THE SPACE OF MINIMAL PRIME S-IDEALS IN 0-DISTRIBUTIVEALMOST SEMILATTICES

¹G. Nanaji Rao, ²Ch. Swapna ^{1&2}Department of Mathematics Andhra University, Visakhapatnam – 530003, Andhra Pradesh.

Abstract : Let L be a 0-distributive almost semilattice (0-distributive ASL) and \mathfrak{M} be its minimal spectrum. It is shown that \mathfrak{M} is Hausdorff. The compactness of \mathfrak{M} has been characterized in several ways.

Key Words: S-ideal, prime S-ideal, 0-distributive ASL, minimal prime S-ideal, hull-kernel topology, dual hull kernel topology.

AMS Subject classification (1991): 06D99, 06D15.

1 INTRODUCTION

Henriksen and Jerison [1] investigated the space of minimal prime ideals of a commutative ring extending the considerations of Kist [2]. They succeeded in obtaining sufficient conditions for their respective spaces to be compact. This inspired Speed [9] [10] to investigate minimal prime ideals of a distributive lattice with 0. Fortunately, the lattice theoretic situation enabled Speed [9] to obtain much deeper results; so much so, he could characterize the compact--ness of the space of minimal prime ideals of a distributive lattice with 0 in a much more elegant manner. Later Pawar and Thakare [8] studied the space of minimal prime ideals when it was carried the hull-kernel topology.

In this paper, we shall mainly be concerned here with the space of minimal prime S-ideals when it carries the hullkernel topology.

2 Preliminaries

In this section, we collect a few important definitions and results which are already known and which will be used more frequently in the text.

Definition 2.1: An ASL with 0 is an algebra (L, o, 0) of type (2, 0) satisfies the following conditions:

1) $(x \circ y) \circ z = x \circ (y \circ z)$ 2) $(x \circ y) \circ z = (y \circ x) \circ z$ 3) $x \circ x = x$ 4) $0 \circ x = 0$, for all $x, y, z \in L$.

Definition 2.2: Let L be an ASL. A nonempty subset I of L is said to be an S-ideal if it satisfies the following conditions:

1) If $x \in I$ and $a \in L$, then $x \circ a \in I$.

2) If $x, y \in I$, then there exists $d \in I$ such that $d \circ x = x, d \circ y = y$.

Definition 2.3 : A nonempty subset *F* of an ASL *L* is said to be a filter if *F* satisfies the following conditions:

1) $x, y \in F$ implies $x \circ y \in F$.

2) If $x \in F$ and $a \in L$ such that $a \circ x = x$, then $a \in F$.

Definition 2.4 : A proper S-ideal *P* of an ASL *L* is said to be a prime if for any $x, y \in L$, $x \circ y \in P$ imply $x \in P$ or $y \in P$.

Definition 2.5: Let *L* be an ASL with unimaximal element. Then a proper filter *F* of *L* is said to be a prime filter if for any filters F_1 and F_2 of $L, F_1 \cap F_2 \subseteq F$ implies that either $F_1 \subseteq F$ or $F_2 \subseteq F$.

Definition 2.6: A proper filter *F* of L is said to be maximal if for any filter *G* of *L* such that $F \subseteq G \subseteq L$, then either F = G or G = L.

Definition 2.7 : Let *L* be an ASL with 0. Then *L* is said to be 0-distributive if for any $x, y, z \in L$, $x \circ y = 0$ and $x \circ z = 0$ then there exists $d \in L$ such that $d \circ y = y$, $d \circ z = z$ and $d \circ x = 0$.

Definition 2.8 : Let *L* be an ASL with 0. Then for any non empty subset *A* of *L*, $A^* = \{x \in L : x \text{ o } a = 0 \text{ for all } a \in A\}$ is called the annihilator of *A*.

Note that if $A = \{a\}$, then we denote $A^* = \{a\}^* by [a]^*$.

Theorem 2.9: Let *L* be an ASL with 0. Then for any ideals *I*, *J* of *L*, we have the following.

(1) $I^* = \bigcap_{a \in I} [a]^*$ (2) $(I \cap J)^* = (J \cap I)^*$ $(3) I \subseteq J \Longrightarrow J^* \subseteq I^*$ $(4) I^* \cap J^* \subseteq (I \cap J)^*$ $(5) (I \cap J)^{**} = I^{**} \cap J^{**}$ (6) $I \subseteq I^{**}$ (7) $I^{***} = I^*$ (8) $I^* \subseteq J^* \iff J^{**} \subseteq J^{**}$ $(9) I \cap J = (0] \iff I \subseteq J^* \iff J \subseteq I^*$ $(10) (I \cup J)^* = I^* \cap J^*$ **Theorem 2.10**: Let L be an ASL with 0. Then for any $x, y \in L$, we have the following. (1) $x \leq y \implies [y]^* \subseteq [x]^*$ $(2) [x]^* \subseteq [y]^* \Longrightarrow [y]^{**} \subseteq [x]^{**}$ (3) $x \in [x]^{**}$ (4) $(x]^* = [x]^*$ (5) $(x] \cap [x]^* = \{0\}$ (6) $[x \circ y]^* = [y \circ x]^*$ $(7) [x]^* \cap [y]^* \subseteq [x \circ y]^*$ (8) $[x \circ y]^{**} = [x]^{**} \cap [y]^{**}$ (9) $[x]^{***} = [x]^{*}$

