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Abstract: In this paper we proves the existence for the first order functional differential equations in Banach algebra with maxima. 
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converges, monotonically to the solution of the related perturbed differential equations under some suitable mixed hybrid conditions. 
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1.  Introduction 

The importance of the functional differential equations with maxima lies in the real world problems of automatic regulation of the 

technical systems and such differential equations is a special class of functional differential equations n which the present state of 

unknown function related to the systems based upon the maximum value of the earlier state in some earlier interval of time. See 

Mangomedov[11, 12] and the references therein. Again, Myshkis [15] signalized the need to study the differential equations with 

maxima and since then several classes of ordinary and partial differential equations with maxima have been discussed in the literature 

for different qualitative aspects of the solutions. A handful particulars on the topic appears in the monograph of Bainov and Hristova 

[1] and the research papers by Otrocol and Rus[11], Dhage and Otrocol [10] and the references therein. Also hybrid differential 

equations are build up in Dhage[2] to cover different dynamic systems of the real world problem. 

 In this research work we blend these two ideas together and studied the hybrid differential equations with maxima for 

existence and numerical aspects of the solutions. The originality of our paper lies in the fact that our problem as well as our solution 

is new to the literature in the theory of functional differential equations with maxima. 

2.  Statement of the Problem 

 Given a closed and bounded interval 0 0[ , ]I l l a   of the real line R for some 0 ,l a R  with 0 0, 0l a  ,consider 

the initial value problem (IVP) of first order functional differential equation (in short FDE) with maxim viz., 

                                            
 

0 0

( )
, ( ), ( ) , ,

( , ( ), ( )

( ) ,

d x t
g t x t X t t I

dt f t x t X t

x t 

 
  

 

  

……………………..(2.1) 

where : \{0} :f I and g I   are continuous functions and  

    
0

( ) max ( )
t t

X t x for some t I


   . 

By the solution of the FDE(2.1) we mean a function ( , )x C I   that satisfies  

(i) 
( )

( , ( ), ( ))

x t
t

f t x t X t
is differentiable function, and  

(ii) x  satisfies the equation in (2.1) on I, 

where ( , )C I   is the space of continuous real valued functions defined on I. In the following section we give some basic definitions 

and results which will be used in the subsequent parts of the paper. 

  

3.  Auxiliary results  

 In this paper, unless and until mentioned, it follows that, let E denote a partially ordered real normed linear space with an 

order relation  and the norm   in which the usual addition and the scalar multiplication by positive real numbers are preserved 

by  . Some details of a partially ordered normed linear space appear in Heikkila and Lakshmikantham [12] and the references 

therein.  Two elements a and b in E are said to be comparable if either the relation a b or b a  hold. 

A non-empty subset C of E is called a chain or totally ordered if all the elements of Care comparable. It is known that set E is regular 

if a non-decreasing sequence { }na in set E is such that * ,na a as n  then * ( . *)n na a resp a a for all n N   .The 

conditions guaranteeing the regularity of set E may be found in Heikkila and Lakshmikantham [12] and the references therein. 

 We require the following definitions in the sequel. 

Definition 3.1.  A mapping : E E  is called isotone or nondecreasing if it preserves the order  

relation  ,that is , if ,x y x y for all x y E    . 
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Definition 3.2. A : E E  is called partially continuous at a point a E if for 0 there exists a 0  Such that 

x y  whenever x is comparable to a and x a   .  is called partially continuous on E if it is partially continuous 

at every point of it. It is clear that  is partially continuous on E, then it is continuous on every chain C contained in E. 

 

Definition 3.3. A non-empty subset Ś of the partially ordered Banach space(POBS) E is called partially bounded if every chain C 

in Ś is bounded. An operator : E E  is called partially bounded if every chain C in T(E) is bounded.   is called uniformly 

partially bounded if all chains C in ( )E  are bounded by the unique Constant.  is called bounded if T(E) is a bounded subset of 

E. 

