THE SPACE OF MINIMAL PRIME S-IDEALS IN 0-DISTRIBUTIVEALMOST SEMILATTICES

${ }^{1}$ G. Nanaji Rao, ${ }^{2} \mathrm{Ch}$. Swapna
${ }^{1 \& 2}$ Department of Mathematics Andhra University, Visakhapatnam - 530003, Andhra Pradesh.

Abstract

Let L be a 0 -distributive almost semilattice (0 -distributive ASL) and \mathfrak{M} be its minimal spectrum. It is shown that \mathfrak{M} is Hausdorff. The compactness of \mathfrak{M} has been characterized in several ways.

Key Words: S-ideal, prime S-ideal, 0-distributive ASL, minimal prime S-ideal, hull-kernel topology, dual hull kernel topology.
AMS Subject classification (1991): 06D99, 06D15.

1 INTRODUCTION

Henriksen and Jerison [1] investigated the space of minimal prime ideals of a commutative ring extending the considerations of Kist [2]. They succeeded in obtaining sufficient conditions for their respective spaces to be compact. This inspired Speed [9] [10] to investigate minimal prime ideals of a distributive lattice with 0 . Fortunately, the lattice theoretic situation enabled Speed [9] to obtain much deeper results; so much so, he could characterize the compact--ness of the space of minimal prime ideals of a distributive lattice with 0 in a much more elegant manner. Later Pawar and Thakare [8] studied the space of minimal prime ideals when it was carried the hull-kernel topology.

In this paper, we shall mainly be concerned here with the space of minimal prime S-ideals when it carries the hullkernel topology.

2 Preliminaries

In this section, we collect a few important definitions and results which are already known and which will be used more frequently in the text.

Definition 2.1: An ASL with 0 is an algebra ($L, o, 0$) of type (2,0) satisfies the following conditions:

1) $(x \circ y) \circ z=x \circ(y \circ z)$
2) $(x \circ y) \circ z=(y \circ x) \circ z$
3) $x \circ x=x$
4) 0 o $x=0$, for all $x, y, z \in \mathrm{~L}$.

Definition 2.2: Let L be an $A S L$. A nonempty subset I of L is said to be an S-ideal if it satisfies the following conditions:

1) If $x \in I$ and $a \in L$, then x o $a \in I$.
2) If $x, y \in I$, then there exists $d \in I$ such that d o $x=x, d$ o $y=y$.

Definition 2.3: A nonempty subset F of an ASL L is said to be a filter if F satisfies the following conditions:

1) $x, y \in F$ implies x o $y \in F$.
2) If $x \in F$ and $a \in L$ such that a o $x=x$, then $a \in F$.

Definition 2. 4 : A proper S-ideal P of an ASL L is said to be a prime if for any $x, y \in L, x$ o $y \in P$ imply $x \in P$ or $y \in P$.
Definition 2.5: Let L be an ASL with unimaximal element. Then a proper filter F of L is said to be a prime filter if for any filters F_{1} and F_{2} of $L, F_{1} \cap F_{2} \subseteq F$ implies that either $F_{1} \subseteq F$ or $F_{2} \subseteq F$.

Definition 2.6:A proper filter F of L is said to be maximal if for any filter G of L such that $F \subseteq G \subseteq L$, then either $F=G$ or $G=L$.
Definition 2.7 : Let L be an ASL with 0 . Then L is said to be 0 -distributive if for any $x, y, z \in L, x$ o $y=0$ and x o $z=0$ then there exists $d \in L$ such that d o $y=y, d$ o $z=z$ and d o $x=0$.
Definition 2. 8: Let L be an ASL with 0 . Then for any non empty subset A of $L, A^{*}=\{x \in L: x$ o $a=0$ for all $a \in A\}$ is called the annihilator of A.

Note that if $A=\{a\}$, then we denote $A^{*}=\{a\}^{*}$ by $[a]^{*}$.

Theorem 2.9: Let L be an ASL with 0 . Then for any ideals I, J of L, we have the following.
(1) $I^{*}=\cap_{a \in I}[a]^{*}$
(2) $(I \cap J)^{*}=(J \cap I)^{*}$
(3) $I \subseteq J \Rightarrow J^{*} \subseteq I^{*}$
(4) $I^{*} \cap J^{*} \subseteq(I \cap J)^{*}$
(5) $(I \cap J)^{* *}=I^{* *} \cap J^{* *}$
(6) $I \subseteq I^{* *}$
(7) $I^{* * *}=I^{*}$
(8) $I^{*} \subseteq J^{*} \Leftrightarrow J^{* *} \subseteq J^{* *}$
(9) $I \cap J=(0] \Leftrightarrow I \subseteq J^{*} \Leftrightarrow J \subseteq I^{*}$
(10) $(I \cup J)^{*}=I^{*} \cap J^{*}$