(10) $[x]^* \subseteq [y]^*$ if and only if $[y]^{**} \subseteq [x]^{**}$

Theorem 2. 11 : Let L be an ASL with 0, in which intersection of any family of S-ideals is again an S-ideal. Then the following are equivalent:

(1) L is 0-distributive ASL

(2) A^* is an S-ideal, for all $A (\neq \emptyset) \subseteq L$.

(3) SI(L) pseudo- complemented semilattice.

(4) SI(L) is 0-distributive semilattice.

(5) PSI(L) is 0-distributive semilattice.

Theorem 2. 12 : Let *L* be an ASL and *P* be a proper S-ideal of *L*. Then *P* is prime S-ideal if and only if for any S-ideals *I* and *J* of *L*, $I \cap J \subseteq P$ imply $I \subseteq P$ or $J \subseteq P$.

Theorem 2.13 : Every proper filter in ASL *L* is contained in a maximal filter.

Theorem 2. 14 : Let *L* be a 0-distributive ASL. Then every maximal filter of *L* is a prime filter.

Theorem 2.15: Let be L an ASL. Then a subset P of L is a prime S-ideal if and only if L - P is a prime filter.

Theorem 2.16 : Let *L* be a 0-distributive ASL. Then a subset *M* of *L* is a minimal prime S-ideal if and only if L - M is a maximal filter.

Theorem 2. 17 : Let *L* be a 0-distributive ASL. Then a prime S-ideal *M* of L is minimal if and only if $[x]^* - M \neq \emptyset$ for any $x \in M$.

Corollary 2. 18 : Let *L* be a 0-distributive ASL. Then a prime S-ideal *M* of L is minimal if and only if it contains precisely one of $\{x\}, [x]^*$ for every $x \in L$.

Corollary 2.19 : Let *L* be a 0-distributive ASL and let *P* be a minimal prime S-ideal in *L*. Then for every $x \in L$, $[x]^{**} \not\subseteq P$ if and only if $[x]^* \subseteq P$.

Theorem 2. 20 : Let *L* be a 0-distributive ASL in which intersection of any family of S-ideals is again an S-ideal. Then for any S-ideal *I* of *L*, I^* is the intersection of all minimal prime S-ideals not containing *I*.

Corollary 2. 21 : The intersection of all minimal prime S-ideals of a 0-distributive ASL is {0}.

Lemma 2. 22 : Let *L* be a 0-distributive ASL and let $a \ (\neq 0) \in L$. Then there exists a minimal prime S-ideal not containing *a*.

Lemma 2. 23 : Let *L* be a 0-distributive ASL. Then for any $x \in L$, $[x]^* = \cap \{ M \in \mathfrak{M} : x \notin M \}$.

3. Notation and Theorem

Let *L* be a 0-distributive ASL. As usual, for a subset \mathcal{R} of \mathfrak{M} (the set of all minimal prime S-ideals in *L*), we write the kernel of \mathcal{R} , denoted by $K(\mathcal{R})$, the set given by $\cap \{P : P \in \mathcal{R}\}$. For a nonempty subset A of L, the hull of A, denoted by h(A), is the set $\{P \in \mathfrak{M} : A \subseteq P\}$. Let us also adopt the notation M_x to denote the set $\{P \in \mathfrak{M} : x \notin P\}$. The hullkernel topology on \mathfrak{M} is obtained by taking the family $\{M_x : x \in L\}$ as the base for open sets. \mathfrak{M} together with this topology is called the minimal spectrum of *L*; and we shall continue to designate it by \mathfrak{M} . Also, it can be easily seen that in the hull-kernel topology on \mathfrak{M} open sets are of the form M_I , where $M_I = \{P \in \mathfrak{M} : I \not\subseteq P\}$ and $h(I) = \mathfrak{M} - M_I$.

In this section, we derive a set of identities for \mathfrak{M} to be compact in its hull-kernel topology. For this, first we need the following.

Theorem 3.1: Let *L* be an ASL and let *P* be a prime S-ideal of L. Then *P* is a minimal prime S-ideal if and only if L - P is a maximal prime filter.