Definition 3.4.  A non-empty subset Ś of the POBS E is called partially compact if every chain C in Ś is compact. An operator 

: E E   is called partially compact if every chain C in ( )E  is relatively compact subset of E.  is called uniformly partially 

compact if ( )E  is a uniformly partially bounded and partially compact on E.   is called partially totally bounded if for any 

bounded subset Ś of E ,  ( Ś) is a relatively compact subset of E. If  is partially continuous and partially totally bounded, then it 

is called partially continuous on E. 

 Remark : Suppose that  is a nondecreasing operator on E into itself. Then  is a partially bounded or partially compact if ( )C  

is a bounded or relatively compact subset of E for each chain C in E. 

Definition3.5. The order relation  and the metric d on a non-empty set E are said to be comparable if { }ny is a monotonic 

sequence , that is, monotonic decreasing or monotonic increasing sequence in E and if a subsequence { } { }
kn ny of y converges to 

y* implies that the original sequence { }ny converges to y*.Similarly, given a partially ordered normed linear space  , , ,E  

the order relation  and the norm  are said to be comparable if   metric d defined through the norm and the  are comparable. 

Definition 3.6. An upper semi –continuous and nondecreasing function :    is called a ᴆ-function provided (0) 0 

. Let  , ,E    be a partially ordered normed linear space. A mapping : E E  is called partially nonlinear D -Lipschitz if 

there exists a D -function :    such that  

      x y x y                                   (3.1)  

for all comparable elements , .x y E If ( ) , 0,r kr k   then   is called a partially Lipschitz with a Lipschitz constant k. 

Let  , ,E    be a partially ordered normed linear algebra. Denote 

  { : , }E x E x where is the zero element of E      

and   { : , }.E E uv E for all u v E     K                                              (3.2) 

The elements of the set  are called the positive vectors in E. The following lemma follows immediately from the definition of the 

set  which is often times used in the hybrid fixed point theory of Banach algebra and applications to nonlinear differential and 

integral equations. 

Lemma 3.1 [3] If 1 2 1 2 1 1 2 2 1 2 1 2, , , ,u u v v are such that u v and u v then u u v v    . 

Definition 3.7. An operator : E E  is said to be positive if the range ( ) ( )R of is such that R   K  

Theorem 3.1.[Dhage[3]] Let   , ,E    be a regular partially ordered complete normed linear algebra such that every compact 

chain of E is Compatible Banach Space . Let : :E and E E A, ,B K C be three nondecreasing operators such that  

(a) A, and C  are partially bounded and partially nonlinear D -Lipschitz with D -functions 
A

and 
C  

respectively. 

(b) B is partially continuous and uniformly partially compact, 

(c) 0 ( ) ( ) , 0,M r M r r r    
A C

 where { ( ) : },M Sup C C is a chain in E B  and  

(d) there exists an element 0 X  such that 0 0 0 0 0 0 0 0.or          A B C A B C then the     

      operator equation  

x x x xA B +C                                                       (3.3)  

has a solution x* and the sequence { }nx of successive iterations defined by 1 , 0,1,2...;n n n nx x x x n  A B +C converges 

monotonically to x*.  

Remark 3.2 The condition that every compact chain of E is Banach holds if every partially compact subset of E possesses the 

compatibility property with respect to the order relation  and the norm  in it. 

Remark 3.3 We remark that hypothesis (a) of Theorem 3.1 implies that the operators A, and C are partially continuous and 

consequently all the operators  A, ,B and C in the theorem are partially continuous on E. 

The regularity of E in the above Theorem 3.1 may be replaced with a stronger continuity condition of the operators A, ,B and C  

on E which is a result proved in Dhage[3,4] 

4.  Main results 

     The FDE (2.1) is considered in the function space ( , )C I   of continuous real-valued functions defined on J. We define a norm 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

JETIR1908959 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 138 
 

 and the order relation  in ( , )C I  by  

     ( )
t I

x sup x t


                                                              (4.1) 

and 

 ( ) ( )x y x t y t                                                              (4.2) 

for all t I respectively. Clearly, ( , )C I  is a Banach algebra with respect to above supremum norm and is also partially ordered 

with respect to the above partially order relation  . It is known that the partially ordered Banach algebra ( , )C I  has some nice 

properties with respect to the above order relation in it. The following lemma follows by an application of Arzela –Ascoli theorem. 

