Power 3 Mean Labeling of Line Graphs

Sreeji.S¹, S.S.Sandhya²

Author 1: Research Scholar
Sree Ayyappa College for Women, Chunkankadai.

Author 2: Assistant Professor, Department of Mathematics,
Sree Ayyappa College for Women, Chunkankadai.
[Affiliated to Manonmaniam Sundararanar University,
Abishekappati – Tirunelveli - 627012, Tamilnadu, India]

Abstract:
In this paper we contribute some new results on Power 3 mean labeling of graphs. We investigate on some standard graphs that accept Power 3 mean labeling and proved that the Line graphs of these Power 3 mean graphs are also Power 3 mean graphs. We proved that the Line graphs of Path, Cycle, Comb, \(P_n \odot K_1, P_n \odot K_{1,2}\) are Power 3 mean graphs.

Key words: Graph, Power 3 mean graph, Line Graph, Path, Cycle, Comb, \(P_n \odot K_1, P_n \odot K_{1,2}\).

AMS Subject Classification: 05C78

1. Introduction:
All graphs in this paper are finite, simple, and undirected graph \(G = (V, E)\) with \(p\) vertices and \(q\) edges. For all detailed survey of Graph labeling, we refer to J.A.Gallian [1]. For all other standard terminology and notations we follow Harary [2]. The concept of mean labelling has been introduced by S.Somasundaram and R.Ponraj [3] in 2004. S.S.Somasundaram and S.S.Sandhya introduced Harmonic mean labeling [4] in 2012. S.S.Sandhya, S.Sreeji introduced Power 3 mean labeling.

In this paper we investigate the Line graphs of some standard Power 3 mean graphs Path, Cycle, Comb, \(P_n \odot K_{1,2}\). We will provide a brief summary of definitions and other information which are necessary for our present investigation.

A Path \(P_n\) is a walk in which all the vertices are distinct. A Cycle \(C_n\) is a Closed Path. The graph obtained by joining a single pendant edge to each vertex of a Path is called a Comb. A Complete Bipartite graph \(K_{m,n}\) is a bipartite graph with bipartition \((V_1, V_2)\) such that every vertex of \(V_1\) is joined to all the vertices of \(V_2\). Where \(|V_1| = m\) and \(|V_2| = n\). \(P_n \odot K_{1,2}\) is a graph obtained by attaching each vertex of \(P_n\) to the central vertex of \(K_{1,2}\).

Definition 1.1:
A graph \(G\) with \(p\) vertices and \(q\) edges is called a power 3 mean graph, if it is possible to label the vertices \(x \in V\) with distinct labels \(f(x)\) from \(1, 2, \ldots, q + 1\) in such a way that in each edge \(e = uv\) is labelled \(f(e = uv) = \left(\frac{x^2 + y^2}{2}\right)^\frac{1}{3}\) or \(\left(\frac{x^2 + y^2}{2}\right)^\frac{1}{2}\). Then, the edge labels are distinct. In this case \(f\) is called Power 3 Mean labelling of \(G\).

Remark 1.2:
If \(G\) is a Power 3 mean graph, then ‘1’ must be a label of one of the vertices of \(G\), since an edge should get label ‘1’.
Remark: 1.3

If u gets label ‘1’, then any edge incident with u must get label 1 (or) 2 (or) 3. Hence this vertex must have a degree \(\leq 3 \).

Definition 1.4:

Let \(G = V, E \) be a non-trivial graph. Now each edge in \(E \) can be considered as a set of two elements of \(V \). So \(E \) is a non-empty collection of distinct non-empty subsets of \(V \), such that their union is \(V \). So there is an intersection graph \(\Omega(E) \). Their graph \(\Omega(E) \) is called the line graph of \(G \) and is denoted by \(L(G) \).

We observe that the vertices of \(L(G) \) are the edges of \(G \). Further two vertices of \(L(G) \) are adjacent iff their corresponding edges are adjacent in \(G \). Thus the vertices \(a, b \) in \(L(G) \) are adjacent iff \(a = uv \) and \(b = vw \) are in \(G \).

Theorem 1.5: Any Path \(P_n \) is a Power 3 mean graph.

Theorem 1.6: Any Cycle \(C_n, n \geq 3 \) is a Power 3 mean graph.

Theorem 1.7: Any Comb \(P_n \bowtie K_1 \) is a Power 3 mean graph.

Theorem 1.8: \(P_n \bowtie K_{1,2} \) is a Power 3 mean graph.

Remark : 1.9 Line graph of path \(P_n \) is a Power 3 mean graph.

Remark : 1.10 Line graph of Cycle \(C_n \) is a Power 3 mean graph

Remark : 1.11 In Path and Cycle, Graph \(G \) and Line graph \(L(G) \) are isomorphic to each other.

2. Main Results:

Theorem 2.1:

The line graph of \(K_{1,3} \) is a Power 3 mean graph

Proof:

The graph \(K_{1,3} \) is displayed below.