Proof : Suppose *P* is a minimal prime S-ideal of *L*. Now, we shall prove that L - P is a maximal prime filter. Then by lemma 2.15, L - P is a prime filter. Suppose *Q* is a prime filter of *L* such that $L - P \subseteq Q$. Then $L - Q \subseteq P$ and

L - Q is a prime S-ideal. Therefore L - Q = P since P is minimal. It follows that Q = L - P. Therefore L - P is a maximal prime filter. Conversely, suppose L - P is a maximal prime filter. Then by lemma 2.15, we get P is a prime S-ideal. Suppose Q is a prime S-ideal of L such that $Q \subseteq P$. Then $L - P \subseteq L - Q$ and L - Q is a prime filter. Therefore L - P = L - Q. Hence P = Q. Therefore P is a minimal prime S-ideal.

Corollary 3.2 : Let L be a 0-distributive ASL. Then a filter Q of L is maximal if and only if Q is a maximal prime filter. Now, we improve some important relations between the S-ideals of 0-distributive ASL and the corresponding open sets in the hull-kernel topology on \mathfrak{M} .

Lemma 3.3: Let L be an 0-distributive ASL. Then for any $I, J \in SI(L)$, we have the following.

1) $I \subseteq J \implies M_I \subseteq M_J$ 2) $I \subseteq J \implies h(J) \subseteq h(I)$

 $2) I \subseteq J \implies n(J) \subseteq 3) M_I \cap M_I = M_{I \cap I}$

4) $h(I) \cup h(J) = h(I \cap J)$

Proof: 1. Suppose $I \subseteq J$ and suppose $P \in M_I$. Then $I \not\subseteq P$. Therefore $J \not\subseteq P$. Hence $P \in M_J$. Thus $M_I \subseteq M_J$. 2. Suppose $I \subseteq J$ and suppose $P \in h(J)$. Then $J \subseteq P$. Therefore $I \subseteq P$. Hence $P \in h(I)$. Thus $h(J) \subseteq h(I)$.

3. Clearly, $M_{I \cap J} \subseteq M_I \cap M_J$. Conversely, suppose $P \in M_I \cap M_J$. Then $P \in M_I$ and $P \in M_J$. Therefore $I \not\subseteq P$ and $J \not\subseteq P$. It follows that $I \cap J \not\subseteq P$. Therefore $P \in M_{I \cap J}$. Thus $M_I \cap M_J \subseteq M_{I \cap J}$. Therefore $M_{I \cap J} = M_I \cap M_J$.

4. $h(I) \cup h(J) = M_{I}^{c} \cup M_{I}^{c} = (M_{I} \cap M_{I})^{c} = (M_{I \cap I})^{c} = h(I \cap J).$

Corollary 3.4 : Let L be an 0-distributive ASL and $x, y \in L$. Then we have the following.

1) $x \leq y \implies M_x \subseteq M_y$

2) $x \le y \implies h(y) \subseteq h(x)$

3) $M_x \cap M_y = M_{x \circ y}$

4) $h(x) \cup h(y) = h(x \circ y)$

Proof : 1. Suppose $x \le y$ and suppose $P \in M_x$. Then $x \notin P$. Therefore $y \notin P$. Hence $P \in M_y$. Thus $M_x \subseteq M_y$. 2. Suppose $x \le y$ and suppose $P \in h(y)$. Then $y \in P$. Therefore $x \in P$. Hence $P \in h(x)$. Thus $h(y) \subseteq h(x)$.

3. We have $\in M_x \cap M_y \Leftrightarrow P \in M_x$ and $P \in M_y \Leftrightarrow x \notin P$ and $y \notin P \Leftrightarrow x \circ y \notin P \Leftrightarrow P \in M_{x \circ y}$.

Therefore $M_x \cap M_y = M_{x \circ y}$.

4. We have $P \in h(x) \cup h(y) \Leftrightarrow P \in h(x)$ or $P \in h(y) \Leftrightarrow x \in P$ and $y \in P \Leftrightarrow x \circ y \in P \Leftrightarrow P \in h(x \circ y)$. Therefore $h(x) \cup h(y) = h(x \circ y)$.

The following lemma exhibits the relation between the annihilator S-ideal of 0-distributive ASL L and the basic open sets, basic closed sets of \mathfrak{M} in the hull-kernel topology.

Theorem 3.5: Let L be a 0-distributive ASL and $x, y \in L$. Then we have the following.

1) $M_x = h([x]^*)$

2) $h(x) = h([x]^{**})$

 $3) [x]^* \subseteq [y]^* \Leftrightarrow h(x) \subseteq h(y)$

4) $M_{y} \subseteq M_{x} \Leftrightarrow [x]^{*} \subseteq [y]^{*} \Leftrightarrow [y]^{**} \subseteq [x]^{**}$

5) $[x]^{**} = [y]^* \Leftrightarrow h(x) = h([y]^*)$

Proof : Proofs of conditions (1) and (2) follows by corollary 2.18 and 2.19.

