A Study on R-Near Ring

1D.Radha, 2C.Dhivya, 3M.Vinutha, 4K.Muthu Maheswari, 5S.R.Veronica Valli.
1Associate Professor, 2Assistant Professor, 3Research Scholar, 4M.Phil Scholar, 5 I M.Sc Student
1PG & Research Department of Mathematics,
1A.P.C.Mahalaxmi College for Women, Thoothukudi, Tamilnadu, India.

Abstract : In this paper we introduce the concept of R-near ring. We define that a near ring N is a R-near ring if for every $a \in N$, there exists $x \in N$ such that $xax = xa$. The properties of R-near ring are discussed using the concept of zero divisors, ideal and subcommutativity. It is proved that every ideal and every left N-subgroup of any R-near ring without zero divisors is an R-near ring. It is also proved that any R-near ring is IFP near ring and subcommutative if it is Boolean; zero-symmetric if it is commutative also. A commutative zero symmetric Boolean near ring is always a R-near ring.

Keywords - N-subgroup, IFP, subcommutative, nil near ring, distributive, Boolean.

1.Introduction

Near rings can be thought of as generalized rings: if in a ring we ignore the commutativity of addition and one distributive law, we get a near ring.

Throughout this paper N stands for a right near ring $(N,+)$, with at least two elements and '0' denotes the identity element of the group $(N,+)$ and we write xy for x, y for any two elements x, y of N. Obviously $0n = 0$ for all $n \in N$. If, in addition, $n0 = 0$ for all $n \in N$ then we say that N is zero symmetric. An element a is said to be nilpotent if $a^k = 0$ for some positive integer k.

2.Preliminaries

Notation 2.1 [1]

E denotes the set of all idempotents of N ($a \in E$ iff $a^2 = a$)

Definition 2.2 [2]

If all nonzero elements of N are left (right) cancelable, we say that N fulfills the left (right) cancellation law.

Definition 2.3 [5]

An element $0 \neq x \in N$ is called a right zero divisor if there exists $0 \neq a \in N$ such that $ax = 0$.

Definition 2.4 [5]

An element $0 \neq x \in N$ is called a left zero divisor if there exists $0 \neq a \in N$ such that $xa = 0$.

Definition 2.5 [5]

A zero divisor is an element that is either a left (or) right zero divisor.

Definition 2.6 [2]

If (N,\cdot) is commutative we call N itself a commutative near ring.
Definition 2.7 [2]

A near ring N is **Boolean** if and only if for all $x \in N$: $x^2 = x$.

Definition 2.8

An additive group A of N is called a **left N-subgroup** if $NA \subseteq A$ where $NA = \{ra | a \in A, r \in N\}$.

Definition 2.9 [2]

Let N be a near ring and P a N-group. A normal subgroup I of $(N, +)$ is called an **ideal** of N if (i) $IN \subseteq I$ (ii) For all $n, n_1 \in N$ and for all $i \in I$, $n(n_1 + i) - nn_1 \in I$.

Definition 2.10 [2]

N is called a **nil near ring** if every element of N is nilpotent.

Definition 2.11 [4]

N is said to be **subcommutative** if $Na = aN$ for all $a \in N$.

Definition 2.12 [1]

N is called a **P_k near ring** (P_k' near ring) if there exists a positive integer k such that $x^kN = xNx (N x^k = xNx)$ for all $x \in N$.

Definition 2.13 [2]

N is said to fulfill the **Insertion of Factors Property (IFP)** provided that for all a, b, n in N, $ab = 0 \Rightarrow anb = 0$.

Definition 2.14 [2]

$N_d = \{n \in N | n(a + a') = na + na' \text{ for all } a, a' \in N\}$ - the set of all distributive elements of N. N is called **distributive** if $N = N_d$.

Theorem 2.15 [2]

Let I be an ideal of N. N is nil if and only if I and N/I are nil.

Theorem 2.16 [2]

Let I be an ideal of N. Then N is zero symmetric if and only if I and N/I are zero symmetric.

3.R-near ring

Definition 3.1

N is called a **R-near ring** if for every $a \in N$ there exists $x \in N$ such that $xax = xa$.

