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Abstract :  Transferring learning from humans to machine has been a farfetched dream of human race. Human behavior is a 

confluence years of neurobiological learning. Spontaneous reaction to an event is embedded through firing of same neurons in the 

same sequence for countless times.  Behavioral Cloning deals with the problem transferring the actions-reactions of a human to a 

machine. The machine is expected to imitate the actions-reactions of a human based on training.  This paper investigates recent 

methods used in Behavioral cloning implemented specifically for autonomous driving.  Methods were evaluated by comparing the 

techniques they rely on, type of work, use of theoretical proofs and simulations. 

 

IndexTerms - Behavioral Cloning, Transfer Learning, Machine Learning, Computer Vision, Convolutional Neural 

Networks. 

I. INTRODUCTION 

Human’s ability to learn is fastest while copying, cloning or imitating someone or something.  A policy is defined as a mapping 

of state to actions. Imitation Learning (IL) provides an appealing approach for autonomous driving: in many tasks, demonstrations 

of preferred behavior can be easily obtained from human experts, eliminating the need for expensive and potentially dangerous online 

data collection in the real world. Imitation Learning (IL) algorithms use expert data to train a parametric model which represents a 

policy. IL has two derived forms, Off-Policy architecture (Behavioral Cloning (BC)), and On- Policy architecture.  States could be 

the sensor output in a vehicle and actions are the acceleration and steering angle. Off-Policy designs are data-driven and the 

illustrations are given independent of the policy of the robot, which could result in a high covariate shift error.  This implies that the 

states encountered during testing are different from the ones encountered during training.  On-Policy systems can help reduce the 

covariate shift as suitable feedback is provided by the human supervisor, but these methods can be unsafe and computationally 

expensive. 

End-to-end Behavior cloning (Off-policy imitation learning) provides an alternative to traditional modular approach by 

simultaneously learning both perception and control using deep network.  The network learns to recognize patterns associating 

sensory input (e.g., a single YUV image) with desired reaction in terms of vehicle control parameters producing a target maneuver.  

End-to-end behavior cloning eliminates the need for a fixed ontology and extensive amount of labeling.  Finally, end-to-end imitative 

systems can be learned off-line in a safe way, in contrast to reinforcement learning approaches that typically require millions of trial 

and error runs in the target environment or a faithful simulation. 

Here a qualitative analysis is made on the different CNN leaning models used for behavioral cloning for Autonomous Driving 

including their strengths and weaknesses. Further a proposal is made on the possible future trends of these systems.  

The main problem statements in this paper can be outlined as follows:  

o Identify Behavioral Cloning based Imitation technique for Autonomous Driving.  

o Organize and analyze the approaches used for building behavioral cloning based Autonomous Driving systems.  

o Define the strength and weakness of each system.  

o Infer enhancements and enrichment that could be added to the systems.  

 

Rest of the paper is organized as follows, Section I contains the introduction, main goal and problem statements, Section II talks 

about our motivation to undertake this study, Section III compares various methodologies used in recent research papers as a part of 

literature review, Section IV provides conclusion and future scope for the study undertaken. 

II. MOTIVATION 

The main goal of this study is to explore some of the recent research in Behavioral-Cloning based Autonomous Driving or self-

driving, to perform a feasibility study on recognizing human activity using hand movement analysis, to gather details of best practices 

in design and development of these innovative systems and to establish a base for further research. In this paper, we present a survey 

exploring the power and possibilities Vision base Hand Gesture Recognition in Human Computer Interaction techniques and also to 

study design issues and challenges in the area. Here a qualitative analysis is made on the different Hand Gesture Recognition systems 

to identify their strengths and weaknesses. Further a proposal is made on the possible future trends of these systems. 

III. LITERATURE REVIEW 

Here, we categorize seven of the recent research papers on Vision base Hand Gesture Recognition. In this section an overview of 

different architectural approaches used to build Hand gesture applications is given, with emphasis on research direction, technology 

and results from theoretical proofs or simulations. 

One of the major downsides in the existing behavioral cloning based models is their prerequisite for an extensive training dataset 

which stems from the fact that such systems are designed to generalize the solution so that it works for a wide range of situations.  

NAVNet (Navigation Network) uses an off-policy imitation learning methodology for autonomous driving which is end-to-end 
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trainable. It using a doubly-deep recurrent convolutional architecture that learns compositional representations in both space and time 

domains.  The approach is non-data driven in nature and the system learns a regression-based mapping function between input images 

and steering angle. The model works by passing each visual input vt through a feature transformation operation φV (vt ), which is 

parameterized by V to generate a fixed-length vector representation φt ∈ Rd. Once the feature-space representation of the visual input 

sequence is computed (φ1,φ2,φ3 . . . ,φT), the sequential model takes over. The recurrent model, in a basic form, parameterized by 

W, transfers the input xt and a previous hidden state ht−1 to an output zt and a corresponding updates hidden state ht , which implies 

that the inferences must be executed sequentially. The final step towards the prediction of a distribution P(yt ) at a time step t, is to 

apply exponential linear unit (ELU) activation over the outputs zt of the sequential model, thereby generating a possible distribution 

over a space C of possible per-time step outputs.  Here, we take a late-fusion approach to merging the per time step predictions into 

a single prediction y for the input, which is essentially a temporal average of T predictions of one input frame.  LRCN models are 

envisioned to become the upcoming standard methods for video description, activity recognition, autonomous navigation and any 

other tasks that require a deep understanding of both spatial and temporal characteristics [1]. 

Model-based reinforcement learning (MBRL) can plan to arbitrary goals using a predictive dynamics model learned from data, 

yet it estimates only what is possible and requires additional online data collection. A combination of imitation learning and model-

based reinforcement learning (MBRL) learns preferred behavior by estimating the distribution of expert demonstrations, and then 

plans paths to achieve user-specified goals at test-time. This method provides a flexible, safe way to generalize to new goals by 

planning, compared to prior work on black-box, model-free conditional imitation learning. The algorithm produces an explicit plan 

within the distribution of preferred behavior accompanied with a score: the former offers interpretability, and the latter provides an 

estimate of the feasibility of the plan [2]. 

When human drivers navigate a vehicle through a road, they do not pay equal visual attention to everything that is present in 

their field of sight. As an example, let us consider, that there are two objects namely a traffic signal and a building present in the 

field of sight in front of a human driver, then the driver is most likely to pay more attention to the traffic signal rather than the 

building which is present out of the road. Visual attention to enhance autonomous driving performance is implemented in this novel 

method using unsupervised approach to train a model to learn to predict attention as it learns to drive a car. 3 models were generated. 

Model1: This model (henceforth referred to as Model1) was trained with original road scene images as input to predict the driving 

actions (steering angle, throttle and brake) as output. Model2: The input for this model (henceforth referred to as Model2) involved 

the incorporation of visual attention predicted by RoadSal. We multiplied the saliency value pixel-wise for each of the three channels 

in the original road scene (image). This saliency multiplied image was the input for Model2 and the output were the driving actions 

(steering angle, throttle and brake). Model3: This model (henceforth referred to as Model3) also used saliency multiplied images as 

in case of Model2 for input and the driving actions (steering angle, throttle and brake) were the output. The difference from Model2 

was that in this case the predictions of Net1 (component of AutoTaskSal) were used as the saliency maps. Model1 has Mean Square 

Error of 0.01369, Model2 has Mean Square Error of 0.01145 and Model3 has Mean Square Error of 0.034.  The fact that Model2 

performs better than Model1 clearly demonstrates the usefulness of incorporating of task specific visual attention in the context of 

autonomous driving. The incorporation of visual attention indeed improved the performance of the autonomous driver. This can be 

attributed to original motivation that human drivers pay different levels of attention to various things in front of them while driving 

[3]. 

