
Pallavi S. Kandalkar, Abhijeet D. Kulkarni, Snehal S. Jagtap, Ankita A. Gorhe

Department of Quality Assurance Techniques, Sanjivani College of Pharmaceutical Education and Research, Kopargaon- 423603, Maharashtra, India.

1. Pallavi S. Kandalkar
Department of Quality Assurance Techniques, Sanjivani College of Pharmaceutical Education and Research, Kopargaon- 423603, Maharashtra, India.

2. Dr. Abhijeet D. Kulkarni
Department of Quality Assurance Techniques, Sanjivani College of Pharmaceutical Education and Research, Kopargaon- 423603, Maharashtra, India.

3. Snehal S. Jagtap
Department of Quality Assurance Techniques, Sanjivani College of Pharmaceutical Education and Research, Kopargaon- 423603, Maharashtra, India.

4. Ankita A. Gorhe
Department of Quality Assurance Techniques, Sanjivani College of Pharmaceutical Education and Research, Kopargaon- 423603, Maharashtra, India.

Abstract:

The number of studies describing nanostructured lipid carrier (NLC) based formulation has been increased solubility, bioavailability, and stability of drug and formulation. Both solid lipids and Liquid lipids are used to compose the core matrix of Nanostructured lipid carriers. Nanostructured lipid carrier shows some advantages over traditional drug delivery systems, including increase the solubility and ability to enhance storage stability, improved permeability and bioavailability, reduced adverse effect, prolonged half-life, and tissue-targeted delivery.[61] NLCs have attracted increasing attention in recent years, finally, the Application of NLC and the approach of formulating NLC in a different form are discussed. This article will focus on Nanostructure lipid carriers and the development of NLC formulation, their safety, applications, and especially their ability to improve drug delivery. NLC entrapped drugs to facilitate solubility and stability, and because of its crystalline, amorphous nature. It shows to rapidly dissociate after parenteral drug administration and to result in the superior oral bioavailability of poorly water-soluble drugs. The enhancement in solubility, bioavailability, permeability, and stability of some drugs are reviewed.

Keywords: Nanostructured lipid carrier. Solubility, Bioavailability, Permeability, Parenteral

Introduction:

NLC was introduced at the end of the 1990s [69] to overcome the potential limitations of SLN described above the formation of lipid crystals affects drug loading, and the ongoing crystallization process towards a perfect crystal causes drug expulsion. NLC has been proposed as the SLN of a new generation; they comprise particles with a solid lipid matrix with an average diameter in the nanometer range. This carrier system can be used to overcome the observed limitations of conventional SLN, thus increasing the payload and preventing drug expulsion. For the production of NLC, very different lipid molecules are often mixed, i. e., blending solid lipids with liquid lipids. The resulting matrix of lipid particles shows a melting point of depression.
compared to the original solid lipid. Hence, an increase in drug loading capacity can avoid/minimize potential expulsion of the active compounds during storage and can prevent a reduction in the water content of the particle suspension has lower water content. The Nanostructured lipid carrier are the novel drug delivery system offers more drug loading, Alteration of drug release and improved performance in final dosage forms. Which include cosmetics, parenterals, solid, liquid dosage forms. Many hydrophilic and lipophilic drugs are incorporated into NLC, used to improved solubility, bioavailability, permeability of dosage forms.[8]

Salient Features:
Formulation of lipid carrier is a useful solution to enhance solubility, bioavailability, better physical stability and high entrapment of lipophilic and hydrophilic drugs.[65] The NLC improves the solubility of the drug without modifying the structure of a molecule. The GRAS status of lipid is approved and lipids are commercially available so that NLCs is one of the choices for the topically applied drug.[64] The small size of the lipid particles ensures close contact to the stratum corneum thus enhancing drug penetration into the mucosa or skin. Increase of skin hydration and elasticity and These carriers are highly efficient systems due to their solid lipid matrices, which are also generally recognized as safe or have a regulatory accepted status.

Advantages of Nanostructured lipid carrier:

- Regulate and target drug release.
- Enhance the stability of pharmaceuticals.
- Improve drug content.
- Beneficial for carrying lipophilic and hydrophilic drug.
- Avoid organic solvent.
- Simple and economical.
- Cleared GRAS status.

Disadvantages of Nanostructured lipid carrier
- Cause irritation action of some surfactant.
- Cause cytotoxic effects like concentration

Methods of Manufacturing of NLC
Different methods of SLN/NLC formulation are described here-
1. Homogenization techniques
 i. Hot high-pressure homogenization technique
 ii. Cold high-pressure homogenization technique
 iii. Melt emulsification ultrasound (ultrasonication) homogenization technique (High shear homogenization and/or ultrasound technique)
2. Microemulsion technique
3. Emulsification-solvent evaporation technique
4. Solvent displacement or injection technique
5. Emulsification-solvent diffusion technique
6. Phase inversion technique
7. Film ultrasonication dispersion technique
8. Multiple emulsion technique

Formulation application:
NLCs as nano lipid carriers find potential applications in various fields. The applications are divided into two broader aspects covering the therapeutic applications which include enhancement of solubility, bioavailability, improved permeation through the skin as well as mucosa. and the second part describes the applications in other fields including parenterals to reduce irritation and improve the availability of the drug in the systematic circulation. These are discussed below

i. Improved bioavailability:
Enhancement in oral bioavailability can be achieved by means of reducing the hepatic first metabolism. Such a problem with conventional dosage form can be minimized by any suitable novel drug delivery system such as a prodrug concept or by the use of a novel lipid-based systems like lipid nanoparticles, microemulsion, and Self emulsifying microemulsion. Solid lipid nanoparticles, Nanostructured lipid carrier, drug delivery system.[66] Polymeric nanoparticles suffered from some drawbacks like toxicity and unavailability of some good techniques for the production of nanoparticles on a large scale. Compare to polymeric nanoparticles,
SLNs gaining some advantages in terms of less toxicological risk because of natural origin lipids. Despite SLNs being good carriers, less capacity of drug loading and expulsion of the drug during storage may require to think of some good technique to overcome such problems. As an effect, nanostructured lipid carriers (NLCs) have been developed, which to some extent can avoid the aforementioned limitations. NLCs can be defined as the second generation of SLNs having solid lipid and liquid lipid (oil) matrix that creates a less ordered or imperfect structure which helps in improving drug loading and decreases the drug expulsion from the matrix during the storage period and reduces the dose and also Improves bioavailability of a drug. [67,68] prepared Lurasidone hydrochloride loaded NLC by solvent evaporation method and improved bioavailability of LRD in the brain by 2 fold. In another work [5] prepared ezetimibe loaded nanostructured lipid carrier loaded NLC to enhanced bioavailability and pharmacodynamic activity of ezetimibe. [51] prepared Asenapine loaded nanostructured lipid carrier to enhanced brain bioavailability and show better safety and therapeutic profile. Some another example of enhancement of bioavailability by preparing NLCs are listed below:

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Drug</th>
<th>Method</th>
<th>Purpose</th>
<th>Author</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lurasidone Hydrochloride</td>
<td>Solvent evaporation method</td>
<td>Improved bioavailability of LRD in brain by 2 fold Lurasidone hydrochloride</td>
<td>Jazuli et.al.</td>
<td>[46]</td>
</tr>
<tr>
<td>3.</td>
<td>Asenapine</td>
<td>High shear homogenization and sonication method.2</td>
<td>NLC enhanced brain brain bioavailability and better therapeutic and safety profile of ANLC</td>
<td>Sanjay Kumar Singh et.al</td>
<td>[51]</td>
</tr>
<tr>
<td>4.</td>
<td>Simvastatin</td>
<td>Hot melt homogenization</td>
<td>SVNLCs enhanced bioavailability of SV</td>
<td>Gamaleldin I. Harisa</td>
<td>[35]</td>
</tr>
<tr>
<td>5.</td>
<td>Nimodipine</td>
<td>High-pressure homogenization</td>
<td>Improved oral bioavailability of NMP</td>
<td>Teng et al</td>
<td>[14]</td>
</tr>
<tr>
<td>6.</td>
<td>Epigallocatechin-3-gallate</td>
<td>High shear homogenization and ultrasonication technique,</td>
<td>Increase bioavailability oral of polyphenols</td>
<td>A. Granja et al.</td>
<td>[13]</td>
</tr>
<tr>
<td>7.</td>
<td>Thymoquione</td>
<td>High-speed homogenization followed by ultrasonication</td>
<td>Improve its poor oral bioavailability</td>
<td>Elmowafy et al.</td>
<td>[10]</td>
</tr>
<tr>
<td>8.</td>
<td>Exemestane</td>
<td>Ultrasonication technique</td>
<td>EXE-loaded NLCs improved 3.9-fold in bioavailability</td>
<td>A. Singh et al.</td>
<td>[20]</td>
</tr>
<tr>
<td>9.</td>
<td>Rosuvastatin</td>
<td>High shear homogenization</td>
<td>Improve bioavailability with 2 folds</td>
<td>Anand Panchakshari Gadad</td>
<td>[55]</td>
</tr>
<tr>
<td>10.</td>
<td>Apixaben</td>
<td>Ultra-sonication method</td>
<td>Improved oral bioavailability</td>
<td>Mowafaq M. Ghareeb</td>
<td>[28]</td>
</tr>
<tr>
<td>11.</td>
<td>Lacidipine</td>
<td>Solvent injection technique</td>
<td>Improved relative bioavailability(4-fold) of Lacidipine loaded NLCs to Lacidipine</td>
<td>Senthil Kumar M et al.</td>
<td>[19]</td>
</tr>
<tr>
<td>12.</td>
<td>Raloxifene</td>
<td>Solvent diffusion method</td>
<td>improvement in bioavailability of poorly soluble RLX</td>
<td>Nirmal Shah</td>
<td>[16]</td>
</tr>
</tbody>
</table>

Table No.1: NLCs formulation for enhancement of bioavailability
ii. Improved solubility:
Solubility enhancement of poorly water-soluble drugs is one of the key challenges in pharmaceutical research. Various techniques have been reported to increase the dissolution rate of poorly water-soluble drugs, such as cyclodextrin complexation approach, freeze-drying or lyophilization, solid dispersion strategy, liposomal formulations, and solid lipid nanoparticles approach. Kelidari et al. prepared spironolactone loaded NLC formulation and reported as one of the efficient ways to enhance the solubility of the poorly water-soluble drug.[50] Lipid nanoparticle can enhance the dissolution rate by oral bioavailability of water insoluble drug. The increase in the dissolution is mainly due to a significant reduction in the drug particle size down to the nano range leading to the higher surface area available for dissolution. (Musallam Almousallam) also prepared Dacarbazine loaded NLC to improve drug solubility and prolong drug release [15].

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Drug</th>
<th>Method</th>
<th>Purpose</th>
<th>Author</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spironolactone</td>
<td>Probe ultrasound method</td>
<td>Improved 5.1and 7.2-fold in the release of the drug loaded NLC</td>
<td>Kelidari et al.</td>
<td>[50]</td>
</tr>
<tr>
<td>2.</td>
<td>Dacarbazine</td>
<td>High shear dispersion</td>
<td>improve the drug solubility and prolong drug release</td>
<td>Musallam Almousallam</td>
<td>[15]</td>
</tr>
<tr>
<td>3.</td>
<td>Repaglinide</td>
<td>Emulsification–ultrasonification Technique</td>
<td>NLC shows better solubility and sustained release</td>
<td>Swidan et al.</td>
<td>[54]</td>
</tr>
<tr>
<td>4</td>
<td>Isotretinoin</td>
<td>Hot homogenization technique</td>
<td>Water solubility enhanced by 5.22 folds</td>
<td>Shailesh L. Patwekar</td>
<td>[36]</td>
</tr>
<tr>
<td>5</td>
<td>Valsartan</td>
<td>Melt emulsification technique</td>
<td>Improving solubility and bioavailability of valsartan</td>
<td>Ravish J.Patel</td>
<td>[40]</td>
</tr>
<tr>
<td>6.</td>
<td>Sylimarin</td>
<td>Emulsion evaporation method</td>
<td>Enhancing the solubility and intestinal permeability of lipophilic SLM.</td>
<td>Vieri Piazzini et.al.</td>
<td>[43]</td>
</tr>
</tbody>
</table>