Theorem 2.10: Let L be an ASL with 0 . Then for any $x, y \in L$, we have the following.
(1) $x \leq y \Rightarrow[y]^{*} \subseteq[x]^{*}$
(2) $[x]^{*} \subseteq[y]^{*} \Rightarrow[y]^{* *} \subseteq[x]^{* *}$
(3) $x \in[x]^{* *}$
(4) $(x]^{*}=[x]^{*}$
(5) $(x] \cap[x]^{*}=\{0\}$
(6) $\left[\begin{array}{lll}x & \circ & y\end{array}\right]^{*}=\left[\begin{array}{llll}y & o & x\end{array}\right]^{*}$
(7) $[x]^{*} \cap[y]^{*} \subseteq\left[\begin{array}{llll}x & o & y\end{array}\right]^{*}$
(8) $[x \text { o } y]^{* *}=[x]^{* *} \cap[y]^{* *}$
(9) $[x]^{* * *}=[x]^{*}$
(10) $[x]^{*} \subseteq[y]^{*}$ if and only if $[y]^{* *} \subseteq[x]^{* *}$

Theorem 2. 11 : Let L be an ASL with 0 , in which intersection of any family of S-ideals is again an S-ideal. Then the following are equivalent:
(1) L is 0 -distributive ASL
(2) A^{*} is an S-ideal, for all $A(\neq \varnothing) \subseteq L$.
(3) $S I(L)$ pseudo- complemented semilattice.
(4) $\operatorname{SI}(L)$ is 0 -distributive semilattice.
(5) $P S I(L)$ is 0 -distributive semilattice.

Theorem 2.12: Let L be an ASL and P be a proper S-ideal of L. Then P is prime S-ideal if and only if for any S-ideals I and J of $L, I \cap J \subseteq P$ imply $I \subseteq P$ or $J \subseteq P$.
Theorem 2. 13: Every proper filter in ASL L is contained in a maximal filter.
Theorem 2. 14: Let L be a 0 -distributive ASL. Then every maximal filter of L is a prime filter.
Theorem 2. 15: Let be L an ASL. Then a subset P of L is a prime S-ideal if and only if $L-P$ is a prime filter.
Theorem 2.16: Let L be a 0 -distributive ASL. Then a subset M of L is a minimal prime S-ideal if and only if $L-M$ is a maximal filter.
Theorem 2. 17 : Let L be a 0 -distributive ASL. Then a prime S-ideal M of L is minimal if and only if $[x]^{*}-M \neq \emptyset$ for any $x \in M$.
Corollary 2. 18: Let L be a 0 -distributive ASL. Then a prime S-ideal M of L is minimal if and only if it contains precisely one of $\{x\},[x]^{*}$ for every $x \in L$.
Corollary 2.19: Let L be a 0 -distributive ASL and let P be a minimal prime S-ideal in L. Then for every $x \in L,[x]^{* *} \nsubseteq$ P if and only if $[x]^{*} \subseteq P$.
Theorem 2.20 : Let L be a 0 -distributive ASL in which intersection of any family of S-ideals is again an S-ideal. Then for any S-ideal I of L, I^{*} is the intersection of all minimal prime S-ideals not containing I.
Corollary 2.21: The intersection of all minimal prime S-ideals of a 0 -distributive ASL is $\{0\}$.
Lemma 2.22: Let L be a 0 -distributive ASL and let $a(\neq 0) \in L$. Then there exists a minimal prime S-ideal not containing a.
Lemma 2. 23 : Let L be a 0 -distributive ASL. Then for any $x \in L,[x]^{*}=\cap\{M \in \mathfrak{M}: x \notin M\}$.

3. Notation and Theorem

Let L be a 0 -distributive ASL. As usual, for a subset \mathcal{R} of \mathfrak{M} (the set of all minimal prime S -ideals in L), we write the kernel of \mathcal{R}, denoted by $K(\mathcal{R})$, the set given by $\cap\{P: P \in \mathcal{R}\}$. For a nonempty subset A of L , the hull of A , denoted by $h(A)$, is the set $\{P \in \mathfrak{M}: A \subseteq P\}$. Let us also adopt the notation M_{x} to denote the set $\{P \in \mathfrak{M}: x \notin P\}$. The hullkernel topology on \mathfrak{M} is obtained by taking the family $\left\{M_{x}: x \in L\right\}$ as the base for open sets. \mathfrak{M} together with this topology is called the minimal spectrum of L; and we shall continue to designate it by \mathfrak{M}. Also, it can be easily seen that in the hull-kernel topology on \mathfrak{M} open sets are of the form M_{I}, where $M_{I}=\{P \in \mathfrak{M}: I \nsubseteq P\}$ and $h(I)=\mathfrak{M}-M_{I}$.

In this section, we derive a set of identities for \mathfrak{M} to be compact in its hull-kernel topology. For this, first we need the following.
Theorem 3. 1: Let L be an ASL and let P be a prime S-ideal of L. Then P is a minimal prime S-ideal if and only if $L-P$ is a maximal prime filter.
Proof : Suppose P is a minimal prime S-ideal of L. Now, we shall prove that $L-P$ is a maximal prime filter. Then by lemma 2.15, $L-P$ is a prime filter. Suppose Q is a prime filter of L such that $L-P \subseteq Q$. Then $L-Q \subseteq P$ and
$L-Q$ is a prime S-ideal. Therefore $L-Q=P$ since P is minimal. It follows that $Q=L-P$. Therefore $L-P$ is a maximal prime filter. Conversely, suppose $L-P$ is a maximal prime filter. Then by lemma 2.15 , we get P is a prime S ideal. Suppose Q is a prime S-ideal of L such that $Q \subseteq P$. Then $L-P \subseteq L-Q$ and $L-Q$ is a prime filter. Therefore $L-$ $P=L-Q$. Hence $P=Q$. Therefore P is a minimal prime S-ideal.
Corollary 3.2 : Let L be a 0 -distributive ASL. Then a filter Q of L is maximal if and only if Q is a maximal prime filter.
Now, we improve some important relations between the S-ideals of 0-distributive ASL and the corresponding open sets in the hull-kernel topology on \mathfrak{M}.