Current trend of the automotive industry combined with research by the major tech companies has proved that self-driving 

vehicles are the future. With successful demonstration of neural network based autonomous driving, NVIDIA has introduced a new 

paradigm for autonomous driving software. The biggest challenge for self-driving cars is autonomous lateral control. An end-to-

end model seems very promising in providing a complete software stack for autonomous driving. Although this system is not ready 

to be provided as a feature in the market today, it is one of the many steps in the right direction to make self-driving cars a reality. 

The work described in this paper focusses on how an end-to-end model is implemented. The subtleties of training a successful end-

to-end model are highlighted with the aim of providing an insight on deep learning and software required for neural network training. 

Detailed analyses of data acquisition and training systems are provided and installation procedures for all required tools and software 

discussed. TORCS is used for developing and testing the end-to-end model.  Approximately ten hours of driving data was collected 

from two different tracks. Using four hours of data from a track, we trained a deep neural network to steer a car inside simulation. 

Even with such a small training set, the end-to-end model developed demonstrated capabilities to maintain lanes and complete laps 

in different tracks. For a multilane track, like the one used for training, the model demonstrated an autonomy of 96.62%. For single 

lane unknown tracks, the model steered the vehicle successfully for 89.02% of the time.  With a small amount of training data, the 

network was able to successfully drive the car inside simulation [4]. 

Driving policies trained via imitation learning cannot be controlled at test time. A vehicle trained end-to-end to imitate an expert 

cannot be guided to take a specific turn at an upcoming intersection. This limits the utility of such systems. We propose to condition 

imitation learning on high-level command input. At test time, the learned driving policy functions as a chauffeur that handles 

sensorimotor coordination but continues to respond to navigational commands. We evaluate different architectures for conditional 

imitation learning in vision-based driving. We conduct experiments in realistic three-dimensional simulations of urban driving and 

on a 1/5 scale robotic truck that is trained to drive in a residential area. Both systems drive based on visual input yet remain responsive 

to high-level navigational commands.  The controller that is trained using standard imitation learning only completes 20% of the 

episodes in Town 1 and 24% in Town 2, which is not surprising given its ignorance of the goal.  More interestingly, the goal-

conditional controller, which is provided with an accurate vector to the goal at every time step during both training and at test time, 

is performing only slightly better than the non-conditional controller, successfully completing 24% of the episodes in Town 1 and 

30% in Town 2. Qualitatively, this controller eventually veers off the road attempting to shortcut to the goal. This also decreases the 

number of kilometers the controller is able to traverse without infractions. A simple feed-forward network does not automatically 

learn to convert a vector pointing to the goal into a sequence of turns. The proposed branched command-conditional controller 

performs significantly better than the baseline methods in both towns, successfully completing 88% of the episodes in Town 1 and 

64% in Town 2. In terms of distance travelled without infractions, in Town 2 the method is on par with baselines, while in Town 1 it 

is outperformed by the nonconditional model. This difference is misleading: the nonconditional model drives more cleanly because 

it is not constrained to travel towards the goal and therefore typically takes a simpler route at each intersection.  Applied the presented 

approach to vision-based driving of a physical robotic vehicle and in realistic simulations of dynamic urban environments. Results 

show that the command-conditional formulation significantly improves performance in both scenarios.  While the presented results 
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are encouraging, they also reveal that significant room for progress remains. In particular, more sophisticated and higher-capacity 

architectures along with larger datasets will be necessary to support autonomous urban driving on a large scale. We hope that the 

presented approach to making driving policies more controllable will prove useful in such deployment.  Our work has not addressed 

human guidance of autonomous vehicles using natural language [5]. 

Controllable Imitative Reinforcement Learning (CIRL) successfully makes the driving agent achieve higher success rates based 

on only vision inputs in a high-fidelity car simulator. To alleviate the low exploration efficiency for large continuous action space 

that often prohibits the use of classical RL on challenging real tasks, our CIRL explores over a reasonably constrained action space 

guided by encoded experiences that imitate human demonstrations, building upon Deep Deterministic Policy Gradient (DDPG). 

