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1 INTRODUCTION  
 

Henriksen and Jerison [1] investigated the space of minimal prime ideals of a commutative ring extending the 

considerations of Kist [2]. They succeeded in obtaining sufficient conditions for their respective spaces to be compact. This 

inspired Speed [9] [10] to investigate minimal prime ideals of a distributive lattice with 0. Fortunately, the lattice theoretic 

situation enabled Speed [9] to obtain much deeper results; so much so, he could characterize the compact- 

-ness of the space of minimal prime ideals of a distributive lattice with 0 in a much more elegant manner. Later Pawar  

and Thakare [8] studied the space of minimal prime ideals when it was carried the hull-kernel topology. 

 

In this paper, we shall mainly be concerned here with the space of minimal prime S-ideals when it carries the hull-

kernel topology. 

 

2 Preliminaries 
In this section, we collect a few important definitions and results which are already known and which will be used 

more frequently in the text. 

 

Definition 2. 1 : An ASL with 0 is an algebra ( 𝐿, 𝜊 , 0 ) of type (2, 0) satisfies the following conditions: 
 

      1) ( 𝑥 𝜊 𝑦 ) 𝜊 𝑧 = 𝑥 𝜊 ( 𝑦 𝜊 𝑧 ) 

      2) ( 𝑥 𝜊 𝑦 ) 𝜊 𝑧 = ( 𝑦 𝜊 𝑥 )  𝜊 𝑧  
      3)  𝑥 𝜊 𝑥 = 𝑥  
      4)  0 𝜊 𝑥 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ L. 

 

Definition 2. 2 : Let 𝐿 be an .ASL  A nonempty subset I of L is said to be an S-ideal if it satisfies the following    

 conditions: 

            1) If 𝑥 ∈ 𝐼 and  𝑎 ∈ 𝐿, then 𝑥 𝜊 𝑎 ∈ 𝐼 .
 

     
 2) If 𝑥, 𝑦 ∈ 𝐼, then there exists 𝑑 ∈ 𝐼 such that 𝑑 𝜊 𝑥 = 𝑥, 𝑑 𝜊 𝑦 = 𝑦. 

 

Definition 2. 3 : A nonempty subset 𝐹 of an ASL 𝐿 is said to be a filter if F satisfies the following conditions: 
           1) 𝑥, 𝑦 ∈ 𝐹 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑥 𝜊 𝑦 ∈ 𝐹.  
     2) If 𝑥 ∈ 𝐹 and 𝑎 ∈ 𝐿 such that 𝑎 𝜊 𝑥 = 𝑥, then 𝑎 ∈ 𝐹. 
 

Definition 2. 4 : A proper S-ideal 𝑃 of an ASL 𝐿 is said to be a prime if for any 𝑥, 𝑦 𝜖 𝐿, 𝑥 𝜊 𝑦 ∈ 𝑃 𝑖𝑚𝑝𝑙𝑦  𝑥 𝜖 𝑃  
 𝑜𝑟 𝑦 𝜖 𝑃. 
Definition 2. 5 : Let 𝐿  be an ASL with unimaximal element. Then a proper filter 𝐹 of 𝐿 is said to be a prime  

filter if for any filters 𝐹1 𝑎𝑛𝑑 𝐹2 𝑜𝑓 𝐿, 𝐹1  ∩  𝐹2  ⊆ 𝐹 implies that either 𝐹1  ⊆ 𝐹 𝑜𝑟 𝐹2  ⊆ 𝐹. 
 
Definition 2. 6 : A proper filter 𝐹 of L is said to be maximal if for any filter 𝐺 of 𝐿 such that 𝐹 ⊆ 𝐺 ⊆ 𝐿, then  

either 𝐹 = 𝐺 𝑜𝑟 𝐺 = 𝐿. 
Definition 2.7 : Let 𝐿 be an ASL with 0. Then 𝐿 is said to be 0-distributive if for any 𝑥, 𝑦, 𝑧 ∈ 𝐿, 𝑥 𝜊 𝑦 = 0 𝑎𝑛𝑑 𝑥 𝜊 𝑧 = 0 

then there exists 𝑑 𝜖 𝐿 such that 𝑑 𝜊 𝑦 = 𝑦, 𝑑 𝜊 𝑧 = 𝑧 𝑎𝑛𝑑 𝑑 𝜊 𝑥 = 0. 
Definition 2. 8 : Let 𝐿  be an ASL with 0. Then for any non empty subset 𝐴 of 𝐿,  𝐴∗ = { 𝑥 𝜖 𝐿 ∶ 𝑥 𝜊 𝑎 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐴 } 

is called the annihilator of 𝐴. 
     Note that if 𝐴 = { 𝑎 },  then we denote 𝐴∗ =  { 𝑎 }∗ 𝑏𝑦  [ 𝑎 ]∗. 
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Theorem  2. 9 :  Let 𝐿 be an ASL with 0. Then for any ideals 𝐼, 𝐽 𝑜𝑓 𝐿,  we have the following. 

   (1) 𝐼∗ =  ⋂  [ 𝑎 ] ∗𝑎 ∈𝐼  

   (2) ( 𝐼 ∩  𝐽 )∗ =  ( 𝐽 ∩ 𝐼 )∗  

   (3) 𝐼 ⊆ 𝐽 ⟹  𝐽∗  ⊆  𝐼∗  

   (4) 𝐼∗  ∩  𝐽∗  ⊆  ( 𝐼 ∩ 𝐽 )∗  

   (5) ( 𝐼 ∩  𝐽 )∗∗ =  𝐼∗∗  ∩  𝐽∗∗  
 

   
(6) 𝐼 ⊆  𝐼∗∗

     
 

   (7) 𝐼∗∗∗ =  𝐼∗ 

   (8) 𝐼∗ ⊆  𝐽∗  ⟺  𝐽∗∗ ⊆  𝐽∗∗ 

   (9) 𝐼 ∩  𝐽 = ( 0 ]   ⟺ 𝐼 ⊆  𝐽∗  ⟺ 𝐽 ⊆  𝐼∗  

  (10) ( 𝐼 ∪ 𝐽 )∗ =  𝐼∗  ∩  𝐽∗ 

Theorem  2. 10 :  Let 𝐿 be an ASL with 0. Then for any 𝑥, 𝑦 ∈ 𝐿,  we have the following. 

  (1) 𝑥 ≤ 𝑦 ⟹  [ 𝑦 ]∗  ⊆  [ 𝑥 ]∗ 

  (2) [ 𝑥 ]∗  ⊆  [ 𝑦 ]∗  ⟹  [ 𝑦 ]∗∗  ⊆  [ 𝑥 ]∗∗ 

  (3) 𝑥 ∈  [ 𝑥 ]∗∗ 

  (4) ( 𝑥 ]∗ =  [ 𝑥 ]∗ 

  (5) ( 𝑥 ]  ∩  [ 𝑥 ]∗ = {0} 

  (6) [ 𝑥 𝜊 𝑦 ]∗ =  [ 𝑦 𝜊 𝑥 ]∗ 

  (7) [ 𝑥 ]∗  ∩  [ 𝑦 ]∗  ⊆  [ 𝑥 𝜊 𝑦 ]∗  

  (8) [ 𝑥 𝜊 𝑦 ]∗∗ =  [ 𝑥 ]∗∗  ∩  [ 𝑦 ]∗∗ 

  (9) [ 𝑥 ]∗∗∗ =  [ 𝑥 ]∗  

(10) [ 𝑥 ]∗  ⊆  [ 𝑦 ]∗ 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 [ 𝑦 ]∗∗  ⊆  [ 𝑥 ]∗∗
 

Theorem 2. 11 : Let 𝐿 be an ASL with 0, in which intersection of any family of S-ideals is again an S-ideal.  Then the 

following are equivalent: 

(1) 𝐿  is 0-distributive ASL 

(2) 𝐴∗ is an S-ideal, for all 𝐴 ( ≠  ∅ ) ⊆ 𝐿. 
(3) 𝑆𝐼(𝐿) pseudo- complemented semilattice. 

(4) 𝑆𝐼(𝐿) is 0-distributive semilattice. 

(5) 𝑃𝑆𝐼(𝐿) is 0-distributive semilattice. 

Theorem 2. 12 :  Let 𝐿 be an ASL and 𝑃 be a proper S-ideal of 𝐿. Then 𝑃 is prime S-ideal if and only if for any  

 S-ideals 𝐼 𝑎𝑛𝑑 𝐽 𝑜𝑓 𝐿, 𝐼 ∩ 𝐽 ⊆ 𝑃 𝑖𝑚𝑝𝑙𝑦 𝐼 ⊆ 𝑃 𝑜𝑟 𝐽 ⊆ 𝑃. 
Theorem 2. 13 :  Every proper filter in ASL 𝐿 is contained in a maximal filter. 

Theorem 2. 14 :  Let 𝐿 be a 0-distributive ASL. Then every maximal filter of 𝐿 is a prime filter. 

Theorem 2. 15 :  Let be 𝐿 an ASL. Then a subset 𝑃 of 𝐿 is a prime S-ideal if and only if 𝐿 − 𝑃 is a prime filter. 

Theorem 2. 16 :  Let 𝐿 be a 0-distributive ASL. Then a subset 𝑀 of 𝐿 is a minimal prime S-ideal if and only if  𝐿 −  𝑀 is a  

maximal filter. 

Theorem 2. 17 : Let 𝐿 be a 0-distributive ASL. Then a prime S-ideal 𝑀 of L is minimal if and only if [ 𝑥 ]∗ −  𝑀 ≠  ∅ for 

any 𝑥 𝜖 𝑀.    
Corollary 2. 18 :  Let 𝐿 be a 0-distributive ASL. Then a prime S-ideal  𝑀 of L is minimal if and only if it contains 

precisely one of { 𝑥 }, [ 𝑥 ]∗ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ 𝐿. 
Corollary 2.19 : Let 𝐿 be a 0-distributive ASL and let 𝑃 be a minimal prime S-ideal in 𝐿. Then for every 𝑥 ∈  𝐿, [ 𝑥 ]∗∗  ⊈
  𝑃 if and only if [ 𝑥 ]∗  ⊆ 𝑃.  
Theorem 2. 20 : Let 𝐿 be a 0-distributive ASL in which intersection of any family of S-ideals is again an S-ideal. Then for  

any S-ideal 𝐼 of 𝐿, 𝐼∗ is the intersection of all minimal prime S-ideals not containing 𝐼. 
Corollary 2. 21 : The intersection of all minimal prime S-ideals of a 0-distributive ASL is {0}. 
Lemma 2. 22 : Let 𝐿 be a 0-distributive ASL and let 𝑎 ( ≠ 0)  ∈  𝐿. Then there exists a minimal prime S-ideal not 

containing 𝑎. 
Lemma 2. 23 : Let 𝐿 be a 0-distributive ASL. Then for any 𝑥 𝜖 𝐿, [𝑥]∗ = ∩ { 𝑀 ∈  𝔐 ∶ 𝑥 ∉ 𝑀 }. 
3. Notation and Theorem 

Let 𝐿 be a 0-distributive ASL. As usual, for a subset ℛ of 𝔐 (the set of all minimal prime S-ideals in 𝐿 ), we write 

the kernel of ℛ, denoted by 𝐾(ℛ), the set given by ∩ { 𝑃 ∶ 𝑃 ∈ ℛ }. For a nonempty subset A of L, the hull of A, denoted 

by ℎ(𝐴),  is the set { 𝑃 ∈  𝔐 ∶ 𝐴 ⊆ 𝑃 }. Let us also adopt the notation 𝑀𝑥  to denote the set { 𝑃 ∈  𝔐 ∶ 𝑥 ∉ 𝑃 }.  The hull-

kernel topology on 𝔐 is obtained by taking the family { 𝑀𝑥 ∶ 𝑥 ∈ 𝐿 } as the base for open sets. 𝔐  together with this 

topology is called the minimal spectrum of 𝐿; and we shall continue to designate it by 𝔐. Also, it can be easily seen that in 

the hull-kernel topology on 𝔐 open sets are of the form 𝑀𝐼, where 𝑀𝐼  = { 𝑃 ∈  𝔐 ∶ 𝐼 ⋢ 𝑃 } and ℎ(𝐼) =  𝔐 −  𝑀𝐼 . 
In this section, we derive a set of identities for 𝔐 to be compact in its hull-kernel topology. For this, first we need 

the following. 
Theorem 3. 1 :  Let 𝐿 be an ASL and let 𝑃 be a prime S-ideal of L. Then 𝑃 is a minimal prime S-ideal if and only if 𝐿 − 𝑃 

is a maximal prime filter. 

Proof :  Suppose 𝑃 is a minimal prime S-ideal of 𝐿. Now, we shall prove that 𝐿 − 𝑃 is a maximal prime filter. Then by 

lemma 2.15,   𝐿 − 𝑃 is a prime filter. Suppose 𝑄 is a prime filter of 𝐿 such that  𝐿 − 𝑃 ⊆ 𝑄 . Then 𝐿 − 𝑄 ⊆  𝑃  and  
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𝐿 − 𝑄  is a prime S-ideal. Therefore 𝐿 − 𝑄 = 𝑃 since 𝑃 is minimal. It follows that 𝑄 =  𝐿 − 𝑃.  Therefore 𝐿 − 𝑃 is a 

maximal prime filter. Conversely, suppose 𝐿 − 𝑃 is a maximal prime filter. Then by lemma 2.15, we get 𝑃 is a prime S-

ideal. Suppose 𝑄 is a prime S-ideal of 𝐿 such that 𝑄 ⊆ 𝑃. Then 𝐿 − 𝑃 ⊆ 𝐿 − 𝑄 and 𝐿 − 𝑄 is a prime filter. Therefore 𝐿 −
𝑃 = 𝐿 − 𝑄.  Hence 𝑃 = 𝑄.  Therefore 𝑃 is a minimal prime S-ideal. 

Corollary  3.2 :  Let L be a 0-distributive ASL. Then a filter 𝑄 of  𝐿 is maximal if and only if 𝑄 is a maximal prime filter. 

             Now, we improve some important relations between the S-ideals of 0-distributive ASL and the corresponding open 

sets in the hull-kernel topology on 𝔐. 
 

Lemma 3.3  : Let L be an 0-distributive ASL. Then for any 𝐼, 𝐽 ∈ 𝑆𝐼(𝐿), we have the following. 

  1) 𝐼 ⊆ 𝐽 ⟹  𝑀𝐼  ⊆  𝑀𝐽 

  2) 𝐼 ⊆ 𝐽 ⟹ ℎ ( 𝐽 ) ⊆ ℎ( 𝐼 ) 

  3) 𝑀𝐼  ∩  𝑀𝐽 =  𝑀𝐼 ∩ 𝐽 

  4) ℎ ( 𝐼 ) ∪ ℎ( 𝐽 ) = ℎ (𝐼 ∩  𝐽) 

Proof  : 1. Suppose 𝐼 ⊆ 𝐽 and suppose 𝑃 ∈  𝑀𝐼 . Then 𝐼 ⊈ 𝑃. Therefore 𝐽 ⊈  𝑃.  Hence 𝑃 ∈  𝑀𝐽 . Thus 𝑀𝐼  ⊆  𝑀𝐽 . 

   2. Suppose 𝐼 ⊆ 𝐽 and suppose 𝑃 ∈ ℎ ( 𝐽 ). Then  𝐽 ⊆ 𝑃 . Therefore 𝐼 ⊆ 𝑃 .  Hence 𝑃 ∈ ℎ ( 𝐼 ).  Thus ℎ ( 𝐽 ) ⊆    ℎ ( 𝐼 ). 
   3. Clearly, 𝑀𝐼 ∩ 𝐽  ⊆  𝑀𝐼  ∩  𝑀𝐽 .  Conversely, suppose 𝑃 ∈  𝑀𝐼 ∩ 𝑀𝐽 . Then 𝑃 ∈  𝑀𝐼 𝑎𝑛𝑑 𝑃 ∈  𝑀𝐽 .  Therefore    𝐼 ⊈

 𝑃 𝑎𝑛𝑑 𝐽 ⊈ 𝑃 .  It follows that 𝐼 ∩ 𝐽  ⊈ 𝑃 .  Therefore 𝑃 ∈  𝑀𝐼 ∩ 𝐽.   Thus  𝑀𝐼 ∩ 𝑀𝐽  ⊆  𝑀𝐼 ∩ 𝐽 .  Therefore    𝑀𝐼 ∩ 𝐽 =  𝑀𝐼  ∩

    𝑀𝐽 .  

   4. ℎ ( 𝐼 ) ∪ ℎ ( 𝐽 ) =  𝑀𝐼
𝑐  ∪  𝑀𝐽

𝑐 = ( 𝑀𝐼  ∩  𝑀𝐽 )
𝑐

 = ( 𝑀𝐼 ∩ 𝐽 )
𝑐

= ℎ ( 𝐼 ∩ 𝐽 ).  

Corollary  3.4 : Let L be an 0-distributive ASL and 𝑥, 𝑦 ∈ 𝐿 . Then we have the following. 

   1) 𝑥 ≤ 𝑦 ⟹  𝑀𝑥  ⊆  𝑀𝑦 

   2) 𝑥 ≤ 𝑦 ⟹ ℎ ( 𝑦 )  ⊆ ℎ( 𝑥 ) 

   3) 𝑀𝑥  ∩  𝑀𝑦 =  𝑀𝑥 𝜊 𝑦  

   4) ℎ ( 𝑥 )  ∪ ℎ ( 𝑦 ) = ℎ ( 𝑥 𝜊 𝑦 ) 

Proof : 1. Suppose 𝑥 ≤ 𝑦 and suppose 𝑃 ∈  𝑀𝑥 . Then 𝑥 ∉ 𝑃 . Therefore 𝑦 ∉ 𝑃 . Hence  𝑃 ∈  𝑀𝑦 .Thus 𝑀𝑥 ⊆  𝑀𝑦. .  2. 

Suppose 𝑥 ≤ 𝑦 and suppose  𝑃 ∈ ℎ ( 𝑦 ) . Then 𝑦 ∈ 𝑃 .  Therefore 𝑥 ∈ 𝑃 .  Hence  𝑃 ∈ ℎ ( 𝑥 ) . Thus ℎ ( 𝑦 ) ⊆    ℎ ( 𝑥 ).  
   3. We  have  ∈  𝑀𝑥  ∩  𝑀𝑦  ⟺ 𝑃 ∈  𝑀𝑥 𝑎𝑛𝑑 𝑃 ∈  𝑀𝑦  ⟺ 𝑥 ∉ 𝑃 𝑎𝑛𝑑 𝑦 ∉ 𝑃 ⟺ 𝑥 𝜊 𝑦 ∉ 𝑃 ⟺ 𝑃 ∈  𝑀𝑥 𝜊 𝑦 .    

      Therefore 𝑀𝑥  ∩  𝑀𝑦 =  𝑀𝑥 𝜊 𝑦 .   

    4. We have 𝑃 ∈ ℎ (𝑥 ) ∪ ℎ ( 𝑦 ) ⟺ 𝑃 ∈ ℎ( 𝑥 ) 𝑜𝑟 𝑃 ∈ ℎ ( 𝑦 ) ⟺ 𝑥 ∈ 𝑃 𝑎𝑛𝑑 𝑦 ∈ 𝑃 ⟺ 𝑥 𝜊 𝑦 ∈ 𝑃 ⟺ 𝑃 ∈
    ℎ( 𝑥 𝜊 𝑦 ). Therefore ℎ ( 𝑥 )  ∪ ℎ ( 𝑦 ) = ℎ ( 𝑥 𝜊 𝑦 ). 