Lemma 3.3 : Let L be an 0-distributive ASL. Then for any $I, J \in S I(L)$, we have the following.

1) $I \subseteq J \Rightarrow M_{I} \subseteq M_{J}$
2) $I \subseteq J \Rightarrow h(J) \subseteq h(I)$
3) $M_{I} \cap M_{J}=M_{I \cap J}$
4) $h(I) \cup h(J)=h(I \cap J)$

Proof : 1. Suppose $I \subseteq J$ and suppose $P \in M_{I}$. Then $I \nsubseteq P$. Therefore $J \nsubseteq P$. Hence $P \in M_{J}$. Thus $M_{I} \subseteq M_{J}$. 2. Suppose $I \subseteq J$ and suppose $P \in h(J)$. Then $J \subseteq P$. Therefore $I \subseteq P$. Hence $P \in h(I)$. Thus $h(J) \subseteq h(I)$. 3. Clearly, $M_{I \cap J} \subseteq M_{I} \cap M_{J}$. Conversely, suppose $P \in M_{I} \cap M_{J}$. Then $P \in M_{I}$ and $P \in M_{J}$. Therefore $I \nsubseteq$ P and $J \nsubseteq P$. It follows that $I \cap J \nsubseteq P$. Therefore $P \in M_{I \cap J}$. Thus $M_{I} \cap M_{J} \subseteq M_{I \cap J}$. Therefore $M_{I \cap J}=M_{I} \cap$ M_{J}.
4. $h(I) \cup h(J)=M_{I}^{c} \cup M_{J}^{c}=\left(M_{I} \cap M_{J}\right)^{c}=\left(M_{I \cap J}\right)^{c}=h(I \cap J)$.

Corollary 3.4 : Let L be an 0 -distributive ASL and $x, y \in L$. Then we have the following.

1) $x \leq y \Rightarrow M_{x} \subseteq M_{y}$
2) $x \leq y \Rightarrow h(y) \subseteq h(x)$
3) $M_{x} \cap M_{y}=M_{x o y}$
4) $h(x) \cup h(y)=h(x$ o $y)$

Proof : 1. Suppose $x \leq y$ and suppose $P \in M_{x}$. Then $x \notin P$. Therefore $y \notin P$. Hence $P \in M_{y}$. Thus $M_{x} \subseteq M_{y}$. 2 . Suppose $x \leq y$ and suppose $P \in h(y)$. Then $y \in P$. Therefore $x \in P$. Hence $P \in h(x)$. Thus $h(y) \subseteq h(x)$. 3. We have $\in M_{x} \cap M_{y} \Leftrightarrow P \in M_{x}$ and $P \in M_{y} \Leftrightarrow x \notin P$ and $y \notin P \Leftrightarrow x$ oy $\notin P \Leftrightarrow P \in M_{x}$ oy. Therefore $M_{x} \cap M_{y}=M_{x o y}$.
4. We have $P \in h(x) \cup h(y) \Leftrightarrow P \in h(x)$ or $P \in h(y) \Leftrightarrow x \in P$ and $y \in P \Leftrightarrow x$ o $y \in P \Leftrightarrow P \in$ $h(x$ o $y)$. Therefore $h(x) \cup h(y)=h(x$ o $y)$.

The following lemma exhibits the relation between the annihilator S-ideal of 0 -distributive ASL L and the basic open sets, basic closed sets of \mathfrak{M} in the hull-kernel topology.
Theorem 3.5: Let L be a 0 -distributive ASL and $x, y \in L$. Then we have the following.

1) $M_{x}=h\left([x]^{*}\right)$
2) $h(x)=h\left([x]^{* *}\right)$
3) $[x]^{*} \subseteq[y]^{*} \Leftrightarrow h(x) \subseteq h(y)$
4) $M_{y} \subseteq M_{x} \Leftrightarrow[x]^{*} \subseteq[y]^{*} \Leftrightarrow[y]^{* *} \subseteq[x]^{* *}$
5) $[x]^{* *}=[y]^{*} \Leftrightarrow h(x)=h\left([y]^{*}\right)$