Table No.2: NLCs formulation for enhancement of Solubility

iii. Improved stability:
Nanostructured lipid carriers were developed as an alternative carrier system to emulsions, liposomes, and polymeric nanoparticles. NLC help to improve the stability of various cosmetic, Vitamins and other drugs nanoparticles.[62] The stabilities (chemical, photo, and storage) of drug nanoparticles like Vitamin D, Candesartan, Spironolactone, Mometasone Furoate, Efavirenz was improved when these drugs are converted into second-generation NLC (Nanostructured lipid carriers). lipid nanoparticles have a beneficial role in the improvement of stability of drug-loaded nanoparticles. (Thakkar et al.) Prepared Candesartan cilexetil loaded NLC by Melt emulsification and ultrasonication method and improved stability of the drug [34] In another work (Norhayati Mohamed Noor) Prepared Dutasteroid NLC and improved stability of the drug [45]. (Kaur et al.) Prepared Mometasone furoate loaded NLC and improved stability of NLC form [58]. Some other examples are listed below:
<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Drug</th>
<th>Method</th>
<th>Purpose</th>
<th>Author</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Candesartan cilexetil</td>
<td>Melt emulsification ultrasonication method</td>
<td>Improved stability of formulation</td>
<td>Thakkar et al</td>
<td>[34]</td>
</tr>
<tr>
<td>2</td>
<td>Dutasteride</td>
<td>Melt-dispersion ultrasonication method</td>
<td>Improved stability of DST-NLCs</td>
<td>Norhayati Mohamed Noor1</td>
<td>[45]</td>
</tr>
<tr>
<td>3</td>
<td>Mometasone Furoate</td>
<td>Microemulsion technique</td>
<td>Prepared formulation shows more stability in NLC form</td>
<td>Kaur et al.</td>
<td>[58]</td>
</tr>
<tr>
<td>4</td>
<td>Efavirenz</td>
<td>Melt emulsification ultrasonication technique</td>
<td>High encapsulation efficiency and long term stability.</td>
<td>V. Pokharkar et al.</td>
<td>[53]</td>
</tr>
<tr>
<td>5</td>
<td>Retinyl palmitate</td>
<td>Ultrasonication method</td>
<td>NLC provide better stability than Microemulsion</td>
<td>Pamudji et al.</td>
<td>[60]</td>
</tr>
<tr>
<td>6</td>
<td>Isotretinoin</td>
<td>Hot homogenization technique method</td>
<td>Improve spreadability and stability of water insoluble drug.</td>
<td>Shailesh L. Patwekar</td>
<td>[34]</td>
</tr>
<tr>
<td>7</td>
<td>Podophyllotoxin</td>
<td>Emulsion-evaporation and low temperature-solification methods</td>
<td>Prepared NLC formulation stable at 4°C for more than 6 months.</td>
<td>GAO et al</td>
<td>[6]</td>
</tr>
<tr>
<td>8</td>
<td>Loratadine</td>
<td>High pressure homogenization method</td>
<td>Prepared physically stable formulation</td>
<td>Uner et al</td>
<td>[18]</td>
</tr>
<tr>
<td>9</td>
<td>Mefenamic acid</td>
<td>Emulsion and evaporation method</td>
<td>NLC matrix confers better storage stability and higher suitability for the controlled release.</td>
<td>S. Khurana et al.</td>
<td>[17]</td>
</tr>
<tr>
<td>10</td>
<td>Hirsutenone</td>
<td>High pressure homogenization (HPH) method</td>
<td>The NLC formulation of HST show greatest stabilization of HST</td>
<td>S. G. Lee et al.</td>
<td>[25]</td>
</tr>
<tr>
<td>11</td>
<td>Green Robusta Coffee Beans Extracts</td>
<td>High shear homogenization and ultrasonication technique</td>
<td>NLC improve the stability of the extract and increase skin</td>
<td>Nichcha Nitthikan et.al.</td>
<td>[26]</td>
</tr>
<tr>
<td>12</td>
<td>Cholecalciferol</td>
<td>Emulsion evaporation method</td>
<td>NLC loaded emulsion improves stability of Vitamin</td>
<td>Tae-Rang Seo</td>
<td>[41]</td>
</tr>
<tr>
<td>13</td>
<td>Furosemide</td>
<td>Solvent diffusion method</td>
<td>Furosemide loaded NLC are stable</td>
<td>Anurughma and Neema</td>
<td>[42]</td>
</tr>
</tbody>
</table>