The following lemma exhibits the relation between the annihilator S-ideal of 0-distributive ASL L and the  

   basic  open sets, basic closed sets of  𝔐 in the hull-kernel topology. 

 Theorem 3.5 : Let L be a 0-distributive ASL and 𝑥, 𝑦 ∈ 𝐿 .  Then we have the following. 

     1) 𝑀𝑥 = ℎ ( [ 𝑥 ]∗ )  

     2) ℎ ( 𝑥 ) = ℎ ( [ 𝑥 ]∗∗ ) 

     3) [ 𝑥 ]∗  ⊆  [ 𝑦 ]∗  ⟺ ℎ ( 𝑥 )  ⊆ ℎ ( 𝑦 ) 

     4) 𝑀𝑦  ⊆  𝑀𝑥  ⟺  [ 𝑥 ]∗  ⊆  [ 𝑦 ]∗   ⟺  [ 𝑦 ]∗∗  ⊆  [ 𝑥 ]∗∗ 

     5) [ 𝑥 ]∗∗ =  [ 𝑦 ]∗  ⟺ ℎ ( 𝑥 ) = ℎ ( [ 𝑦 ]∗ )  
Proof : Proofs of conditions (1) and (2) follows by corollary 2.18 and 2.19. 

 3. Suppose [ 𝑥 ]∗  ⊆  [ 𝑦 ]∗ and suppose 𝑃 ∈ ℎ ( 𝑥 ).  Then 𝑥 ∈ 𝑃 .  Hence by corollary 2.18, we get [ 𝑥 ]∗  ⊈
  𝑃.  Therefore [ 𝑦 ]∗  ⊈ 𝑃 .  Hence 𝑦 ∈ 𝑃 . Therefore 𝑃 ∈ ℎ ( 𝑦 ). Thus ℎ ( 𝑥 )  ⊆ ℎ ( 𝑦 ) .  Conversely, suppose   ℎ ( 𝑥 )  ⊆
ℎ ( 𝑦 ) .  Let  𝑎 ∉  [ 𝑦 ]∗ . Then 𝑎 𝜊 𝑦 ≠ 0 . Therefore by lemma 2.22, there exists a minimal prime S-ideal     (say) 𝑃 of 𝐿 

such that  𝑎 𝜊 𝑦 ∉ 𝑃 .  It follows that 𝑎 ∉ 𝑃 𝑎𝑛𝑑 𝑦 ∉ 𝑃 .  Hence, we get 𝑎 ∉ 𝑃 𝑎𝑛𝑑 𝑃 ∉ ℎ ( 𝑦 ) . This   implies 𝑎 ∉
𝑃 𝑎𝑛𝑑 𝑃 ∉  ℎ ( 𝑥 ).  Hence 𝑎 ∉ 𝑃 𝑎𝑛𝑑 𝑥 ∉ 𝑃 .  It follows that 𝑎 𝜊 𝑥 ∉ 𝑃 ,  since P is a prime S-ideal of L. Therefore 

𝑎 𝜊 𝑥 ≠ 0, we get 𝑎 ∉  [ 𝑥 ]∗ .  Thus [ 𝑥 ]∗  ⊆  [ 𝑦 ]∗ .      
 4. We have [ 𝑥 ]∗   ⊆  [ 𝑦 ]∗  ⟺ ℎ ( 𝑥 )  ⊆ ℎ ( 𝑦 )  ⟺  𝔐 − ℎ ( 𝑦 )  ⊆  𝔐 − ℎ ( 𝑥 )  ⟺  𝑀𝑦  ⊆  𝑀𝑥 .  Therefore      

[ 𝑥 ]∗  ⊆  [ 𝑦 ]∗  ⟺  𝑀𝑦  ⊆  𝑀𝑥 . 

5. Suppose [ 𝑥 ]∗∗ =  [ 𝑦 ]∗ . Then ℎ ( [ 𝑥 ]∗∗ ) = ℎ ( [ 𝑦 ]∗ ).  Hence by (2), we get ℎ ( 𝑥 ) = ℎ ( [ 𝑦 ]∗  ).  Conversely, 

suppose 𝑎 ∉  [ 𝑥 ]∗∗ .  Then there exists 𝑡 ∈  [ 𝑥 ]∗  such that 𝑎 𝜊 𝑡 ≠ 0. Therefore by lemma 2.22, there exists a minimal   

prime S-ideal 𝑃 of 𝐿 such that 𝑎 𝜊 𝑡  ∉ 𝑃 .  Hence 𝑎 ∉ 𝑃 𝑎𝑛𝑑 𝑡 ∉ 𝑃 .  Since 𝑡 𝜊 𝑥 = 0 ∈ 𝑃, 𝑥 ∈ 𝑃 .  Therefore 𝑃 ∈
 ℎ ( 𝑥 ) = ℎ ( [ 𝑦 ]∗ ) .  Hence [ 𝑦 ]∗  ⊆ 𝑃 , we get 𝑎 ∉  [ 𝑦 ]∗ .  Thus [ 𝑦 ]∗   ⊆   [ 𝑥 ]∗∗ .  Similarly, we get [ 𝑥 ]∗∗  ⊆  [ 𝑦 ]∗ .  

Therefore [ 𝑥 ]∗∗ =  [ 𝑦 ]∗ .  
 

In [5], the authors proved that the pseudo-complement of an S-ideal I in a 0-distributive ASL L is the intersection  

of all minimal prime S-ideals not containing I. In the language that was introduced above one can write this assertion in the 

following compact and convenient form. 

Theorem 3.6 : Let L be a 0-distributive ASL. Then for any S-ideal 𝐼 of 𝐿, 𝐼∗ = 𝐾 ( 𝔐 − ℎ ( 𝐼 )) .  

Proof : We have 𝐼∗ = ∩ { 𝑃 ∈  𝔐 ∶ 𝐼 ⊈ 𝑃 } = ∩ { 𝑃 ∈  𝔐 ∶ 𝑃 ∈  𝑀𝐼 }  = ∩ { 𝑃 ∈  𝔐 ∶  𝑃 ∉ ℎ ( 𝐼 ) } = ∩ { 𝑃 ∈  𝔐 ∶

 𝑃 ∈  𝔐 − ℎ ( 𝐼 )} = 𝐾 ( 𝔐 − ℎ ( 𝐼 )) .  Therefore 𝐼∗ = 𝐾 ( 𝔐 − ℎ ( 𝐼 )) .  
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Recall that in a 0-distributive ASL L for any 𝑥 ∈ 𝐿, we have [ 𝑥 ]∗ = ∩ { 𝑃 ∈  𝔐 ∶ 𝑥 ∉ 𝑃 } and hence [ 𝑥 ]∗ =
 𝐾 ( 𝑀𝑥  ) .  Hence we have the following. 