3. Suppose $[x]^* \subseteq [y]^*$ and suppose $P \in h(x)$. Then $x \in P$. Hence by corollary 2.18, we get $[x]^* \not\subseteq P$. Therefore $[y]^* \not\subseteq P$. Hence $y \in P$. Therefore $P \in h(y)$. Thus $h(x) \subseteq h(y)$. Conversely, suppose $h(x) \subseteq h(y)$. Let $a \notin [y]^*$. Then $a \circ y \neq 0$. Therefore by lemma 2.22, there exists a minimal prime S-ideal (say) $P \circ f L$ such that $a \circ y \notin P$. It follows that $a \notin P$ and $y \notin P$. Hence, we get $a \notin P$ and $P \notin h(y)$. This implies $a \notin P$ and $P \notin h(x)$. Hence $a \notin P$ and $x \notin P$. It follows that $a \circ x \notin P$, since P is a prime S-ideal of L. Therefore $a \circ x \neq 0$, we get $a \notin [x]^*$. Thus $[x]^* \subseteq [y]^*$.

4. We have $[x]^* \subseteq [y]^* \Leftrightarrow h(x) \subseteq h(y) \Leftrightarrow \mathfrak{M} - h(y) \subseteq \mathfrak{M} - h(x) \Leftrightarrow M_y \subseteq M_x$. Therefore $[x]^* \subseteq [y]^* \Leftrightarrow M_y \subseteq M_x$.

5. Suppose $[x]^{**} = [y]^*$. Then $h([x]^{**}) = h([y]^*)$. Hence by (2), we get $h(x) = h([y]^*)$. Conversely, suppose $a \notin [x]^{**}$. Then there exists $t \in [x]^*$ such that $a \circ t \neq 0$. Therefore by lemma 2.22, there exists a minimal prime S-ideal P of L such that $a \circ t \notin P$. Hence $a \notin P$ and $t \notin P$. Since $t \circ x = 0 \in P$, $x \in P$. Therefore $P \in h(x) = h([y]^*)$. Hence $[y]^* \subseteq P$, we get $a \notin [y]^*$. Thus $[y]^* \subseteq [x]^{**}$. Similarly, we get $[x]^{**} \subseteq [y]^*$. Therefore $[x]^{**} = [y]^*$.

In [5], the authors proved that the pseudo-complement of an S-ideal I in a 0-distributive ASL L is the intersection of all minimal prime S-ideals not containing I. In the language that was introduced above one can write this assertion in the following compact and convenient form.

Theorem 3.6 : Let L be a 0-distributive ASL. Then for any S-ideal I of L, $I^* = K (\mathfrak{M} - h(I))$. **Proof :** We have $I^* = \cap \{P \in \mathfrak{M} : I \notin P\} = \cap \{P \in \mathfrak{M} : P \in M_I\} = \cap \{P \in \mathfrak{M} : P \notin h(I)\}$ Recall that in a 0-distributive ASL L for any $x \in L$, we have $[x]^* = \cap \{P \in \mathfrak{M} : x \notin P\}$ and hence $[x]^* = K(M_x)$. Hence we have the following.

Corollary 3.7 : Let L be a 0-distributive ASL. Then for every $x \in L$, $h(K(M_x)) = M_x = h([x]^*)$. In particular, h(x) and $h([x]^*)$ are clopen sets in \mathfrak{M} that are disjoint.

Proof: Let $x \in L$. Then we have $h(K(M_x)) = h([x]^*) = \{P \in \mathfrak{M} : [x]^* \subseteq P\} = \{P \in \mathfrak{M} : x \notin P\} = M_x$. Therefore $h(K(M_x)) = h([x]^*) = M_x$.

By theorem 3.6, it can be easily seen that if *I* is an S-ideal in 0-distributive ASL L, then $I^* = K(\mathfrak{M} - h(I)) = K(M_I)$ and M_I is an open subset of \mathfrak{M} . Therefore we have the following.

Corollary 3.8 : A subset *Y* of *L* is the disjoint complement of I^* , for some S-ideal *I* of *L* if and only if *Y* is the kernel of some open subset of \mathfrak{M} .

We see that theorem 3.6, above states a property of the disjoint complement I^* of an S-ideal. But, we see, an account of theorem 3.1, much more is true.

Theorem 3.9 : Let *L* be a 0-distributive ASL. Then for any nonempty subset $A \ (\neq \{0\})$ of $L, A^* = K \ (h \ (A^*))$.