Moreover, we propose to specialize adaptive policies and steering-angle reward designs for different control signals (i.e. follow, 

straight, turn right, turn left) based on the shared representations to improve the model capability in tackling with diverse cases. 

Extensive experiments on CARLA driving benchmark demonstrate that CIRL substantially outperforms all previous methods in 

terms of the percentage of successfully completed episodes on a variety of goal directed driving tasks. We also show its superior 

generalization capability in unseen environments. To our knowledge, this is the first successful case of the learned driving policy by 

reinforcement learning in the high-fidelity simulator, which performs better than supervised imitation learning. CIRL substantially 

outperforms all baseline methods under all conditions, especially better than their RL baseline. Furthermore, CIRL shows superior 

generalization capabilities in the rest three unseen setting (e.g. unseen new town), which obtains not perfect results but considerably 

better performance over other methods, e.g. 71% of our CIRL vs. 59% and 12% of IL and RL, respectively. More qualitative results 

provides some infraction examples that the IL model suffers from and CIRL successfully avoids. CIRL incorporates controllable 

imitation learning with DDPG policy learning to resolve the sample inefficiency issue that is well known in reinforcement learning 

research. Moreover, specialized steer-angle rewards are also designed to enhance the optimization of our policy networks based on 

controllable imitation learning. CIRL achieves the state-of-the-art driving performance on CARLA benchmark and surpasses the 

previous modular pipeline, imitation learning and reinforcement learning pipelines. It further demonstrates superior generalization 

capabilities on a variety of different environments and conditions [6]. 

Vision sensors like bio-motivated event-based cameras normally catch the elements of a scene, filtering out excess data. To make 

the best out of this sensor–calculation mix, cutting edge convolutional structures is adjusted to the yield of occasion sensors and 

broadly assess the presentation of our methodology on a freely accessible enormous scope occasion camera dataset (≈1000km). A 

lot of why a system delivers preferable outcomes on occasion pictures over on grayscale outlines is their capacity to catch scene 

elements. At high speeds, grayscale outlines experience the ill effects of movement obscure, while occasion pictures safeguard edge 

subtleties because of the high transient goals (microsecond) of occasion cameras and the way the positive and negative occasions in 

independent channels are procured that are taken care of to the system, accordingly keeping away from loss of data. The transient 

total expected to take care of the system does, notwithstanding, influence inactivity. Moreover, occasion cameras have an 

exceptionally high powerful range (HDR). Henceforth, occasion information speak to HDR substance of the scene, which is 

preposterous in conventional cameras since that would require long presentation times. This is beneficial so as to be powerful to 

various brightening conditions. Moreover, since occasion cameras react to moving edges and thusly filter out transiently repetitive 

information, they are more educational about the vehicle movement than individual grayscale outlines. DL-based methodology can 

benefit from the normal reaction of occasion cameras to movement and precisely foresee a vehicle controlling point under a wide 

scope of conditions [7]. 

Visual explanations take the form of real-time highlighted regions of an image that causally influence the network’s output 

(steering control). Approach is two-stage. In the first stage, uses a visual attention model to train a convolution network end-to-end 

from images to steering angle. The attention model highlights image regions that potentially influence the network’s output. Some of 

these are true influences, but some are spurious.  Then apply a causal filtering step to determine which input regions actually influence 

the output.  This produces more succinct visual explanations and more accurately exposes the network’s behavior. This demonstrates 

the effectiveness of model on three datasets totaling 16 hours of driving. First showing that training with attention does not degrade 

the performance of the end-to-end network.  Then showing that the network causally cues on a variety of features that are used by 

humans while driving.  Model provides a better way to understand the rationale of the models decision by visualizing where and what 

the model sees to control a vehicle. A consecutive input raw images (with sampling period of 5 seconds) and corresponding attention 

maps Mt = fmap({αt,i}). Three different penalty coefficients γ ∈ {0, 10, 20}, where the model is encouraged to pay attention to wider 

parts of the image with large γ.  For better visualization, an attention map is overlaid by an input raw image and color-coded; for 

example, red parts represent where the model pays attention.  For quantitative analysis, prediction performance in terms of mean 

absolute error (MAE) is explained on the bottom of each figure. The model is indeed able to pay attention on road elements, such as 

lane markings, guardrails, and vehicles ahead, which is essential for human to drive [8]. 