Proof : Proofs of conditions (1) and (2) follows by corollary 2.18 and 2.19.
3. Suppose $[x]^{*} \subseteq[y]^{*}$ and suppose $P \in h(x)$. Then $x \in P$. Hence by corollary 2.18 , we get $[x]^{*} \nsubseteq$ P. Therefore $[y]^{*} \nsubseteq P$. Hence $y \in P$. Therefore $P \in h(y)$. Thus $h(x) \subseteq h(y)$. Conversely, suppose $h(x) \subseteq$ $h(y)$. Let $a \notin[y]^{*}$. Then a o $y \neq 0$. Therefore by lemma 2.22, there exists a minimal prime S-ideal (say) P of L such that a o $y \notin P$. It follows that $a \notin P$ and $y \notin P$. Hence, we get $a \notin P$ and $P \notin h(y)$. This implies $a \notin$ P and $P \notin h(x)$. Hence $a \notin P$ and $x \notin P$. It follows that a o $x \notin P$, since P is a prime S -ideal of L. Therefore a o $x \neq 0$, we get $a \notin[x]^{*}$. Thus $[x]^{*} \subseteq[y]^{*}$.
4. We have $[x]^{*} \subseteq[y]^{*} \Leftrightarrow h(x) \subseteq h(y) \Leftrightarrow \mathfrak{M}-h(y) \subseteq \mathfrak{M}-h(x) \Leftrightarrow M_{y} \subseteq M_{x}$. Therefore $[x]^{*} \subseteq[y]^{*} \Leftrightarrow M_{y} \subseteq M_{x}$.
5. Suppose $[x]^{* *}=[y]^{*}$. Then $h\left([x]^{* *}\right)=h\left([y]^{*}\right)$. Hence by (2), we get $h(x)=h\left([y]^{*}\right)$. Conversely, suppose $a \notin[x]^{* *}$. Then there exists $t \in[x]^{*}$ such that a ot $\neq 0$. Therefore by lemma 2.22 , there exists a minimal prime S-ideal P of L such that a o $t \notin P$. Hence $a \notin P$ and $t \notin P$. Since $t o x=0 \in P, x \in P$. Therefore $P \in$ $h(x)=h\left([y]^{*}\right)$. Hence $[y]^{*} \subseteq P$, we get $a \notin[y]^{*}$. Thus $[y]^{*} \subseteq[x]^{* *}$. Similarly, we get $[x]^{* *} \subseteq[y]^{*}$. Therefore $[x]^{* *}=[y]^{*}$.

In [5], the authors proved that the pseudo-complement of an S-ideal I in a 0-distributive ASL L is the intersection of all minimal prime S-ideals not containing I. In the language that was introduced above one can write this assertion in the following compact and convenient form.
Theorem 3.6: Let L be a 0-distributive ASL. Then for any S-ideal I of $L, I^{*}=K(\mathfrak{M}-h(I))$.
Proof : We have $I^{*}=\cap\{P \in \mathfrak{M}: I \nsubseteq P\}=\cap\left\{P \in \mathfrak{M}: P \in M_{I}\right\}=\cap\{P \in \mathfrak{M}: P \notin h(I)\}=\cap\{P \in \mathfrak{M}$: $P \in \mathfrak{M}-h(I)\}=K(\mathfrak{M}-h(I))$. Therefore $I^{*}=K(\mathfrak{M}-h(I))$.

Recall that in a 0 -distributive ASL L for any $x \in L$, we have $[x]^{*}=\cap\{P \in \mathfrak{M}: x \notin P\}$ and hence $[x]^{*}=$ $K\left(M_{x}\right)$. Hence we have the following.
Corollary 3.7 : Let L be a 0 -distributive ASL. Then for every $x \in L, h\left(K\left(M_{x}\right)\right)=M_{x}=h\left([x]^{*}\right)$. In particular, $h(x)$ and $h\left([x]^{*}\right)$ are clopen sets in \mathfrak{M} that are disjoint.
Proof : Let $x \in L$. Then we have $h\left(K\left(M_{x}\right)\right)=h\left([x]^{*}\right)=\left\{P \in \mathfrak{M}:[x]^{*} \subseteq P\right\}=\{P \in \mathfrak{M}: x \notin P\}=M_{x}$. Therefore $h\left(K\left(M_{x}\right)\right)=h\left([x]^{*}\right)=M_{x}$.

By theorem 3.6, it can be easily seen that if I is an S-ideal in 0-distributive ASL L, then $I^{*}=K(\mathfrak{M}-h(I))=$ $K\left(M_{I}\right)$ and M_{I} is an open subset of \mathfrak{M}. Therefore we have the following.
Corollary 3.8 : A subset Y of L is the disjoint complement of I^{*}, for some S-ideal I of L if and only if Y is the kernel of some open subset of \mathfrak{M}.