![Figure 1](image)

Figure : 1

The Line graph of \(K_{1,3} \) is displayed below.
Theorem 2.2:

Line graph of Comb $P_n \bigcirc K_1$ is a Power 3 mean graph.

Proof:

Let G be a graph obtained from a Path $P_n = u_1u_2 \ldots u_n$ by joining the vertex u_i to $v_i; 1 \leq i \leq n$.

Graph G of Comb $P_5 \bigcirc K_1$ is displayed below.

Let e_i be the vertices of $L(G)$. The Line graph $L(G)$ of Comb $P_5 \bigcirc K_1$ is shown in figure 9.

In general, the Line graph $L(G)$ of Comb $P_n \bigcirc K_1$ is shown in figure 10.

Let u_i, v_i be the vertices of Line graph $L(G)$.
Define a function $f(\mathcal{G}) \rightarrow \{1,2, \ldots, q + 1\}$ by,

$f(u_1) = 1$; $f(u_2) = 2$; $f(u_i) = 3i - 2$; $3 \leq i \leq n - 1$

$f(u_n) = f(u_{n-1}) + 2$; $f(v_i) = 3i$; $1 \leq i \leq n$

Edges are labeled with, $f(u_1u_2) = 1$; $f(u_iu_{i+1}) = 3i - 3$; $2 \leq i \leq n - 2$

$f(u_{n-1}u_n) = f(u_{n-1})$; $f(v_iu_{i+1}) = 3i - 1$; $1 \leq i \leq n - 3$; $f(v_iu_{i+2}) = 3i + 1$

Hence $L(G)$ of Comb $P_n \odot K_3$ is a Power 3 mean graph.

Example : 2.3 Power 3 mean labeling of Line graph of Comb $P_5 \odot K_1$ is shown below.

![Figure 6]

Theorem 2.4:

Line graph of $P_n \odot K_{1,2}$ is a Power 3 mean graph.

Proof:

Graph G of $P_4 \odot K_{1,2}$ is displayed below.

![Figure 7]

The Line graph $L(G)$ of $P_4 \odot K_{1,2}$ is shown in figure : 13

![Figure 8]
In general, the Line graph of $P_4 \circ K_{1,2}$ is shown in figure : 14

Let $L(G)$ be the line graph of $P_n \circ K_{1,2}$ and u_i, v_i, w_i be the vertices of $L(G)$.

Define a function $f: V(G) \rightarrow \{1, 2, ..., q + 1\}$ by

$f(u_1) = 1$; $f(u_i) = 6i - 9; 2 \leq i \leq n - 1$;

$f(u_n) = f(u_{n-1}) + 4$

$f(v_1) = 2$;

$f(v_i) = 6i - 7; 2 \leq i \leq n - 1$;

$f(w_i) = 6i + 1; 1 \leq i \leq n - 3$

Edges are labeled with $f(u_1 u_2) = 2$;

$f(u_i u_{i+1}) = 6i - 5; 2 \leq i \leq n - 2$

$f(u_{n-1} u_n) = f(u_{n-1}) + 2$

$f(u_1 v_1) = 1$;

$f(u_i v_i) = 6i - 8$;

$f(v_1 u_2) = 3$;

$f(v_2 u_3) = 8$

$f(v_i u_{i+1}) = 6i - 4; 3 \leq i \leq n - 2$;

$f(v_n u_{n+1}) = f(v_n) + 1$;

$f(w_i u_{i+1}) = 6i - 1; 1 \leq i \leq n - 3$

$f(w_i u_{i+1}) = 6i; 1 \leq i \leq n - 3$;

$f(w_i u_{i+2}) = 6i + 3; 1 \leq i \leq n - 3$

Thus, f admits Power 3 mean labeling of G. Hence $L(G)$ of $P_n \circ K_{1,2}$ is a Power 3 mean graph.

Example : 2.5 Power 3 mean labeling of Line graph $P_4 \circ K_{1,2}$ is shown below.
Theorem 2.9:

Line graph of \(K_3 \odot K_1 \) is a Power 3 mean graph.

Proof:

The graph of \(K_3 \odot K_1 \) is shown below.

In the above figure, the vertices and edges are get distinct labels.

Hence Line graph of \(K_3 \odot K_1 \) is a Power 3 mean graph.

3. Conclusion:

The study of Power 3 mean labelling of Line graphs is important due to its diversified applications. Line graphs of all Power 3 Mean Graphs are not Power 3 Mean Graphs. It is very interesting to investigate graphs which admits Power 3 Mean Labeling. In this Paper, We proved that Line Graph of Path, Cycle, Comb, Star, \(P_n \odot K_{1,2} \) are Power 3 Mean Graphs. The derived results are demonstrated by means of sufficient illustrations which provide better understanding. It is possible to investigate similar results for several other graphs.

4. Acknowledgement:

The authors are thankful to the referee for their valuable comments and suggestions.
References: