaces: a method name,

the local path of the requested

resource, and the version of HTTP

being used. There are three HTTP

Methods, namely GET, HEAD, and

POST.

10.1 The GET Method

GET is the most common HTTP

method; it says "give me this

resource". Other Method names are

always in uppercase. The GET

method can also be used to submit

forms. The form data are URL-

encoded and appended to the request

URL.

10.2 The HEAD Method

A HEAD request is just like a GET

request, except it asks the server to

return the response headers only, and

not the actual resource (i.e., no

message body). This is useful to check

characteristics of a resource without

actually downloading it, thus saving

bandwidth. Use HEAD when you

don't actually need a file's contents.

The response to a HEAD request must

never contain a message body, but just

the status line and headers.

10.3 The POST Method

POST request is used to send data to

be processed to the server in some

way, such as using a CGI script. A

POST request is different from a GET

request in the following ways:

 There's a block of data sent with the

request, in the message body. There

are usually extra headers to describe

this message body, like Content-

Type: and Content-Length:.

 The request URL is not a resource

to retrieve; it's usually a program to

handle the data you're sending.

The HTTP response is normally

program output, not a static file. The

most common use of POST, by far, is

to submit HTML form data to CGI

scripts. In this case, the Content-Type:

header is usually application/x-www-

form-url encoded, and the Content-

Length: header gives the length of the

URL-encoded form data. You can use

a POST request to send whatever data

you want, not just form submissions.

Just make sure the sender and the

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1908913 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 826

receiving program agree on the

format.

11. CONCLUSION

HTTP is an extensible protocol that is

easy to use. The client-server

structure, combined with the ability to

simply add headers, allows HTTP to

advance along with the extended

capabilities of the Web.

12. RREFERENCE LINKS

1. https://www.w3.org/Protocols/rf

c2616/rfc2616.html

2. https://www.answers.com/Q/Wh

at_is_the_disadvantages_of_HT

TP

3. https://www.webnms.com/cagen

t/help/technology_used/c_http_o

verview.html

4. https://www.webnots.com/what-

is-http/

5. https://www.techwalla.com/artic

les/what-is-hypertext-transfer-

protocol

6. https://www.w3schools.com/wh

atis/whatis_http.asp

http://www.jetir.org/