We see that theorem 3.6, above states a property of the disjoint complement I^{*} of an S-ideal. But, we see, an account of theorem 3.1, much more is true.
Theorem 3.9: Let L be a 0 -distributive ASL. Then for any nonempty subset $A(\neq\{0\})$ of $L, A^{*}=K\left(h\left(A^{*}\right)\right)$.
Proof : Suppose $A(\neq\{0\}) \subseteq L$. Now, we shall prove that $A^{*}=K\left(h\left(A^{*}\right)\right)$. Suppose $t \in L$ such that $t \notin A^{*}$. Then x o $t \neq 0$, for some $x \in A$. Therefore there exists a maximal filter (say) F of L such that x ot $\in F$. Now, since F is a maximal filter, $L-F$ is a minimal prime S-ideal. Let $z \in A^{*}$. Then we have z o $x=0 \in L-F$. Since $L-F$ is prime, either $z \in L-F$ or $x \in L-F$. It follows that $z \in L-F$ since x ot $\in F$ and hence $x \in F$. Therefore $A^{*} \subseteq L-$ F. Hence $L-F \in h\left(A^{*}\right)$. Again, since x o $t \in F$ and x ot $\leq t, t \in F$. This implies $t \notin L-F$. It follows that $t \notin$ $K\left(h\left(A^{*}\right)\right)$. Hence $K\left(h\left(A^{*}\right)\right) \subseteq A^{*}$. Conversely, suppose $t \notin K\left(h\left(A^{*}\right)\right)$. Then $t \notin P$, for some $P \in$ \mathfrak{M} such that $A^{*} \subseteq P$. It follows that $t \notin A^{*}$. Thus $A^{*} \subseteq K\left(h\left(A^{*}\right)\right)$. Therefore $A^{*}=K\left(h\left(A^{*}\right)\right)$.

As for any two minimal prime S -ideal none of them is contained in the other we see that any two points of \mathfrak{M} are T_{1} - separated. Thus, we have the following.
Theorem 3. 10 : The hull-kernel topology on \mathfrak{M} is Hausdorff.
Proof : Suppose $P, Q \in \mathfrak{M}$ such that $P \neq Q$. Then there exists $x \notin P$ such that $x \in Q$. Therefore $P \in M_{x}$ and $Q \in$ $h(x)=\mathfrak{M}-M_{x}$ and also $M_{x} \cap h(x)=M_{x} \cap\left(\mathfrak{M}-M_{x}\right)=\emptyset$. Therefore \mathfrak{M} is Hausdorff.

One more property of the set $\left\{M_{x}: x \in L\right\}$ is stated in the following. For, this we need the following lemmas.
Lemma 3.11: Let L be a 0 -distributive ASL and let $x \in L$. Then $M_{x}=\emptyset$ if and only if $x=0$.
Proof : Suppose $M_{x} \neq \varnothing$. Then there exists $P \in \mathfrak{M}$ such that $P \in M_{x}$. Therefore $x \notin P$ and hence $x \neq 0$. Conversely, suppose $x \neq 0$. Then by lemma 2.22, there exists $P \in \mathfrak{M}$ such that $x \notin P$. Therefore $P \in M_{x}$. Thus $M_{x} \neq \varnothing$.
Lemma 3.12: Let L be an ASL and let S be a nonempty subset of L. Then $[S)=\left\{x \in L: x o 0_{i=1}^{n} s_{i}=0_{i=1}^{n} s_{i}\right.$, $s_{i} \in S, 1 \leq i \leq n, n$ is + ve integer $\}$ is the smallest filter containing S.
Proof : Suppose S is a nonempty subset of L. Then for any $s \in S$, we have $s=s$ os and hence $s \in[S)$. Thus [S) is nonempty. Now, we shall prove that $[S)$ is a filter. Let $x, y \in[S)$. Then $x o\left(O_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)=0_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}$ and yo $\left(\mathrm{O}_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{t}_{\mathrm{i}}\right)=\mathrm{O}_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{t}_{\mathrm{i}}$, where $s_{i,}, t_{i} \in S, 1 \leq i \leq n$ and $1 \leq i \leq m$. Therefore
$\left(x o\left(\mathrm{O}_{i=1}^{n} s_{i}\right)\right) o\left(y o\left(\mathrm{O}_{i=1}^{m} t_{i}\right)\right)=\mathrm{O}_{i=1}^{n} s_{i} \mathrm{o} \mathrm{O}_{\mathrm{i}=1}^{\mathrm{m}} t_{i}$. It follows that (x oy $) o \mathrm{O}_{j=1}^{n+m} z_{j}=\mathrm{O}_{j=1}^{n+m} z_{j}, z_{j} \in S$. Hence x o $y \in[S)$. Again, let $x \in[S)$ and $t \in L$ such that o $x=x$. Then $x o\left(\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)=\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}} \in \mathrm{S}, 1 \leq \mathrm{i} \leq$ n. Therefore $t o\left(x o\left(\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)\right)=\mathrm{to}\left(\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)$. Hence $(t o x) \mathrm{o}\left(\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)=\mathrm{to}\left(\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)$. It follows that $x \mathrm{o}\left(\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{i}}\right)=\mathrm{to}\left(\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)$. Hence $\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}=\operatorname{to}\left(\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)$. Therefore $t \in[S)$. Thus [S) is a filter. Now, it remains to prove that $[S)$ is the smallest filter of L containing S. Suppose F is a filter of L such that $S \subseteq F$. Then for any $x \in[S)$, we have $x o\left(\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)=\mathrm{O}_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}} \in \mathrm{S}, 1 \leq \mathrm{i} \leq \mathrm{n}$. Since $S \subseteq F, s_{i} \in F$. It follows that $x \in F$. Hence $[S) \subseteq F$. Therefore $[S)$ is the smallest filter containing S.
Theorem 3. 13 : Let Σ be any indexing set and let $\left\{x_{r}: r \in \Sigma\right\}$ be a subset of 0 -distributive ASL L such that the collection $\left\{M_{x_{r}}\right\}$ has the finite intersection property. Then the intersection of all $\left\{M_{x_{r}}\right\}, r \in \Sigma$ is nonempty.
Proof : Suppose $\left\{M_{x_{r}}: r \in \Sigma\right\}$ is a collection of sets in \mathfrak{M} with finite intersection property. Now, put $\Delta=\left\{x_{r}: r \in\right.$ $\Sigma\}$ and put $F=[\Delta)$. Suppose $F=L$. Then $0 \in L=F$. Therefore $0_{i=1}^{n} x_{r}=0 o 0_{i=1}^{n} x_{r}, x_{r} \in \Delta, 1 \leq r \leq n$. This implies $\mathrm{O}_{i=1}^{n} x_{r}=0$. It follows that $M_{\mathrm{O}_{i=1}^{n} x_{r}}=M_{0}=\varnothing$. Therefore $\bigcap_{i=1}^{n} M_{x_{r}}=\varnothing$, a contradiction to finite intersection property. Therefore $F \neq L$. Hence F is a proper filter. It follows that there exists a maximal filter (say) H of L such that $F \subseteq H$. Again, it follows that $L-H$ is a minimal prime S-ideal. Now, let $x_{r} \in \Delta$. Then $x_{r} \in H$. Therefore $x_{r} \notin L-H$. Hence $L-H \in M_{x}$. Therefore $L-H \in \cap_{x_{r} \in \Delta} M_{x_{r}}$. Thus $\cap_{x_{r} \in \Delta} M_{x_{r}} \neq \emptyset$.