Proof : Suppose $A (\neq \{0\}) \subseteq L$. Now, we shall prove that $A^* = K (h (A^*))$. Suppose $t \in L$ such that $t \notin A^*$. Then $x \text{ o } t \neq 0$, for some $x \in A$. Therefore there exists a maximal filter (say) F of L such that $x \text{ o } t \in F$. Now, since F is a maximal filter, L - F is a minimal prime S-ideal. Let $z \in A^*$. Then we have $z \text{ o } x = 0 \in L - F$. Since L - F is prime, either $z \in L - F$ or $x \in L - F$. It follows that $z \in L - F$ since $x \text{ o } t \in F$ and hence $x \in F$. Therefore $A^* \subseteq L - F$. Hence $L - F \in h(A^*)$. Again, since $x \text{ o } t \in F$ and $x \text{ o } t \leq t$, $t \in F$. This implies $t \notin L - F$. It follows that $t \notin K(h(A^*))$. Hence $K(h(A^*)) \subseteq A^*$. Conversely, suppose $t \notin K(h(A^*))$. Then $t \notin P$, for some $P \in \mathfrak{M}$ such that $A^* \subseteq P$. It follows that $t \notin A^*$. Thus $A^* \subseteq K(h(A^*))$. Therefore $A^* = K(h(A^*))$.

As for any two minimal prime S-ideal none of them is contained in the other we see that any two points of \mathfrak{M} are T_1 – separated. Thus, we have the following.

Theorem 3. 10 : The hull-kernel topology on \mathfrak{M} is Hausdorff.

Proof: Suppose $P, Q \in \mathfrak{M}$ such that $P \neq Q$. Then there exists $x \notin P$ such that $x \in Q$. Therefore $P \in M_x$ and $Q \in h(x) = \mathfrak{M} - M_x$ and also $M_x \cap h(x) = M_x \cap (\mathfrak{M} - M_x) = \emptyset$. Therefore \mathfrak{M} is Hausdorff.

One more property of the set $\{M_x : x \in L\}$ is stated in the following. For, this we need the following lemmas.

Lemma 3.11 : Let L be a 0-distributive ASL and let $x \in L$. Then $M_x = \emptyset$ if and only if x = 0. **Proof :** Suppose $M_x \neq \emptyset$. Then there exists $P \in \mathfrak{M}$ such that $P \in M_x$. Therefore $x \notin P$ and hence $x \neq 0$. Conversely, suppose $x \neq 0$. Then by lemma 2.22, there exists $P \in \mathfrak{M}$ such that $x \notin P$. Therefore $P \in M_x$. Thus $M_x \neq \emptyset$.

Lemma 3.12: Let L be an ASL and let S be a nonempty subset of L. Then $[S] = \{x \in L : x \circ O_{i=1}^n s_i = O_{i=1}^n s_i, s_i \in S, 1 \le i \le n, n \text{ is } + ve \text{ integer } \}$ is the smallest filter containing S.

Proof : Suppose S is a nonempty subset of L. Then for any $s \in S$, we have $s = s \circ s$ and hence $s \in [S]$. Thus [S] is nonempty. Now, we shall prove that [S] is a filter. Let $x, y \in [S]$. Then $x \circ (O_{i=1}^n s_i) = O_{i=1}^n s_i$ and $y \circ (O_{i=1}^m t_i) = O_{i=1}^m t_i$, where $s_i, t_i \in S, 1 \le i \le n$ and $1 \le i \le m$. Therefore

 $(x \circ (O_{i=1}^{n} s_{i})) \circ (y \circ (O_{i=1}^{m} t_{i})) = O_{i=1}^{n} s_{i} \circ O_{i=1}^{m} t_{i}$. It follows that $(x \circ y) \circ O_{j=1}^{n+m} z_{j} = O_{j=1}^{n+m} z_{j}$, $z_{j} \in S$. Hence $x \circ y \in [S]$. Again, let $x \in [S]$ and $t \in L$ such that $t \circ x = x$. Then $x \circ (O_{i=1}^{n} s_{i}) = O_{i=1}^{n} s_{i}$, $s_{i} \in S, 1 \leq i \leq n$. Therefore $t \circ (x \circ (O_{i=1}^{n} s_{i})) = t \circ (O_{i=1}^{n} s_{i})$. Hence $(t \circ x) \circ (O_{i=1}^{n} s_{i}) = t \circ (O_{i=1}^{n} s_{i})$. It follows that $x \circ (O_{i=1}^{n} s_{i}) = t \circ (O_{i=1}^{n} s_{i})$. Hence $O_{i=1}^{n} s_{i} = t \circ (O_{i=1}^{n} s_{i}) = t \circ (O_{i=1}^{n} s_{i})$. It follows that $x \circ (O_{i=1}^{n} s_{i}) = t \circ (O_{i=1}^{n} s_{i})$. Hence $O_{i=1}^{n} s_{i} = t \circ (O_{i=1}^{n} s_{i})$. Therefore $t \in [S]$. Thus [S] is a filter. Now, it remains to prove that [S] is the smallest filter of L containing S. Suppose F is a filter of L such that $S \subseteq F$. Then for any $x \in [S]$, we have $x \circ (O_{i=1}^{n} s_{i}) = O_{i=1}^{n} s_{i}$, $s_{i} \in S, 1 \leq i \leq n$. Since $S \subseteq F$, $s_{i} \in F$. It follows that $x \in F$. Hence $[S] \subseteq F$. Therefore [S] is the smallest filter containing S.