Lemma 4.1 Let  ( , ), ,C I    be a partially ordered Banach space with the norm  and the order relation  defined by 

(4.1) and (4.2) respectively. Then every partially compact subset S of ( , )C I  is Banach. 

Proof. The proof of the lemma is given in Dhage and Dhage[6,7,8,9] and so we omit the details of it. We use the following definition 

for proving main result 

Definition 4.1  A function ( , )u C I   is said to be a lower solution of the FDE (2.1) if the function 
( , ( ), ( ))

x
t

f t u t U t
  is 

differentiable and satisfies  

0 0

( )
( , ( ), ( )),

( , ( ), ( )

( )

d u t
g t u t U t

dt f t u t U t

u t 

 
  

 
 

 

for all 
0

, ( ) max ( ) .
t t

t I where U t u for t I



 

    Similarly , a function ( , )v C I  is said to be an upper solution of the FDE 

(2.1) if it satisfies the above property and inequalities with reverse sign. 

We consider following set of assumptions in what follows: 

(A0) The map 
( , , )

x
x

f t x x
is injection for each .t I  

(A1) f  defines a function : .f I   

(A2) There exists a constant 0 0 ( , , ) , .f fM such that f t x y M for all t I and x y      

(A3) There exists a D -function  such that  

  1 2 1 2 1 1 2 20 ( , , ) ( , , ) ( { , }),f t x x f t y y Max x y x y      

 for all 1 2 1 2 1 1 2 2, , , , .t I and x x y y x y and x y     

(B1) g defines a function : .g I   

(B2) There exists a 0 ( , , ) , .g gM such that g t x y M for all t I and x y     

(B3) ( , , )g t x y is nondecreasing in x and y  for all .t I  

(C1) The FDE (2.1) has a lower solution ( , )u C I  . 

Remark 4.1. Note that the hypothesis (A0) holds in particular if the function 
( , , )

x
x

f t x x
is increasing for each .t I  

Lemma 4.2. Suppose that hypothesis (A0) holds. Then a function ( , )x C I R is a solution of the FDE (2.1) if and only if it is a 

solution of the nonlinear functional integral equation (in short FIE) , 

   

0

( )( ) ( , ( ), ( )) ( , ( ), ( ))

t

t t s

t

x t f t x t X t ce e g s x s X s ds   
 

  
 
 

                           (4.3) 

for all 

0

0

0 0 0

, .
( , , )

t
x e

t I where c
f t



 
   

Theorem 4.1. Assume that hypothesis (A0)-(A3),(B1)-(B3) and (C1) hold. If  

    
0

0 0 0

( ) ( ) , 0.
( , , )

gM a r r r r
f t


 

 

 
    

 
                                     (4.4) 

Then the FDE (2.1) has a solution *x defined on I and the sequence 
1{ }n nx 


of successive approximations defined by  

             
0

( )

1 ( , ( ), ( )) ( , ( ), ( )) ,

t

t t s

n n n n n

t

x f t x t X t ce e g s x s X s ds   



 
  

 
 

                    (4.5) 

where 1 ,x u converges monotonically to *x . 
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Proof. Set ( , )E C I  then by Lemma 4.1 , every compact chain in E possesses the compatibility property with respect to the 

norm  and the order relation  in E. 

Define three operators andA, B C  on E by  

    ( ) ( , ( ), ( )), ,x t f t x t X t t I A                                                               (4.6) 

    

0

( )( ) ( , ( ), ( )), ,

t

t t s

t

x t ce e g s x s X s t I     B                      (4.7) 

and  

    ( ) ( , ( ), ( )), .x t f t x t X t t I C                         (4.8) 

We know from the continuity of the integral, that A, and B define the map , : E A B K . 

Now by Lemma 4.2, the FDE(2.1) is equivalent to the operator equation  

   ( ) ( ) ( ) ( ), .x t x t x t x t t I A B +C           (4.9) 

We shall show that the operatorsA, ,B and C satisfy all the conditions of theorem 3.1. This is achieved in 

the set of resultant steps. 

Step I:  A, and B are nondecreasing on E. 