We consider the family $\{h(x): x \in L\}$ to be a subbase for \mathfrak{M}. Then the resulting topology is called the dual hullkernel topology. We denote by τ_{h} the hull-kernel topology and by τ_{d} the dual hull-kernel topology on \mathfrak{M}. Now, we prove the following.
Theorem 3. 14 : The hull-kernel topology on \mathfrak{M} is finer than the dual hull-kernel topology.
Proof: Clearly, $h(x)=\mathfrak{M}-M_{x}$, for any $x \in L$. Also, by theorem 3.10, M_{x} is closed in \mathfrak{M}. Therefore $h(x)$ is open in \mathfrak{M}. Hence $h(x)$ is open in the hull-kernel topology; τ_{h} is finer than τ_{d}.

A sufficient condition of the equality of these two topologies τ_{h} and τ_{d} on \mathfrak{M} is stated in the following.
Theorem 3. 15: Let L be a 0 -distributive ASL. If for every $x \in L$, there exists $x^{\prime} \in L$ such that $\left[x^{\prime}\right]^{*}=[x]^{* *}$ then $\tau_{h}=\tau_{d}$.

Proof : Clearly, $\tau_{d} \subseteq \tau_{h}$. Now, we shall prove that $\tau_{h} \subseteq \tau_{d}$. Let $M_{x} \in \tau_{h}$. Then $x \in L$. Therefore there exists $x^{\prime} \in$ L such that $\left[x^{\prime}\right]^{*}=[x]^{* *}$. Now, $M_{x}=h\left([x]^{*}\right)=h\left(\left[x^{\prime}\right]^{* *}\right)=h\left(x^{\prime}\right)$. It follows that every basic open set in τ_{h} is open in τ_{d}. Thus $\tau_{h} \subseteq \tau_{d}$. Therefore $\tau_{h}=\tau_{d}$.

We now state our main result that provides us with necessary and sufficient conditions for \mathfrak{M} to be compact in its hull-kernel topology.
Theorem 3.10 : Let L be a 0 -distributive ASL, in which intersection of any family of S-ideals is again an S-ideal. Then the following are equivalent.

1) \mathfrak{M} is compact.
2) Finite unions of $\left\{M_{x}: x \in L\right\}$ form a Boolean lattice.
3) For $x \in L$, there exist $t_{i} \in L, i=1,2, \ldots . . n$ such that $t_{i} \in[x]^{*}$ and $[x]^{*} \cap \cap_{i=1}^{n}\left[t_{i}\right]^{*}=\{0\}$.
4) For $x \in L$, there exist $t_{i} \in L, i=1,2, \ldots ., n$ such that $[x]^{* *}=\bigcap_{i=1}^{n}\left[t_{i}\right]^{*}$
5) $\tau_{h}=\tau_{d}$.
6) $\{h(x): x \in L\}$ is a subbasis for the open sets of $\left(\mathfrak{M}, \tau_{d}\right)$.
7) $\left\{M_{x}: x \in L\right\}$ is a subbasis for the open sets of $\left(\mathfrak{M}, \tau_{h}\right)$.