Brain-inspired cognitive model with attention (CMA) consists of three parts: a convolutional neural network for simulating human 

visual cortex, a cognitive map built to describe relationships between objects in complex traffic scene and a recurrent neural network 

that combines with the real- time updated cognitive map to implement attention mechanism and long-short term memory. The benefit 

of our model is that can accurately solve three tasks simultaneously: i) detection of the free space and boundaries of the current and 

adjacent lanes. ii) estimation of obstacle distance and vehicle attitude, and iii) learning of driving behavior and decision making from 

human driver. More significantly, the model accepts external navigating instructions during an end-to-end driving process. For 

evaluation, we build a large-scale road- vehicle dataset which contains more than forty thousand labeled road images captured by 

three cameras on our self-driving car. Moreover, human driving activities and vehicle states are recorded in the meanwhile. Cognitive 

model with attention, inspired by human brain, to simulate human visual and motor cortices for sensing, planning and control. The 

mechanism of attention modeled by a recurrent neural network in time. In addition, the concept of cognitive map for traffic scene 

was introduced and described in detail. Furthermore, a labeled dataset named Road-Vehicle Dataset (RVD) is built for training and 

evaluating.  The performance of the model in planning and control was tested by three visual tasks. Experimental results showed that 

our model can fulfill some basic self-driving tasks with only cameras [9]. 

DARPA Autonomous Vehicle (DAVE-2) primary motivation is to avoid the need to recognize specific human-designated 

features, such as lane markings, guard rails, or other cars, and to avoid having to create a collection of “if, then, else” rules, based on 

observation of these features. The network consists of 9 layers, including a normalization layer, 5 convolutional layers and 3 fully 

connected layers. The input image is split into YUV planes and passed to the network.  The first layer of the network performs image 

normalization. The normalizer is hard-coded and is not adjusted in the learning process. Performing normalization in the network 
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allows the normalization scheme to be altered with the network architecture and to be accelerated via GPU processing. The 

convolutional layers were designed to perform feature extraction and were chosen empirically through a series of experiments that 

varied layer configurations. Uses strided convolutions in the first three convolutional layers with a 2x2 stride and a 5x5 kernel and a 

non-strided convolution with a 3x3 kernel size in the last two convolutional layers. Five convolutional layers are followed with three 

fully connected layers leading to an output control value which is the inverse turning radius. CNNs are able to learn the entire task of 

lane and road following without manual decomposition into road or lane marking detection, semantic abstraction, path planning, and 

control. A small amount of training data from less than a hundred hours of driving was sufficient to train the car to operate in diverse 

conditions, on highways, local and residential roads in sunny, cloudy, and rainy conditions. The CNN is able to learn meaningful 

road features from a very sparse training signal (steering alone).  The system learns for example to detect the outline of a road without 

the need of explicit labels during training [10]. 

 

Table 1: Literature Review 

Sr. 

No. 
Paper Name Year  Technique  Methodology Advantage 

1 Towards Behavioral 

Cloning for 

Autonomous 

Driving[1] 

2019 1. PilotNet (CNN). 

2. LSTM – Long Short 

Term Memory. 

3. Long Recurrent 

Convolutional 

Network( LRCN) = 

CNN+LSTM 

 RGB image capture at 30 

frames/sec sized 160x320 

 Trained for 100 epochs, 

learning rate 10-5, MSE, 

Adam and ELU activation on 

NVIDIA GTX GeForce 1050 

Ti. 

 Evaluation on simulator 

Udacity’s Self Driving 

Simulator and KITTI dataset. 