Corollary 3.7 : Let L be a 0-distributive ASL. Then for every 𝑥 ∈ 𝐿, ℎ ( 𝐾 ( 𝑀𝑥  ) ) =  𝑀𝑥 = ℎ ( [ 𝑥 ]∗ ) .  In particular,  

ℎ ( 𝑥 ) 𝑎𝑛𝑑 ℎ ( [ 𝑥 ]∗ ) are clopen sets in 𝔐 that are disjoint. 

Proof : Let 𝑥 ∈ 𝐿. Then we have ℎ ( 𝐾 ( 𝑀𝑥 ) ) = ℎ ( [ 𝑥 ]∗ )  = { 𝑃 ∈  𝔐 ∶  [ 𝑥 ]∗ ⊆  𝑃 } = { 𝑃 ∈  𝔐 ∶ 𝑥 ∉ 𝑃 } =  𝑀𝑥 .  
Therefore ℎ ( 𝐾 ( 𝑀𝑥  ) ) =  ℎ ( [ 𝑥 ]∗ ) =   𝑀𝑥 . 

By theorem 3.6, it can be easily seen that if 𝐼 is an S-ideal in 0-distributive ASL L, then 𝐼∗ = 𝐾 ( 𝔐 − ℎ ( 𝐼 )) =
 𝐾 ( 𝑀𝐼 ) and 𝑀𝐼  is an open subset of 𝔐. Therefore we have the following. 

Corollary 3.8 : A subset 𝑌 of 𝐿 is the disjoint complement of 𝐼∗,  for some S-ideal 𝐼 of 𝐿 if and only if 𝑌 is the kernel of  

some open subset of 𝔐. 

We see that theorem 3.6, above states a property of the disjoint complement 𝐼∗ of an S-ideal. But, we see,  an 

account of theorem 3.1, much more is true. 

Theorem 3.9 : Let 𝐿 be a 0-distributive ASL. Then for any nonempty subset 𝐴 ( ≠ { 0 } ) of 𝐿, 𝐴∗ = 𝐾 ( ℎ ( 𝐴∗ ) ).  
Proof : Suppose 𝐴 ( ≠ {0} )  ⊆ 𝐿 .  Now, we shall prove that 𝐴∗ = 𝐾 ( ℎ ( 𝐴∗ ) ).  Suppose 𝑡 ∈ 𝐿 such that 𝑡 ∉  𝐴∗ .  Then 

𝑥 𝜊 𝑡 ≠ 0 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝐴 .  Therefore there exists a maximal filter (say) 𝐹 of 𝐿 such that 𝑥 𝜊 𝑡 ∈ 𝐹 .  Now, since 𝐹 is a 

maximal filter, 𝐿 − 𝐹 is a minimal prime S-ideal. Let 𝑧 ∈  𝐴∗. Then we have 𝑧 𝜊 𝑥 = 0 ∈ 𝐿 − 𝐹.  Since 𝐿 − 𝐹 is prime, 

either 𝑧 ∈  𝐿 − 𝐹 or 𝑥 ∈ 𝐿 − 𝐹.  It follows that 𝑧 ∈ 𝐿 − 𝐹 since 𝑥 𝜊 𝑡 ∈ 𝐹 and hence 𝑥 ∈ 𝐹 . Therefore 𝐴∗  ⊆ 𝐿 −
𝐹 .  Hence 𝐿 − 𝐹 ∈ ℎ ( 𝐴∗ ).  Again, since 𝑥 𝜊 𝑡 ∈ 𝐹 𝑎𝑛𝑑 𝑥 𝜊 𝑡 ≤ 𝑡, 𝑡 ∈ 𝐹 .  This implies 𝑡 ∉ 𝐿 − 𝐹 .  It follows that 𝑡 ∉
𝐾( ℎ ( 𝐴∗ ) ).  Hence 𝐾( ℎ ( 𝐴∗ ) )  ⊆  𝐴∗ .  Conversely, suppose 𝑡 ∉  𝐾( ℎ ( 𝐴∗ ) ) .  Then 𝑡 ∉      𝑃, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑃 ∈
 𝔐 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴∗  ⊆ 𝑃 .  It follows that 𝑡 ∉  𝐴∗ .  Thus 𝐴∗  ⊆ 𝐾 ( ℎ ( 𝐴∗ ) ).  Therefore 𝐴∗ = 𝐾 ( ℎ ( 𝐴∗ ) ). 

As for any two minimal prime S-ideal none of them is contained in the other we see that any two points of 𝔐    are 

𝑇1 − separated. Thus, we have the following. 

Theorem 3. 10 : The hull-kernel topology on 𝔐 is Hausdorff. 
Proof : Suppose 𝑃, 𝑄 ∈  𝔐 such that 𝑃 ≠ 𝑄 . Then there exists 𝑥 ∉ 𝑃 such that 𝑥 ∈ 𝑄 .  Therefore 𝑃 ∈  𝑀𝑥  and 𝑄 ∈
  ℎ ( 𝑥 ) =  𝔐 − 𝑀𝑥  and also 𝑀𝑥  ∩ ℎ ( 𝑥 ) =  𝑀𝑥  ∩ ( 𝔐 −  𝑀𝑥  ) =  ∅ .  Therefore 𝔐 is Hausdorff. 

           One more property of the set { 𝑀𝑥  ∶ 𝑥 ∈ 𝐿 } is stated in the following. For, this we need the following lemmas. 

Lemma 3.11 : Let L be a 0-distributive ASL and let 𝑥 ∈ 𝐿 .  Then 𝑀𝑥 =  ∅ if and only if 𝑥 = 0 .  
Proof : Suppose 𝑀𝑥  ≠  ∅ . Then there exists 𝑃 ∈  𝔐 such that 𝑃 ∈  𝑀𝑥  . Therefore 𝑥 ∉ 𝑃 and hence 𝑥 ≠ 0 .     
Conversely,  suppose 𝑥 ≠ 0 . Then by lemma 2.22, there exists 𝑃 ∈  𝔐 such that 𝑥 ∉ 𝑃.  Therefore 𝑃 ∈  𝑀𝑥 . Thus 

𝑀𝑥   ≠  ∅ . 
Lemma 3.12 :  Let L be an ASL and let 𝑆 be a nonempty subset of 𝐿 .  Then [ 𝑆 ) = { 𝑥 ∈ 𝐿 ∶   𝑥 𝜊 Ο𝑖=1