Let ,x y E be such that .x y then ( ) ( ) .x t y t for all t I  Since y is continuous on [ , ],a t there exists a 

* [ , ] ( *) max ( ).
a t

a t such that y y


  
 

  By definition of  , one has ( *) ( *).x y   

consequently, we obtain 

 ( ) max ( ) ( *) ( *) max ( ) ( )
a t a t

X t x x y y Y t
 

   
   

      

for each t I . Then by hypothesis (A3), we obtain  

   ( ) ( , ( ), ( )) ( , ( ) ( )) ( ),x t f t x t X t f t x t Y t y t  A A  

for each t I . This shows that A is nondecreasing operator on E into E. Similarly using hypothesis (B3), it is shown that the 

operator B is also nondecreasing on E into itself. Thus A and B are nondecreasing positive operators on E into itself. 

Step II:  A, is partially bounded and partially D -Lipschitz on E. 

Let x E be arbitrary. Then by (A2), 

    ( ) ( , ( ), ( ) ,fx t f t x t X t M A  

for all .t I Taking supremum over t, we get fx MA and  so ,A is bounded. This further implies that A is partially 

bounded on E. 

Now , let ,x y E be such that .x y Then, we have  

   ( ) ( ) ( ) ( )x t y t X t Y t    

and that    

0 0

0

0

( ) ( ) ( ) ( )

max ( ) max ( )

max[ ( ) ( )]

max ( ) ( )

t t t t

t t

t t

X t Y t X t Y t

x y

x y

x y

x y

 





 

 

 

   

 

 

  

 

 

 

 

 

for each .t I Thus we obtain from this  

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

JETIR1908959 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 140 
 

      
 

0

( ) ( ) ( , ( ), ( )) ( , ( ), ( ))

max ( ) ( ) , ( ) ( )

,

t t

Ax t By t f t x t X t f t y t Y t

x t y t X t Y t

x y






 

  

  

 

 

for all .t I with x y  Hence , A, is a partially nonlinear D -Lipschitz on E with a D -function  and which further implies 

that A, is a partially continuous operator on E. Similarly , it can be shown that C is a partially nonlinear D -Lipschitz on E with a 

D -function  and which is again a partially continuous operator on E. 

Step III: B is partially continuous on E. 

Let { }n n Nx   be a sequence in a chain C of E such that .nx x for all n N  Then by dominated convergence theorem, we 

have  

   

0

0

0

( )

( )

( )

lim ( ) lim lim ( , ( ), ( ))

lim ( , ( ), ( ))

lim ( , ( ), ( ))

( ),

t

t t s

n n n
n n n

t

t

t t s

n n
n

t

t

t t s

n
t

x t ce e g s x s X s ds

ce e g s x s X s ds

ce e g s x s X s ds

x t

 

 

 

  

  

  



  



 

  
 

  
 









B

B

 

for all .t I This shows that nxB converges to xB point wise on I. 

Now we will prove that  n n N
x


B is an equicontinuous sequence of functions in E.  

Let 1 2 1 2, .t t E with t t  Then 

1 2

1 1

1 2

0 0

1 2

2 2

0 0

1

1 2 1 2

0

2 1

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( , ( ), ( )) ( , ( ), ( ))

( , ( ), ( )) ( , ( ), ( ))

t t

n n

t t

t s t s

n n n n

t t

t t

t s t s

n n n n

t t

t

t t t s t s

t

x t x t ce ce

e g s x s X s ds e g s x s X s ds

e g s x s X s ds e g s x s X s ds

ce ce e e

 

 

 

   

 

   

   

     

  

 

 

   

 

 



B B

 

1

2

0

1 2 1 2

0

( ) ( )

1 2

2 1

( , ( ), ( ))

( , ( ), ( ))

0 0

n n

t

n n

t

t a

t t t s t s

g g

t

g s x s X s ds

g s x s X s ds

ce ce M e e ds M t t

as t t

   



     



     

  





  

uniformly for all n N . This shows that the convergence nx xB B is uniform and hence this proves that B is partially 

continuous on E. 