 Conventional method is 

improved by grasping 

both temporal and 

visual characteristics. 

 Architecture is easy to 

modify, train, test, 

needs minimal pre-

processing with no 

hard-coded feature 

extraction. 

 

2 Deep Imitative 

models for flexible 

inference, planning 

and control[2] 

2019  1. Model-based 

Reinforcement 

Learning (MBLR) 

2. Continuous-state, 

discrete-time, 

partially-observed 

Markov process 

Model. 

3. CNN+RNN 

 Training using CARLA on 

25hr dataset of Town01. 

 Waypoint Planning, Cost 

palnning, Route Planning and 

Path Planning. 

 Featurized LIDAR to 

200x200x2  

 Noise Robustness and 

Reliability estimation. 

 Novel Obstacle avoidance. 

 Interpretable expert-like 

plans without reward 

engineering. 

 Flexibility to new tasks 

 Robustness to goal 

specification noise: 

 Plan reliability 

estimation: 

 State-of-the-art CARLA 

performance 

3 Visual Attention for 

Behavioral Cloning in 

Autonomous 

Driving[3] 

2018 1. CNN to predict pixel-

wise 

saliency/attention 

2. RoadSal 

3. AutoTaskSal 

 Model1: Tobi Pro and 

OGAMA to record eye gaze 

data and Saliency Map 

Generation. 

 Model2:RoadSal:multiplied 

saliency value pixel-wise and 

pass through CNN to 

generate steering angle. 

 Model3:AutoTaskSal: 

RoadSal output as input and 

pass through CNN to 

generate steering angle. 

 Incorporation of visual 

attention improves the 

performance of 

autonomous driving. 

 Depects humans pay 

differenct level of 

attention to various 

things in front of them 

while driving. 

 Performance improved 

by informing the driver 

about what is important 

for decision making 

through saliency map. 

4 Behavioral Cloning 

for Lateral Motion 

Control of 

Autonomous 

Vehicles Using Deep 

Learning[4] 

2018 1. Lambda Layer. 

2. 2-D convolution 

using ReLU and 

stride of 5x5. 

 Human driver steering using 

USB wheel. 

 TORCS 1.3.7 on Ubuntu 

14.04 LTS and NVIDIA 

CUDA. 

 Street-1 and e-road in 

TORCS for data collection. 

 Image cropping, Bias 

removal, remap steering 

angle by factor of 5. 

 Network was bale to 

complete full laps 

around different tracks 

indicating versality and 

validates the approach. 

 With a small amount of 

training data, the 

network was able to 

successfully drive the 

car inside simulation. 
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5 End-to-end driving 

via conditional 

imitation learning[5] 

2018 1. Command Input 

Architecture= Image 

module(CNN) 

+measurement 

module(FCN) 

+command module 

(FCN). 

2. Branched 

Architecture= Image 

module(CNN) 

+measurement 

module(FCN) 

+Branch(switch for 

each command). 

 

 Data collection: 3 camera 

mounted on off-the-shelf 1/5 

scale physical truck with an 

embedded NVIDIA TX2, 

flight controller (Holybro 

Pixhawk) running the 

APMRover firmware. 

 DataAugmentation: change 

in contrast, brightness, and 

tone, addition of Gaussian 

blur, Gaussian noise, salt-

and-pepper noise, and region 

dropout, no geometric aug. 

 CARLA Unreal Engine 4. 

Town1 for training and 

Town2 for testing.  

 Command-conditional 

formulation 

significantly improves 

performance 

 Generalization to new 

environments. 

6 Controllable imitative 

reinforcement 

learning for vision 

based self-driving[6] 

2018 1. Controllable 

Imitative 

Reinforcement 

Learning (CIRL)= 

imitation stage 

+Reinforcement 

stage(Actor-critic 

reward network) 

2. Deep Deterministic 

Policy Gradient 

(DDPG)                -an 

off-policy replay-

memory    -based 

actor-critic algorithm 

 CARLA Unreal Engine 4. 