Proof : (1) $\Rightarrow(2)$: Suppose \mathfrak{M} is compact in the hull-kernel topology. Now, put $B_{h}=\left\{M_{x}: x \in L\right\}$ and put B is the set of all finite unions of elements in B_{h}. Now, we shall prove that B is a Boolean lattice. Now, we have $h\left([x]^{*}\right)=$
$\cap_{t \in[x]^{*}} h(t)$. Therefore $h(x) \cap h\left([x]^{*}\right)=h(x) \cap \cap_{t \in[x]^{*}} h(t)=\varnothing$ and $\{h(x) \cap h(t): \quad t \in$ $\left.[x]^{*}\right\}$ is a class of closed sets in the compact space $h(x)$. Hence there exists $t_{1}, t_{2}, \ldots . ., t_{n} \in[x]^{*}$ such that $h(x) \cap$ $h\left(t_{1}\right) \cap h\left(t_{2}\right) \cap \ldots \cap h\left(t_{n}\right)=\varnothing$. This implies $\left(h(x) \cap h\left(t_{1}\right) \cap h\left(t_{2}\right) \cap \ldots \ldots . \cap h\left(t_{n}\right)\right)^{c}=\phi^{c}$. It follows that $M_{x} \cup M_{t_{1}} \cup M_{t_{2}} \cup \ldots \ldots \cup M_{t_{n}}=\mathfrak{M}$. Hence $M_{x} \cup \cup_{i=1}^{n} M_{t_{i}}=\mathfrak{M}$. Now, we shall prove that $M_{x} \cap \cup_{i=1}^{n} M_{t_{i}}=$ \varnothing. Suppose $M_{x} \cap \cup_{i=1}^{n} M_{t_{i}} \neq \varnothing$. Then there exists $P \in \mathfrak{M}_{\text {such }}$ that $P \in M_{x}$ and $P \in \cup_{i=1}^{n} M_{t_{i}}$. This implies $x \notin$ P and $t_{i} \notin P$ for some $i, 1 \leq i \leq n$. It follows that x ot $t_{i} \notin P$. Hence x ot $t_{i} \neq 0$. Therefore $t_{i} \notin[x]^{*}, \quad$ a contradiction to $t_{i} \in[x]^{*}$. Thus $M_{x} \cap \bigcup_{i=1}^{n} M_{t_{i}}=\emptyset$. Therefore $\cup_{i=1}^{n} M_{t_{i}}$ is the complement of M_{x}. Since B_{h} is a bounded semilattice. It follows from theorem 1[11], B is a Boolean lattice.
(2) $\Rightarrow(3)$: Assume (2). Let $x \in L$. Then $M_{x} \in B$. Since B is a Boolean lattice, M_{x} has the complement (say) $\bigcup_{i=1}^{n} M_{t_{i}}$. Therefore $M_{x} \cap \cup_{i=1}^{n} M_{t_{i}}=\varnothing$ and $M_{x} \cup \bigcup_{i=1}^{n} M_{t_{i}}=\mathfrak{M}$. Since $M_{x} \cap \bigcup_{i=1}^{n} M_{t_{i}}=\emptyset,\left(M_{x} \cap M_{t_{1}}\right) \cup$ $\left(M_{x} \cap M_{t_{2}}\right) \cup \ldots . \cup\left(M_{x} \cap M_{t_{n}}\right)=\varnothing$. Therefore $M_{x o t_{1}} \cup M_{x o t_{2}} \cup \ldots \ldots . \cup M_{x o t_{n}}=\emptyset$. Hence $M_{x o t_{i}}=\emptyset$ for all $i, 1 \leq i \leq n$. This implies $M_{x o t_{i}}=M_{0}$ for all $i, 1 \leq i \leq n$. It follows that x o $t_{i}=0$ for all $i=1,2, \ldots . n$. Hence
$t_{i} \in[x]^{*}$ for all $i=1,2, \ldots . n$. Now, $M_{x} \cup \cup_{i=1}^{n} M_{t_{i}}=\mathfrak{M}$. This implies $K\left(M_{x} \cup \cup_{i=1}^{n} M_{t_{i}}\right)=K(\mathfrak{M})$. But, we have $K(\mathfrak{M})=\{0\}$. Therefore $K\left(M_{x} \cup \cup_{i=1}^{n} M_{t_{i}}\right)=\{0\}$. It follows that $K\left(M_{x}\right) \cap \cap_{i=1}^{n} K\left(M_{t_{i}}\right)=\{0\}$. This implies $[x]^{*} \cap \bigcap_{i=1}^{n}\left[t_{i}\right]^{*}=\{0\}$.
$(3) \Rightarrow(4):$ Assume (3). Let $x \in L$. Then there exists $t_{1}, t_{2}, \ldots ., t_{n} \in L$ such that $t_{i} \in[x]^{*}$ and $[x]^{*} \cap \bigcap_{i=1}^{n}\left[t_{i}\right]^{*}=$
$\{0\}$. Since $t_{i} \in[x]^{*}$, for all i, it follows that $[x]^{* *} \subseteq\left[t_{i}\right]^{*}$ for all i. Hence $[x]^{* *} \subseteq \bigcap_{i=1}^{n}\left[t_{i}\right]^{*}$. Suppose $t \in$
$\bigcap_{i=1}^{n}\left[t_{i}\right]^{*}$ and $y \in[x]^{*}$. Then clearly, yot $\in[x]^{*} \cap \bigcap_{i=1}^{n}\left[t_{i}\right]^{*}$. Hence y oo $t=0$. Therefore $t \in[x]^{* *}$. Thus $\bigcap_{i=1}^{n}\left[t_{i}\right]^{*} \subseteq[x]^{* *}$. Therefore $[x]^{* *}=\bigcap_{i=1}^{n}\left[t_{i}\right]^{*}$.
$(4) \Rightarrow(5)$: Assume (4). Now, we shall prove that the basic open sets $\left\{M_{x}: x \in L\right\}$ in τ_{h} are open in τ_{d}. Let $x \in$ L. Then by condition, there exists $t_{1}, t_{2}, \ldots, t_{n} \in L$ such that $[x]^{* *}=\bigcap_{i=1}^{n}\left[t_{i}\right]^{*}$. Hence $h\left([x]^{* *}\right)=$ $h\left(\bigcap_{i=1}^{n}\left[t_{i}\right]^{*}\right)$. This implies $h\left([x]^{* *}\right)=\bigcup_{i=1}^{n} h\left(\left[t_{i}\right]^{*}\right)$. Hence $h\left([x]^{* *}\right)=\bigcup_{i=1}^{n} M_{t_{i}}$. Therefore $h(x)=$ $\cup_{i=1}^{n} M_{t_{i}}$. Hence we get $M_{x}=\bigcap_{i=1}^{n} h\left(t_{i}\right)$, which is finite intersection of open sets in τ_{d} and hence is open. Thus M_{x} is open in τ_{d}.
(5) $\Rightarrow(1)$: Suppose $\tau_{h}=\tau_{d}$. Then we have M_{x} is a basic closed set in \mathfrak{M} for any $x \in L$. Now, we shall prove that \mathfrak{M} is compact. Let $\left\{M_{x}: x \in \Delta\right\}$ be a family of closed sets in \mathfrak{M} with finite intersection property, for some $\Delta \subseteq L$. Now, put $F=[\Delta)$, filter generated by Δ. Suppose $F=L$. Then we have $0 \in L=F$. It follows that $0 o \mathrm{O}_{i=1}^{n} x_{i}=$ $\mathrm{O}_{i=1}^{n} x_{i}, x_{i} \in \Delta, 1 \leq i \leq n$. This implies $\mathrm{O}_{i=1}^{n} x_{i}=0$. Hence $M_{\mathrm{O}_{i=1}^{n} x_{i}}=M_{0}=\emptyset$. It follows that $\bigcap_{i=1}^{n} M_{x_{i}}=\emptyset$, a contradiction to finite intersection property. Therefore $0 \notin F$. Hence F is a proper filter. Therefore by Zorn's lemma, F is contained in a maximal filter (say) K. Then clearly, $L-K$ is a minimal prime S-ideal. Now, let $x \in \Delta$. Then $x \in F \subseteq$ K and hence $x \notin L-K$. Therefore $L-K \in M_{x}$. Thus $L-K \in \cap_{x \in \Delta} M_{x}$. Hence $\cap_{x \in \Delta} M_{x} \neq \emptyset$. Therefore \mathfrak{M} is compact in the hull-kernel topology. The equivalence of (5), (6) and (7) is trivial.