Theorem 3. 13 : Let Σ be any indexing set and let $\{x_r : r \in \Sigma\}$ be a subset of 0-distributive ASL L such that the collection $\{M_{x_r}\}$ has the finite intersection property. Then the intersection of all $\{M_{x_r}\}$, $r \in \Sigma$ is nonempty.

Proof : Suppose $\{M_{x_r} : r \in \Sigma\}$ is a collection of sets in \mathfrak{M} with finite intersection property. Now, put $\Delta = \{x_r : r \in \Sigma\}$ and put $F = [\Delta]$. Suppose F = L. Then $0 \in L = F$. Therefore $O_{i=1}^n x_r = 0$ o $O_{i=1}^n x_r$, $x_r \in \Delta$, $1 \leq r \leq n$. This implies $O_{i=1}^n x_r = 0$. It follows that $M_{O_{i=1}^n x_r} = M_0 = \emptyset$. Therefore $\bigcap_{i=1}^n M_{x_r} = \emptyset$, a contradiction to finite intersection property. Therefore $F \neq L$. Hence F is a proper filter. It follows that there exists a maximal filter (say) H of L such that $F \subseteq H$. Again, it follows that L - H is a minimal prime S-ideal. Now, let $x_r \in \Delta$. Then $x_r \in H$. Therefore $x_r \notin L - H$. Hence $L - H \in M_x$. Therefore $L - H \in \bigcap_{x_r \in \Delta} M_{x_r}$. Thus $\bigcap_{x_r \in \Delta} M_{x_r} \neq \emptyset$.

We consider the family { $h(x) : x \in L$ } to be a subbase for \mathfrak{M} . Then the resulting topology is called the dual hull-kernel topology. We denote by τ_h the hull-kernel topology and by τ_d the dual hull-kernel topology on \mathfrak{M} . Now, we prove the following.

Theorem 3. 14 : The hull-kernel topology on \mathfrak{M} is finer than the dual hull-kernel topology.

Proof: Clearly, $h(x) = \mathfrak{M} - M_x$, for any $x \in L$. Also, by theorem 3.10, M_x is closed in \mathfrak{M} . Therefore h(x) is open in \mathfrak{M} . Hence h(x) is open in the hull-kernel topology; τ_h is finer than τ_d .

A sufficient condition of the equality of these two topologies τ_h and τ_d on \mathfrak{M} is stated in the following.

Theorem 3. 15 : Let L be a 0-distributive ASL. If for every $x \in L$, there exists $x' \in L$ such that $[x']^* = [x]^{**}$ then $\tau_h = \tau_d$.

Proof : Clearly, $\tau_d \subseteq \tau_h$. Now, we shall prove that $\tau_h \subseteq \tau_d$. Let $M_x \in \tau_h$. Then $x \in L$. Therefore there exists $x' \in L$ such that $[x']^* = [x]^{**}$. Now, $M_x = h([x]^*) = h([x']^{**}) = h(x')$. It follows that every basic open set in τ_h is open in τ_d . Thus $\tau_h \subseteq \tau_d$. Therefore $\tau_h = \tau_d$.

We now state our main result that provides us with necessary and sufficient conditions for \mathfrak{M} to be compact in its hull-kernel topology.

Theorem 3.10 : Let L be a 0-distributive ASL, in which intersection of any family of S-ideals is again an S-ideal. Then the following are equivalent.

1) M is compact.

2) Finite unions of $\{M_x : x \in L\}$ form a Boolean lattice.

- 3) For $x \in L$, there exist $t_i \in L, i = 1, 2, ..., n$ such that $t_i \in [x]^*$ and $[x]^* \cap \bigcap_{i=1}^n [t_i]^* = \{0\}$.
- 4) For $x \in L$, there exist $t_i \in L, i = 1, 2, ..., n$ such that $[x]^{**} = \bigcap_{i=1}^{n} [t_i]^{*}$

5)
$$\tau_h = \tau_d$$
.

- 6) { $h(x) : x \in L$ } is a subbasis for the open sets of (\mathfrak{M}, τ_d) .
- 7) { $M_x : x \in L$ } is a subbasis for the open sets of (\mathfrak{M}, τ_h) .