Town1 for training and 

Town2 for testing. 

 TensorFlow framework with 

training on four NVIDIA 

GeForce GTX1080 GPUs. 

 Learning and exploration rate 

linearly decreased to zero. 

 

 First Successful deep-

RL pipeline for vision-

based autonomous 

driving 

 CIRL effectively 

alleviates the inefficient 

exploration of large-

space continuous action 

space. 

 State-of-the-art 

performance on variety 

of scenarios and unseen 

environments. 

7 Event-based vision 

meets deep learning 

on steering prediction 

for self-driving 

cars[7] 

2018 1. 2D Histogram of 

positive and negative 

events 

2. Event-to-frame 

conversion 

3. Series of Resnet18 

and ResNet50. 

 Data produced by DVS 

sensor - asynchronous, pixel-

wise brightness changes with 

very low latency and high 

dynamic range. 

 Event-to-frame conversion 

based on event polarity(-

ve/+ve). 

 Synchronous event frame 

processed by ResNet-

inspired network to produce 

steering. 

 First large scale 

(1million images = 

1000km)application of 

deep learning to event 

based vision on a 

regression task. 

 Leverage transfer 

learning from pre-tained 

convolutional network 

on classification tasks. 

8 Interpretable 

Learning for Self-

Driving Cars by 

Visualizing Causal 

Attention[8] 

2017 1. Encoder: CNN 

feature extraction 

2. Course-Grained 

Decoder: Visual 

Attention 

3. Fine-Grained 

Decoder: Causality 

Test 

 

 Data Source: 1200000 

frames(=16hrs) from 

Comma.ai, Udacity and 

Hundai Centre of Excellence 

(HCE). 

 Effect of Combination of 

CNN+FCN/LSTM.  

 Effect of Penalty Coefficient, 

smoothing factor and causal 

visual saliency. 

 Visual attention heat 

maps are suitable 

“explanations” for the 

behavior of a deep 

neural vehicle 

controller. 

 Attention maps 

comprise “blobs” that 

can be segmented and 

filtered to produce 

accurate maps of visual 

saliency. 

9 Brain Inspired 

Cognitive Model with 

Attention for Self 

Driving[9] 

2017 1. CNN Model for 

feature extraction 

using ReLu. 

2. Segmentation-based 

approach. 

3. RNN with LSTM 

blocks. 

 Data: Diverse Visual data, 

Vehicle States data, Driver 

behavior data, Artificially 

tagged data. 

 Road-vehicle Dataset(RVD) 

 Incorporate external 

controls through 

cognitive mapping 

model. 

 Some of the basic self-

driving tasks are 
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IV. CONCLUSION AND FUTURE SCOPE 

Autonomous Driving is the future of driving and from all of the researches we can envision that behavioral cloning (Imitation 

Learning) based convolutional models are the backbones.  State-of-the-art results are achieved through a use of camera alone, 

however, some of the big challenges still remain open.  Multi-agent dynamics and casual confusion are few of the challenges to be 

solved.  Longitudinal control using vehicle speed along with steering angle is one more are to uncover. To improve the interaction 

between humans and machine, cars in this case, a Human guidance (voice guidance) using natural language seems to be a promising 

and still to be researcher.  
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 Path planning and control 

through obstacles at 

50,80,100,200,100 and 100 

meter distances. 

fulfilled with only 

cameras. 
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2016 1. CNN Model. 

2. Visualization of 

Internal CNN states. 

 

 Data collection: camera 

placed on 2016 Lincoln MKZ 

or 2013 Ford Focus 

collecting 72 hours of data. 

 Data augmentation by adding 

artificial shifts and rotations. 

 9 layer CNN including 

normalization, split into 

YUV. 

 Tested in Monmouth county, 

NJ. 

 Learn the entire task of 

lane and road following 

without manual 

decomposition into road 

or lane marking 

detection, semantic 

abstraction, path 

planning and control. 

 Learns without the need 

of explicit labels during 

training. 
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