Step IV: B is uniformly partially compact operator on E. 
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Let C be an arbitrary chain in E. We have to show that ( )CB is uniformly bounded and equicontinuous set in E. First we show 

that ( )CB is uniformly bounded. Let ( )y CB  be any element . Then there is an element x C such that y xB .Now , by 

hypothesis (B2), 

0

0

0

0

( )

( )

0

0 0 0

0

0 0 0

( ) ( , ( ), ( ))

( , ( ), ( ))

( , ( ), ( ))
( , , )

.
( , , )

t

t t s

t

t

t t s

t

t a

t

g

y t ce e g s x s X s ds

ce e g s x s X s ds

g s x s X s ds
f t

M a M
f t

 

 



 



 

  

  



 

 

 

  







 

for all .t I Taking supremum over t, we obtain  ( ).y x M for all y C  B B  

Hence, ( )CB is uniformly bounded subset of E. Moreover, ( )C MB  for all chains C in E. Hence ,  

B  is uniformly partially bounded operator on E. 

Next, we will show that ( )CB is an equicontinuous set in E. Let 1 2 1 2, .t t I with t t  Then, for any ( )y CB one has  

   

1 2

1 1

1 2

0 0

1 1

2 2

0 0

1 2 1 2

0

2 1 2 1

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( , ( ), ( )) ( , ( ), ( ))
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

 

uniformly for all ( )y CB .Hence ( )CB is an equicontinuous subset of E. Now , ( )CB  is uniformly bounded and 

equicontinuous set of functions in E, so it is compact. Consequently, B is a uniformly partially compact operator on E into itself. 

Step V: u satisfies the operator inequality .u u u u A B C  

By hypothesis (C1), the FDE (2.1) has a lower solution u defined on I. Thus we have  

   

0 0

( )
( , ( ), ( )),

( , ( ), ( ))

( ) ,

d u t
g t u t U t

dt f t u t U t

u t 

 
  

 
 

                                               (4.10) 
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for all .t I Multiplying the above inequality by the integrating factor 
te
, we obtain 

   

'

( )
( , ( ), ( )),

( , ( ), ( ))

t tu t
e e g t u t U t

f t u t U t

  
 

 
                                          (4.11) 

for all .t I A direct integration of (4.11) from 0t and t  yields 

   

0

( )( ) ( , ( ), ( )) ( , ( ), ( )) ,

t

t t s

t

u t f t u t U t ce e g s u s U s ds   
 

   
 
 

        (4.12) 

for all .t I From definition of the operator A, and B it follows that ( ) ( ) ( ) ( ),u t u t u t u t A B C  for all .t I Hence 

.u u u u A B C  

Step VI: D -function and  satisfy the growth condition  

    0 ( ) ( ) , 0.M r r r r    
A A

 

Finally , the D -function of the operator A satisfies the inequality given in hypothesis (d) of Theorem  (3.1) . Now from the 

estimate given in step IV, it follows that  

  
0

0 0 0

( ) ( ) ( ) ( )
( , , )

gM r r M a r r r
f t


   

 

 
      

 
A A

 

for all 0.r   

Thus A, and B satisfy all the conditions of Theorem (3.1) and we apply it to conclude that the operator equation 

x x x xA B +C  has a solution. Consequently the integral equation and the FDE(2.1) has a positive solution *x defined on I . 

Furthermore, the sequence 
1{ }n nx 


 of successive approximations defined by (4.5) converges monotonically *x . This completes 

the proof. 

Remark 4.2.  The conclusion of Theorem 4.1 also remains true if we replace the hypothesis with the following : 

 (C2) The FDE(2.1) has an upper solution ( , ).v C I   

The proof of this can be carried out using similar procedure as mentioned above with appropriate modifications. 

Remark 4.3.  We note that if the FDE(2.1) has a lower u as well as upper solution v such that u v , then under the given 

conditions of Theorem (4.1) it has corresponding solutions 
* *x and x and these solution satisfy 

* *.x x Hence they are the 

minimal and maximal solutions of the FDE (2.1) in the vector segment [ , ]u v  of the Banach space ( , ),E C I  where the 

vector segment [ , ]u v is a set in ( , )C I  defined by  

    [ , ] { ( , ) | }.u v x C I u x y      

This is because the order relation  defined by (4.2) is equivalent to the order relation defined by the order cone 

{ ( , ) | }x C I x    K which is a closed set in ( , )C I  . 
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