References

[1] Henriksen, M. and Jerison, M. 1969 : The Space of Minimal Prime Ideals of a Commutative Ring, Trans. Amer. Math. Soc., 142: 43-60.
[2] Kist, J. 1963 : The Minimal Prime Ideals in Commutative Semigroups, Proc. London Math. Soc. 13:31-50.
[3] Nanaji Rao, G. and Swapna, Ch. 2019 : O-Distributive Almost Semilattices, Journal of Emerging Technologies and Innovative Research, 6:525-536.
[4] Nanaji Rao, G. and Swapna, Ch. 2019 : Minimal Prime S-Ideals in 0-Distributive Almost Semilattices, Bulletin of International Mathematical Virtual Institute, 10(2) : 249-261.
[5] Nanaji Rao, G. and Swapna, Ch. 2019: α-Ideals in 0-Distributive Almost Semilattices, Bulletin of International Mathematical Virtual Institute, communicated.
[6] Nanaji Rao, G. and Terefe, G.B. 2019 : Relative Annihilators and Filters in Almost Semilattices, Southeast Asian Bulletin of Mathematics 43:553-576.
[7] Pawar, Y.S and Thakare, N.K. 1982 : Minimal Prime Ideals in 0-Distributive Semilattices, Periodica Mathematica Hungarica, 13(3) : 237-246.
[8] Pawar, Y.S. and Thakare, N.K. 1982 : The Space of Minimal Prime Ideals in a 0-Distributive Semilattices, Periodica Mathematica Hungarica, 13(1) : 309-319.
[9] Speed, T. P. 1974: Spaces of Ideals of Distributive Lattices, II: Minimal Prime Ideals, J. Australian Math. Soc. 18: 54-72.
[10] Speed, T. P. 1969 : Some Remarks on a Class of Distributive Lattices, J. Australian Math. Soc. 9:289-296.
[11] Varlet, J.C. 1972 : Distributive Semilattices and Boolean Lattices, Bulletin de la Societe Royale des Sciences de Liege, 1-2:5-10.