Theorem 3.2

Let N be an R-near ring. (i) If $ax = 0$ then $xa = 0$. (ii) If $ax \in E$ then $xa \in E$. (iii) If the left cancellation law is valid in N, then $xa \in E$ implies $ax \in E$, for all $a \in N$ and for some $x \in N$.

Proof:

Let $a \in N$. Since N is an R-near ring, there exists $x \in N$ such that $xax = xa \rightarrow (1)$. (i) If $ax = 0$ then from (1) we get, $xa = x0 = 0$. Thus $xa = 0$. (ii) If $ax \in E$ then $(ax)^2 = ax \rightarrow (2)$. Now $(xa)^2 = (xa)(xa) = x(ax)x = x(ax)x = xax = xa$. That is $(xa)^2 = xa$ and hence $xa \in E$. (iii) If $xa \in E$, then $(xa)^2 = xa \rightarrow (3)$. Now $x(ax)^2 = (xa)(xax) = (xa)(xa) = (xa)^2 = xa = xax$. That is $x(ax)^2 = xax$. Since the left cancellation law is valid in N, $(ax)^2 = ax$. Thus $ax \in E$.

JETIR1912055 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 435
Proposition 3.3

Let N be a R-near ring without nonzero zero divisors. If N is commutative then N is Boolean.

Proof:

Let $a \in N$. Since N is an R-near ring, there exists $x \in N$ such that $xax = xa$. Since N is commutative, $x(xa) = xa \Rightarrow x^2a = xa \Rightarrow (x^2 - x)a = 0$. Since N has no nonzero zero divisors, $x^2 - x = 0$. Consequently, N is Boolean.

Proposition 3.4

Let N be a R-near ring. If N has no zero divisors, then every left N-subgroup and every ideal of N is a R-near ring in its own right.

Proof:

Let M be an an left N-subgroup of N and let $a \in M$. Since N is a R-near ring, there exists $x \in N$ such that $xax = xa$. Take $m = xa \in NM$. Since N is a left N-subgroup of N, $NM \subseteq M$. Therefore $m \in M$. Since N has no zero divisors, $m \neq 0$. Now $xm = x(xa)x = x(xax) = x(xa) = xm$. Thus M is a R-near ring.

Now, let I be an ideal of N and let $a \in I$. Since N is a R-near ring, there exists $x \in N$ such that $xax = xa$. Take $i = xa \in NI$. Since I is an ideal of N, $NI \subseteq I$. Therefore $i \in I$. Since N has no zero divisors, $m \neq 0$. Now $xix = x(xa)x = x(xax) = x(xa) = xi$. Thus I is a R-near ring.

Theorem 3.5

Let N be a nil near ring. Then N is a R-near ring if and only if N is zero symmetric.

Proof:

Take $a \in N$. Since N is a R-near ring, there exists $x \in N$ such that $xax = xa \Rightarrow (1)$. We shall prove that $xax = xa$ (2) for all positive integer k, we use induction on k. Equation (2) is true for $k = 1$. Assume that the result is true for $k = s - 1$. If $k = s$, then $xasx = (xax)(as^{-1}x) = (xax)as^{-1}x = x(xas^{-1}) = (xa)a^{-1} = xa^s$. Thus $xax = xa^k$ for all positive integers k.

Since N is nil, $a^t = 0$ for some positive integer t. Since $xatx = xa^t$, $x0x = x0 \Rightarrow x0 = 0$. Thus N is zero symmetric. Conversely, let $x \in N$. Since N is nil, there exists a positive integer such that $x^k = 0$. This implies $xa = 0$ where $a = x^{k-1}$. Therefore $xax = x(ax) = x(x^{k-1}x) = xx^k = x0 = 0 = xa$. Thus N is a R-near ring.

Theorem 3.6

Let N be a Boolean near ring. Each of the following statement implies that N is a R-near ring. (i) N is an IFP near ring with identity. (ii) $xN = xNx$ for all $x \in N$ (N is a P_1 near ring) (iii) N is subcommutative.