𝑛  𝑠𝑖 =  Ο𝑖=1
𝑛  𝑠𝑖 ,

𝑠 𝑖  ∈ 𝑆, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 𝑖𝑠 + 𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 } is the smallest filter containing 𝑆. 
Proof : Suppose 𝑆 is a nonempty subset of 𝐿. Then for any 𝑠 ∈ 𝑆,  we have 𝑠 = 𝑠 𝜊 𝑠  and hence 𝑠 ∈ [ 𝑆 ).  Thus [ 𝑆 ) is 

nonempty. Now, we shall prove that [ 𝑆 ) is a filter. Let 𝑥, 𝑦  ∈  [ 𝑆 ) .  Then𝑥 𝜊 ( Οi=1
n  si )  =  Οi=1

n  si    and 

𝑦 𝜊 ( Οi=1
m  ti )  =  Οi=1

m  ti  ,  where 𝑠𝑖,   𝑡𝑖  ∈ 𝑆, 1 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑚 . Therefore 

( 𝑥 𝜊 ( Ο𝑖=1
𝑛  𝑠𝑖 ) ) 𝜊 ( 𝑦 𝜊 ( Ο𝑖=1

𝑚 𝑡𝑖 ) )  =  Ο𝑖=1
𝑛 𝑠𝑖 ο Οi=1

m  𝑡𝑖 . It follows that ( 𝑥 𝜊 𝑦 ) 𝜊 Ο𝑗=1
𝑛+𝑚 𝑧𝑗 = Ο𝑗=1

𝑛+𝑚 𝑧𝑗, 𝑧𝑗  ∈ 𝑆.  Hence 

𝑥 𝜊 𝑦 ∈ [ 𝑆 ) .  Again, let 𝑥 ∈ [ 𝑆 ) 𝑎𝑛𝑑 𝑡 ∈ 𝐿 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡 𝜊 𝑥 = 𝑥 .  Then  𝑥 𝜊 ( Οi=1
n  si )  =  Οi=1

n  si  , si  ∈ S, 1 ≤ i ≤
n. Therefore 𝑡 𝜊 ( 𝑥 𝜊 ( Οi=1

n  si ) ) = t ο ( Οi=1
n  si  ) .   Hence ( 𝑡 𝜊 𝑥 ) ο ( Οi=1

n si ) = t ο ( Οi=1
n  si  ) .  It follows that 

𝑥 ο ( Οi=1
n si ) = t ο ( Οi=1

n  si  ) .  Hence  Οi=1
n si  = t ο ( Οi=1

n  si  ) . Therefore 𝑡 ∈ [ 𝑆 ).   Thus [ 𝑆 ) is a filter. Now, it 

remains to prove that [ 𝑆 )  is the smallest filter of 𝐿 containing 𝑆.  Suppose 𝐹 is a filter of 𝐿  such that 𝑆 ⊆ 𝐹 .  Then for any 

𝑥 ∈ [ 𝑆 ),   we have 𝑥 𝜊 ( Οi=1
n  si )  =  Οi=1

n  si  , si  ∈ S, 1 ≤ i ≤ n.  Since 𝑆 ⊆ 𝐹, 𝑠𝑖  ∈ 𝐹.   It follows that 𝑥 ∈ 𝐹.   Hence 
[ 𝑆 )  ⊆ 𝐹.  Therefore [ 𝑆 ) is the smallest filter containing 𝑆. 
Theorem 3. 13 :  Let Σ  be any indexing set and let { 𝑥𝑟 ∶ 𝑟  ∈ Σ }  be a subset of 0-distributive ASL L such that the 

collection{ 𝑀𝑥𝑟
 } has the finite intersection property. Then the intersection of all  { 𝑀𝑥𝑟

 }, 𝑟 ∈  Σ  is nonempty. 

Proof : Suppose { 𝑀𝑥𝑟
∶ 𝑟 ∈ Σ }  is a collection of sets in 𝔐 with finite intersection property. Now, put Δ =   { 𝑥𝑟 ∶   𝑟 ∈

Σ } and put 𝐹 = [ Δ ).  Suppose 𝐹 =  𝐿 .  Then 0 ∈ 𝐿 = 𝐹 .  Therefore Ο𝑖=1
𝑛  𝑥𝑟 = 0 𝜊 Ο𝑖=1

𝑛 𝑥𝑟, 𝑥𝑟  ∈  Δ, 1 ≤ 𝑟 ≤ 𝑛 .  This 

implies Ο𝑖=1
𝑛  𝑥𝑟 = 0 .  It follows that 𝑀Ο𝑖=1

𝑛  𝑥𝑟
=  𝑀0  =  ∅ .  Therefore ⋂𝑖=1

𝑛  𝑀𝑥𝑟
=  ∅ ,  a contradiction to finite 

intersection property. Therefore 𝐹 ≠ 𝐿 .  Hence 𝐹 is a proper filter. It follows that there exists a maximal filter (say) 𝐻 of 𝐿 

such that 𝐹 ⊆ 𝐻 .  Again, it follows that 𝐿 − 𝐻 is a minimal prime S-ideal. Now, let 𝑥𝑟  ∈  Δ .  Then 𝑥𝑟  ∈  𝐻.  Therefore 

𝑥𝑟  ∉ 𝐿 − 𝐻 .  Hence 𝐿 − 𝐻 ∈  𝑀𝑥  .  Therefore 𝐿 − 𝐻 ∈  ⋂ 𝑀𝑥𝑟𝑥𝑟∈ Δ  .   Thus ⋂ 𝑀𝑥𝑟𝑥𝑟 ∈ Δ
≠  ∅ .  

          We consider the family { ℎ ( 𝑥 ) ∶ 𝑥 ∈ 𝐿 }  to be a subbase for 𝔐 .  Then the resulting topology is called the dual hull-

kernel topology. We denote by 𝜏ℎ the hull-kernel topology and by 𝜏𝑑  the dual hull-kernel topology on  𝔐 .  Now, we prove 

the following. 

Theorem 3. 14 : The hull-kernel topology on 𝔐 is finer than the dual hull-kernel topology. 

Proof : Clearly, ℎ ( 𝑥 ) =  𝔐 −  𝑀𝑥 ,  for any 𝑥 ∈ 𝐿 .  Also, by theorem 3.10,  𝑀𝑥  is closed in 𝔐 .  Therefore ℎ ( 𝑥 ) is 

open in 𝔐 .  Hence ℎ (𝑥) is open in the hull-kernel topology; 𝜏ℎ is finer than 𝜏𝑑  . 
           A sufficient condition of the equality of these two topologies 𝜏ℎand 𝜏𝑑  on 𝔐 is stated in the following. 