Proof : $(1) \Rightarrow (2)$: Suppose \mathfrak{M} is compact in the hull-kernel topology. Now, put $B_h = \{M_x : x \in L\}$ and put B is the set of all finite unions of elements in B_h . Now, we shall prove that B is a Boolean lattice. Now, we have $h([x]^*) = \bigcap_{t \in [x]^*} h(t)$. Therefore $h(x) \cap h([x]^*) = h(x) \cap \bigcap_{t \in [x]^*} h(t) = \emptyset$ and $\{h(x) \cap h(t) : t \in [x]^*\}$ is a class of closed sets in the compact space h(x). Hence there exists $t_1, t_2, \dots, t_n \in [x]^*$ such that $h(x) \cap h(t_1) \cap h(t_2) \cap \dots \cap h(t_n) = \emptyset$. This implies $(h(x) \cap h(t_1) \cap h(t_2) \cap \dots \cap h(t_n))^c = \emptyset^c$. It follows that $M_x \cup M_{t_1} \cup M_{t_2} \cup \dots \cup M_{t_n} = \mathfrak{M}$. Hence $M_x \cup \bigcup_{i=1}^n M_{t_i} = \mathfrak{M}$. Now, we shall prove that $M_x \cap \bigcup_{i=1}^n M_{t_i} = \emptyset$. Suppose $M_x \cap \bigcup_{i=1}^n M_{t_i} \neq \emptyset$. Then there exists $P \in \mathfrak{M}$ such that $P \in M_x$ and $P \in \bigcup_{i=1}^n M_{t_i}$. This implies $x \notin P$ and $t_i \notin P$ for some $i, 1 \leq i \leq n$. It follows that $x \circ t_i \notin P$. Hence $x \circ t_i \neq 0$. Therefore $t_i \notin [x]^*$, a contradiction to $t_i \in [x]^*$. Thus $M_x \cap \bigcup_{i=1}^n M_{t_i} = \emptyset$. Therefore $\bigcup_{i=1}^n M_{t_i}$ is the complement of M_x . Since B_h is a bounded semilattice. It follows from theorem 1[11], B is a Boolean lattice.

(2) \Rightarrow (3): Assume (2). Let $x \in L$. Then $M_x \in B$. Since *B* is a Boolean lattice, M_x has the complement (say) $\bigcup_{i=1}^n M_{t_i}$. Therefore $M_x \cap \bigcup_{i=1}^n M_{t_i} = \emptyset$ and $M_x \cup \bigcup_{i=1}^n M_{t_i} = \mathfrak{M}$. Since $M_x \cap \bigcup_{i=1}^n M_{t_i} = \emptyset, (M_x \cap M_{t_1}) \cup (M_x \cap M_{t_2}) \cup \dots \cup (M_x \cap M_{t_n}) = \emptyset$. Therefore $M_{x \circ t_1} \cup M_{x \circ t_2} \cup \dots \cup M_{x \circ t_n} = \emptyset$. Hence $M_{x \circ t_i} = \emptyset$ for all $i, 1 \leq i \leq n$. This implies $M_{x \circ t_i} = M_0$ for all $i, 1 \leq i \leq n$. It follows that $x \circ t_i = 0$ for all $i = 1, 2, \dots, n$. Hence $M_x \cap M_x \cap M$

 $t_i \in [x]^*$ for all i = 1, 2, ..., n. Now, $M_x \cup \bigcup_{i=1}^n M_{t_i} = \mathfrak{M}$. This implies $K(M_x \cup \bigcup_{i=1}^n M_{t_i}) = K(\mathfrak{M})$. But, we have $K(\mathfrak{M}) = \{0\}$. Therefore $K(M_x \cup \bigcup_{i=1}^n M_{t_i}) = \{0\}$. It follows that $K(M_x) \cap \bigcap_{i=1}^n K(M_{t_i}) = \{0\}$. This implies $[x]^* \cap \bigcap_{i=1}^n [t_i]^* = \{0\}$.

(3) \Rightarrow (4): Assume (3). Let $x \in L$. Then there exists $t_1, t_2, \dots, t_n \in L$ such that $t_i \in [x]^*$ and $[x]^* \cap \bigcap_{i=1}^n [t_i]^* = \{0\}$. Since $t_i \in [x]^*$, for all i, it follows that $[x]^{**} \subseteq [t_i]^*$ for all i. Hence $[x]^{**} \subseteq \bigcap_{i=1}^n [t_i]^*$. Suppose $t \in \bigcap_{i=1}^n [t_i]^*$ and $y \in [x]^*$. Then clearly, $y \circ t \in [x]^* \cap \bigcap_{i=1}^n [t_i]^*$. Hence $y \circ t = 0$. Therefore $t \in [x]^{**}$. Thus $\bigcap_{i=1}^n [t_i]^* \subseteq [x]^{**}$. Therefore $[x]^{**} = \bigcap_{i=1}^n [t_i]^*$.