Proof:

(i) Let N be an IFP near ring with identity 1 and let $x \in N$. Since N is Boolean, $x^2 = x \Rightarrow x^2 - x = 0 \Rightarrow x(x - 1) = 0$. Since N has IFP, $xa(x - 1) = 0$ for all $a \in N$. This implies $xax = xa = 0 \Rightarrow xax = xa$.

(ii) Let $x \in N$. Since $xN = xNx$, for any $a \in N$, there exists $y \in N$ such that $xa = xyy$. Therefore $xax = (xa)x = (xy)x = xyx^2 = xyx = xa$. Thus $xax = xa$. Hence N is a R-near ring. (iii) Let $x \in N$. Since N
is subcommutative, \(xN = Nx \). Therefore for any \(a \in N \), there exists \(y \in N \) such that \(xa = yx \). Therefore \(xax = (xa)x = (yx)x = yx^2 = yx = xa \). That is \(xax = xa \) for all \(a \in N \). Thus \(N \) is a \(R \)-near ring.

Theorem 3.7

A commutative zero symmetric Boolean near ring is always a \(R \)-near ring.

Proof:

(i) Let \(N \) be a zero symmetric near ring. Let \(x \in N \). If \(x \neq 0 \), we take \(a = x \). Then \(xax = x^2x = xx = xa \). That is \(xax = xa \). If \(x = 0 \), then for any \(a \in N \), \(xax = 0 \). Since \(N \) is commutative \(xa = ax = 0 \). Thus \(N \) is a \(R \)-near ring.

Theorem 3.8

Let \(N \) be a commutative near ring without nonzero zero divisors. Then \(N \) is a \(R \)-near ring if and only if \(N \) is Boolean.

Proof:

Let \(a \in N \). For any \(x \in N \), \(xax = xa = (xa)x = xa = ax^2 = ax = a(x^2 - x) = ax = 0 \). That is \(xax = xa = 0 \) \(\Rightarrow \) \(xax = xa \). Therefore \(N \) is a \(R \)-near ring. Conversely, Let \(N \) be Boolean. This implies \(x^2 = x \) for all \(x \in N \Rightarrow x^2 - x = 0 \). Since \(N \) has no zero divisors, \((x^2 - x)a = 0 \) for all \(a \in N \). \(\Rightarrow x^2a - xa = 0 \Rightarrow x(axa) - xa = 0 \Rightarrow x(ax) - xa = 0 \Rightarrow xax = xa \). Thus \(N \) is a \(R \)-near ring.

Theorem 3.9

Let \(N \) be a nil near ring and \(I \) a nonzero ideal of \(N \). Then \(N \) is a \(R \)-near ring if and only if \(I \) and \(N/I \) are \(R \)-near rings.

Proof:

Let \(I \) be a nonzero ideal of \(N \). Since \(N \) is nil, by theorem 2.15 we get, \(I \) and \(N/I \) are nil. Let \(N \) be a \(R \)-near ring. Since \(N \) is nil, \(N \) is zero symmetric by theorem 3.5. Therefore by theorem 2.16, we get \(I \) and \(N/I \) are zero symmetric. By theorem 3.5, we get \(I \) and \(N/I \) are \(R \)-near rings. Conversely, let us assume that \(I \) and \(N/I \) are \(R \)-near rings. Therefore \(I \) and \(N/I \) are zero symmetric by theorem 3.5 and by theorem 2.16 \(N \) is zero symmetric. Again by theorem 3.5 \(N \) is a \(R \)-near ring.

Bibliography

10) D. Radha and P. Meenakshi, Some Structures of Idempotent Commutative Semigroup, International of Science, Engineering and Management (IJSEM), Vol 2, Issue 12, December 2017, ISSN (Online) : 2456-1304.

14) D. Radha and S. Suguna, Normality in Idempotent Commutative Γ - Semigroup, International Journal of Science, Engineering and Management (IJSEM) Vol 3, Issue 4, April 2018, ISSN (Online) : 2456-1304.

15) D. Radha and M. Parvathi Banu, Left Singularity and Left Regularity in Near Idempotent Γ - Semigroup, International Journal of Science, Engineering and Management (IJSEM) Vol 3, Issue 4, April 2018, ISSN (Online) : 2456-1304.