Theorem 3. 15 :  Let L be a 0-distributive ASL. If for every 𝑥 ∈ 𝐿,  there exists 𝑥′ ∈ 𝐿  such that [ 𝑥′ ]∗  =  [ 𝑥 ]∗∗ then 

 𝜏ℎ =  𝜏𝑑 . 
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Proof :  Clearly, 𝜏𝑑 ⊆   𝜏ℎ .  Now, we shall prove that 𝜏ℎ  ⊆  𝜏𝑑  .  Let 𝑀𝑥  ∈  𝜏ℎ  .  Then 𝑥 ∈ 𝐿 .  Therefore there exists 𝑥′  ∈
𝐿 such that [ 𝑥′ ]∗  =  [ 𝑥 ]∗∗ .  Now,  𝑀𝑥 = ℎ ( [ 𝑥 ]∗ ) =    ℎ ( [ 𝑥′ ]∗∗ )  = ℎ ( 𝑥′ ).  It follows that every basic open set in 

𝜏ℎ is open in 𝜏𝑑  .  Thus 𝜏ℎ  ⊆  𝜏𝑑  .  Therefore  𝜏ℎ =  𝜏𝑑 . 
          We now state our main result that provides us with necessary and sufficient conditions for 𝔐 to be compact in its 

hull-kernel topology. 

Theorem 3.10 : Let L be a 0-distributive ASL, in which intersection of any family of S-ideals is again an S-ideal. Then the 

following are equivalent. 

  1) 𝔐  is compact. 

  2) Finite unions of { 𝑀𝑥 ∶ 𝑥 ∈ 𝐿 } form a Boolean lattice. 

  3) For 𝑥 ∈ 𝐿 , there exist 𝑡𝑖  ∈ 𝐿, 𝑖 = 1, 2, … . . , 𝑛 such that 𝑡𝑖  ∈  [ 𝑥 ]∗ and [ 𝑥 ]∗  ∩  ⋂ [ 𝑡𝑖 ]∗ = { 0 }.𝑛
𝑖=1  

  4) For 𝑥 ∈ 𝐿 ,  there exist 𝑡𝑖  ∈ 𝐿, 𝑖 = 1, 2, … . , 𝑛 such that [ 𝑥 ]∗∗ =  ⋂ [ 𝑡𝑖 ]∗𝑛
𝑖=1   

  5)  𝜏ℎ =  𝜏𝑑 . 
  6) { ℎ ( 𝑥 ) ∶ 𝑥 ∈ 𝐿 } is a subbasis for the open sets of ( 𝔐, 𝜏𝑑  ). 
  7) { 𝑀𝑥 ∶ 𝑥 ∈ 𝐿 } is a subbasis for the open sets of ( 𝔐, 𝜏ℎ  ). 
 

Proof :   (1)  ⟹ (2) ∶ Suppose 𝔐 is compact in the hull-kernel topology. Now, put 𝐵ℎ = { 𝑀𝑥 ∶ 𝑥 ∈ 𝐿 } and put 𝐵 is the 

set of all  finite unions of elements in 𝐵ℎ  .  Now, we shall prove that 𝐵 is a Boolean lattice. Now, we have   ℎ ( [ 𝑥 ]∗ )   =
   ⋂ ℎ ( 𝑡 ).   𝑡 ∈ [ 𝑥 ]∗ Therefore ℎ ( 𝑥 ) ∩ ℎ ( [ 𝑥 ]∗) = ℎ ( 𝑥 ) ∩  ⋂ ℎ ( 𝑡 ) = 𝑡 ∈ [ 𝑥 ]∗  ∅ 𝑎𝑛𝑑 { ℎ ( 𝑥 )  ∩ ℎ ( 𝑡 ) ∶    𝑡 ∈
[ 𝑥 ]∗ }  is a class of closed sets in the compact space ℎ ( 𝑥 ).  Hence there exists 𝑡1, 𝑡2, … . . , 𝑡𝑛 ∈  [ 𝑥 ]∗ such that     ℎ (𝑥 ) ∩
ℎ( 𝑡1) ∩ ℎ ( 𝑡2 ) ∩ … .∩ ℎ ( 𝑡𝑛  ) =  ∅ .    This implies ( ℎ ( 𝑥 ) ∩ ℎ (𝑡1 )  ∩ ℎ ( 𝑡2 ) ∩ … … .∩ ℎ ( 𝑡𝑛 ) )𝑐  =  ∅𝑐  .  It  follows 

that 𝑀𝑥  ∪  𝑀𝑡1
∪ 𝑀𝑡2

∪ … … ∪  𝑀𝑡𝑛
=  𝔐 .   Hence 𝑀𝑥  ∪  ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1 =  𝔐 .  Now, we shall prove that 𝑀𝑥  ∩ ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1 =

 ∅ .  Suppose 𝑀𝑥  ∩  ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1 ≠ ∅ .  Then there exists 𝑃 ∈  𝔐 such that 𝑃 ∈  𝑀𝑥  and 𝑃 ∈  ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1  .  This  implies 𝑥 ∉

𝑃 and 𝑡𝑖  ∉ 𝑃 for some 𝑖, 1 ≤ 𝑖 ≤ 𝑛 .  It follows that 𝑥 𝜊 𝑡𝑖  ∉ 𝑃 .  Hence 𝑥 𝜊 𝑡𝑖  ≠ 0 .  Therefore 𝑡𝑖  ∉  [ 𝑥 ]∗ ,   a 

contradiction to 𝑡𝑖  ∈  [ 𝑥 ]∗ .  Thus 𝑀𝑥  ∩  ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1 =  ∅ .  Therefore ⋃ 𝑀𝑡𝑖  

𝑛
𝑖=1 is the complement of 𝑀𝑥 .  Since 𝐵ℎ is a 

bounded semilattice. It follows from theorem 1[11], 𝐵 is a Boolean lattice. 
(2)  ⟹ (3) ∶  Assume (2). Let 𝑥 ∈ 𝐿.  Then 𝑀𝑥  ∈ 𝐵.  Since 𝐵 is a Boolean lattice, 𝑀𝑥  has the complement (say) 

 ⋃ 𝑀𝑡𝑖
.  𝑛

𝑖=1 Therefore 𝑀𝑥  ∩  ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1 =  ∅  and 𝑀𝑥  ∪  ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1 =  𝔐 .  Since  𝑀𝑥  ∩  ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1 =  ∅, ( 𝑀𝑥  ∩  𝑀𝑡1