(4) \Rightarrow (5): Assume (4). Now, we shall prove that the basic open sets $\{M_x : x \in L\}$ in τ_h are open in τ_d . Let $x \in L$. Then by condition, there exists $t_1, t_2, \dots, t_n \in L$ such that $[x]^{**} = \bigcap_{i=1}^n [t_i]^*$. Hence $h([x]^{**}) =$

 $h(\bigcap_{i=1}^{n}[t_i]^*)$. This implies $h([x]^{**}) = \bigcup_{i=1}^{n} h([t_i]^*)$. Hence $h([x]^{**}) = \bigcup_{i=1}^{n} M_{t_i}$. Therefore $h(x) = \bigcup_{i=1}^{n} M_{t_i}$. Hence we get $M_x = \bigcap_{i=1}^{n} h(t_i)$, which is finite intersection of open sets in τ_d and hence is open. Thus M_x is open in τ_d .

(5) \Rightarrow (1): Suppose $\tau_h = \tau_d$. Then we have M_x is a basic closed set in \mathfrak{M} for any $x \in L$. Now, we shall prove that \mathfrak{M} is compact. Let $\{M_x : x \in \Delta\}$ be a family of closed sets in \mathfrak{M} with finite intersection property, for some $\Delta \subseteq L$. Now, put $F = [\Delta]$, filter generated by Δ . Suppose F = L. Then we have $0 \in L = F$. It follows that $0 \circ O_{i=1}^n x_i = O_{i=1}^n x_i, x_i \in \Delta, 1 \leq i \leq n$. This implies $O_{i=1}^n x_i = 0$. Hence $M_{O_{i=1}^n x_i} = M_0 = \emptyset$. It follows that $\bigcap_{i=1}^n M_{x_i} = \emptyset$, a contradiction to finite intersection property. Therefore $0 \notin F$. Hence F is a proper filter. Therefore by Zorn's lemma, F is contained in a maximal filter (say) K. Then clearly, L - K is a minimal prime S-ideal. Now, let $x \in \Delta$. Then $x \in F \subseteq K$ and hence $x \notin L - K$. Therefore $L - K \in M_x$. Thus $L - K \in \bigcap_{x \in \Delta} M_x$. Hence $\bigcap_{x \in \Delta} M_x \neq \emptyset$. Therefore \mathfrak{M} is compact in the hull-kernel topology. The equivalence of (5), (6) and (7) is trivial.

References

- [1] Henriksen, M. and Jerison, M. 1969: *The Space of Minimal Prime Ideals of a Commutative Ring*, Trans. Amer. Math. Soc., 142: 43 - 60.
- [2] Kist, J. 1963: The Minimal Prime Ideals in Commutative Semigroups, Proc. London Math. Soc. 13: 31 50.
- [3] Nanaji Rao, G. and Swapna, Ch. 2019 : *0-Distributive Almost Semilattices*, Journal of Emerging Technologies and Innovative Research, 6 : 525 536.
- [4] Nanaji Rao, G. and Swapna, Ch. 2019 : *Minimal Prime S-Ideals in 0-Distributive Almost Semilattices*, Bulletin of International Mathematical Virtual Institute, 10(2) : 249 261.

- [5] Nanaji Rao, G. and Swapna, Ch. 2019: *α-Ideals in 0-Distributive Almost Semilattices*, Bulletin of International Mathematical Virtual Institute, communicated.
- [6] Nanaji Rao, G. and Terefe, G.B. 2019: *Relative Annihilators and Filters in Almost Semilattices*, Southeast Asian Bulletin of Mathematics 43: 553 576.
- [7] Pawar, Y.S and Thakare, N.K. 1982 : *Minimal Prime Ideals in 0-Distributive Semilattices*, Periodica Mathematica Hungarica, 13(3) : 237 246.
- [8] Pawar, Y.S. and Thakare, N.K. 1982 : *The Space of Minimal Prime Ideals in a 0-Distributive Semilattices*, Periodica Mathematica Hungarica, 13(1) : 309 319.
- [9] Speed, T. P. 1974: Spaces of Ideals of Distributive Lattices, II: Minimal Prime Ideals, J. Australian Math. Soc. 18: 54 72.
- [10] Speed, T. P. 1969: Some Remarks on a Class of Distributive Lattices, J. Australian Math. Soc. 9: 289-296.
- [11] Varlet, J.C. 1972 : *Distributive Semilattices and Boolean Lattices*, Bulletin de la Societe Royale des Sciences de Liege, 1 2 : 5 10.