) ∪

( 𝑀𝑥  ∩  𝑀𝑡2
 ) ∪ … . .∪ ( 𝑀𝑥  ∩  𝑀𝑡𝑛

 ) =  ∅ .   Therefore  𝑀𝑥 𝜊 𝑡1
∪ 𝑀𝑥 𝜊 𝑡2

 ∪ … … . .∪  𝑀𝑥 𝜊 𝑡𝑛
=  ∅ .  Hence 𝑀𝑥 𝜊 𝑡𝑖

=  ∅ for      

all 𝑖, 1 ≤ 𝑖 ≤ 𝑛 .  This implies 𝑀𝑥 𝜊 𝑡𝑖
=  𝑀0  for all 𝑖, 1 ≤ 𝑖 ≤ 𝑛 .  It follows that 𝑥 𝜊 𝑡𝑖 = 0 for all 𝑖 = 1,2, … . 𝑛.  Hence 

     𝑡𝑖  ∈  [ 𝑥 ]∗  for all  𝑖 = 1,2, … . 𝑛.  Now, 𝑀𝑥  ∪  ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1 =  𝔐 . This implies 𝐾 ( 𝑀𝑥  ∪  ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1 )  =  𝐾 ( 𝔐 ).  But, we      

have 𝐾 ( 𝔐 ) = { 0 }.  Therefore 𝐾 ( 𝑀𝑥  ∪  ⋃ 𝑀𝑡𝑖

𝑛
𝑖=1 ) = { 0 }.  It follows that 𝐾 ( 𝑀𝑥  )  ∩ ⋂ 𝐾 ( 𝑀𝑡𝑖

 ) = { 0 }.   𝑛
𝑖=1 This     

implies [ 𝑥 ]∗  ∩  ⋂ [ 𝑡𝑖 ]∗ = {0}.𝑛
𝑖=1  

(3)  ⟹ (4) ∶   Assume (3). Let 𝑥 ∈ 𝐿. Then there exists 𝑡1, 𝑡2, … . , 𝑡𝑛  ∈ 𝐿 such that 𝑡𝑖  ∈  [ 𝑥 ]∗ and [ 𝑥 ]∗  ∩  ⋂ [ 𝑡𝑖 ]
∗ =𝑛

𝑖=1

    {0}.   Since 𝑡𝑖  ∈  [ 𝑥 ]∗ ,  for  all  𝑖,  it follows that [ 𝑥 ]∗∗  ⊆  [ 𝑡𝑖  ]∗ for all 𝑖 .  Hence [ 𝑥 ]∗∗  ⊆   ⋂ [ 𝑡𝑖  ]∗ .   𝑛
𝑖=1 Suppose 𝑡 ∈

    ⋂ [ 𝑡𝑖  ]∗ 𝑛
𝑖=1  and 𝑦 ∈  [ 𝑥 ]∗ .  Then clearly,  𝑦 𝜊 𝑡 ∈  [ 𝑥 ]∗  ∩   ⋂ [ 𝑡𝑖]∗𝑛

𝑖=1  .   Hence 𝑦 𝜊 𝑡 = 0.  Therefore 𝑡 ∈  [ 𝑥 ]∗∗.  Thus 

⋂ [ 𝑡𝑖]∗  ⊆  [ 𝑥 ]∗∗ .𝑛
𝑖=1   Therefore [ 𝑥 ]∗∗ =  ⋂ [ 𝑡𝑖 ]∗𝑛

𝑖=1 . 
 (4)  ⟹ (5) ∶  Assume (4). Now, we shall prove that the basic open sets { 𝑀𝑥 ∶ 𝑥 ∈ 𝐿 } in 𝜏ℎ are open in 𝜏𝑑 .  Let 𝑥 ∈
 𝐿.  Then by condition, there exists 𝑡1, 𝑡2, … . , 𝑡𝑛  ∈ 𝐿 such that [ 𝑥 ]∗∗ =  ⋂ [ 𝑡𝑖 ]∗𝑛

𝑖=1 .   Hence ℎ ( [ 𝑥 ]∗∗ ) =  
 ℎ ( ⋂ [ 𝑡𝑖  ]∗ ) 𝑛

𝑖=1 .  This implies ℎ ( [ 𝑥 ]∗∗ ) =  ⋃ ℎ ( [ 𝑡𝑖 ]∗ )𝑛
𝑖=1 .   Hence ℎ ( [ 𝑥 ]∗∗) =  ⋃ 𝑀𝑡𝑖

 .  𝑛
𝑖=1 Therefore ℎ ( 𝑥 ) =

 ⋃ 𝑀𝑡𝑖
 .  𝑛

𝑖=1 Hence we get 𝑀𝑥 =  ⋂ ℎ( 𝑡𝑖  )𝑛
𝑖=1 ,  which is finite intersection of open sets in 𝜏𝑑  and hence is open. Thus  𝑀𝑥  is 

open in 𝜏𝑑 . 
 (5)  ⟹ (1) ∶  Suppose 𝜏ℎ =  𝜏𝑑  .  Then we have 𝑀𝑥 is a basic closed set in 𝔐 for any 𝑥 ∈ 𝐿. Now, we shall prove that 𝔐 

is compact. Let { 𝑀𝑥 ∶ 𝑥 ∈  Δ }  be a family of closed sets in 𝔐 with finite intersection property, for some Δ ⊆ 𝐿 .  Now,  

put 𝐹 = [ Δ ),  filter generated by Δ.  Suppose 𝐹 = 𝐿.  Then we have 0 ∈ 𝐿 = 𝐹.   It follows that 0 𝜊 Ο𝑖=1
𝑛  𝑥𝑖 =

 Ο𝑖=1
𝑛 𝑥𝑖, 𝑥𝑖  ∈  Δ, 1 ≤ 𝑖 ≤ 𝑛 .  This implies Ο𝑖=1

𝑛  𝑥𝑖 = 0.  Hence 𝑀Ο𝑖=1
𝑛 𝑥𝑖

=  𝑀0 =  ∅.   It follows that ⋂ 𝑀𝑥𝑖
=  ∅,   𝑛

𝑖=1 a    

contradiction to finite intersection property. Therefore 0 ∉ 𝐹 .  Hence 𝐹  is a proper filter. Therefore by Zorn's lemma, 𝐹 is  

contained in a maximal filter (say) 𝐾.  Then clearly,  𝐿 − 𝐾  is a minimal prime S-ideal. Now, let 𝑥 ∈  Δ.  Then 𝑥 ∈ 𝐹 ⊆
  𝐾  and hence 𝑥 ∉ 𝐿 − 𝐾.  Therefore 𝐿 − 𝐾 ∈  𝑀𝑥.  Thus 𝐿 − 𝐾 ∈  ⋂ 𝑀𝑥.𝑥∈ Δ  Hence ⋂ 𝑀𝑥  ≠  ∅.   𝑥∈ Δ Therefore 𝔐  is   

compact in the hull-kernel topology. The equivalence of (5), (6) and (7) is trivial. 
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