Table No.3: NLCs formulation for enhancement of stability

vi. Parenteral:

Solid lipid nanoparticles have been intensively studied as drug delivery systems for several routes of administration such as peroral, parenteral, dermal, and topical delivery. Parenteral administration of lipidic
material came to success when submicron emulsion based products, such as Diazemuls (Diazepam, Actavis, Zug, Switzerland) and Diprivan (Propofol, AstraZeneca, London, UK), were commercialized in the market of the pharmaceutical industry. Liposomes represent the first generation of the novel lipidic carriers, which revolutionized the scenario in parenteral drug delivery. The successful commercialization of various injectable liposomal products such as AmBisome® (Amphotericin B, Gilead Sciences, Foster City, US), Doxil® (Doxorubicin, Centocorortho biotech, Philadelphia, US) and DaunoXome® (Daunorubicin, Gilead Sciences, Foster city US) [70] indicates the potential advantages of liposomes as novel lipid carriers. The potentials of nanoparticles-based lipidic carriers such as SLN and NLC have thus been explored in the parenteral drug delivery. The administration of SLN or NLC via the parenteral route improved bioavailability, targeting and enhanced cytotoxicity against multidrug-resistant cancer cells have been observed. Liu and coworkers developed docetaxel loaded NLC (DTX-NLC) to reduce toxicity and improve therapeutic efficacy for parenteral delivery. The nanostructured lipid carriers possess the advantages of reducing the high dose-dependent toxicity of anticancer drugs and continuing research will facilitate the clinical application of the current study. In another study, Jia and coworkers developed silybin loaded NLC to see the effect of biodistribution and pharmacokinetics after parenteral administration. Silybin loaded NLC showed higher AUC values and circulated in the bloodstream for a longer time compared with silybin solution. The tissue distribution demonstrated high uptake of silybin-NLC in RES organs particularly in the liver [70]

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Drug</th>
<th>Method</th>
<th>Purpose</th>
<th>Author</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Trans retinoic acid</td>
<td>novo emulsification method</td>
<td>Prepared NLC loaded intravenously to improve drug loading</td>
<td>Chinsriwongkul et al.</td>
<td>[8]</td>
</tr>
<tr>
<td>3.</td>
<td>β–Artemether</td>
<td>Microemulsion technique</td>
<td>Intravenous b-arterether formulation b-arterether formulation</td>
<td>Patil et al.</td>
<td>[51]</td>
</tr>
</tbody>
</table>

Table No.4: NLCs formulation for parentenal application.

v. Improved permeation:

Poorly water-soluble drug candidates are becoming more prevalent. It has been estimated that approximately 60–70% of the drug molecules are insufficiently soluble in aqueous media and have very low permeability to allow for the inadequate and reproducible absorption from the gastrointestinal tract. Incorporation of the active poorly water-soluble component into inert lipid vehicles such as oils, surfactant dispersions, solid dispersions, solid lipid nanoparticles(SLN) emulsions, microemulsions, nanoemulsions, micro/nano emulsifying formulations, and nanostructured lipid carrier(NLC), and improved the permeability of the drug through the mucosa and skin. Porkorn kraisit et.al prepared a nanostructured lipid carrier by using a hot homogenization method to improved permeability of Triamcinolone acetamide. In another work Jong-Suep Baek et.al prepared Tadafil loaded NLC to improved skin permeability of tadalafl. Brijesh Shah and dignesh hunt) prepared venlafaxine loaded NLC to enhance nasal permeation. Some other examples are listed below:
<table>
<thead>
<tr>
<th>Sr.N o.</th>
<th>Drug</th>
<th>Method</th>
<th>Purpose</th>
<th>Author</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Triamcinolone Acetonide</td>
<td>hot homogenization method</td>
<td>TA-loaded NLC formulations had a higher permeation</td>
<td>Pakorn Kraisit , Narong Sarisuta</td>
<td>[47]</td>
</tr>
<tr>
<td>3.</td>
<td>Venlafaxine</td>
<td>high shear homogenization method</td>
<td>Enhanced nasal permeation</td>
<td>Brijesh Shah, Dignesh Khunt</td>
<td>[57]</td>
</tr>
<tr>
<td>4.</td>
<td>Lidocain</td>
<td>solvent diffusion method</td>
<td>Improved drug diffusion and permeation</td>
<td>Zhao et al.</td>
<td>[12]</td>
</tr>
<tr>
<td>5.</td>
<td>Silymarin</td>
<td>solvent diffusion followed by ultrasonication method</td>
<td>Improved permeation of syllimarine via topical application.</td>
<td>Babar Iqbal et.al.</td>
<td>[29]</td>
</tr>
<tr>
<td>6.</td>
<td>All-trans-Retinoic Acids</td>
<td>de-novo emulsification method</td>
<td>Increased the skin permeability</td>
<td>Ponwanit Charoenputtakun</td>
<td>[9]</td>
</tr>
<tr>
<td>7.</td>
<td>Variconazole</td>
<td>high-pressure homogenization</td>
<td>higher skin permeation and retention</td>
<td>Seh Hyon Song et.al.</td>
<td>[44]</td>
</tr>
<tr>
<td>8.</td>
<td>Betamethasone dipropionate</td>
<td>high shear homogenization & sonication</td>
<td>increase the penetration of drug to deeper skin layers</td>
<td>Pierre A. Hanna</td>
<td>[21]</td>
</tr>
<tr>
<td>9.</td>
<td>Nepafenac</td>
<td>Melt-emulsification and ultra-sonication techniques.</td>
<td>enhanced penetration of nepafenac into HCECs.</td>
<td>Shihui Yu et.al.</td>
<td>[48]</td>
</tr>
<tr>
<td>10.</td>
<td>Deacetylated</td>
<td>Melt emulsification method</td>
<td>NLC Enhanced corneal penetration in ocular drug delivery system</td>
<td>Tian et al.</td>
<td>[59]</td>
</tr>
<tr>
<td>11.</td>
<td>Saquinavir</td>
<td>High pressure homogenization technique</td>
<td>NLCs enhanced 640 SQV permeability up to 3.5-fold.</td>
<td>A. Beloqui et al.</td>
<td>[56]</td>
</tr>
<tr>
<td>12.</td>
<td>Zingiber zerumbet</td>
<td>Ultrasonication technique</td>
<td>enhance the penetration to the deeper layer of skin</td>
<td>N. A. Rosli</td>
<td>[39]</td>
</tr>
</tbody>
</table>

Table No.5: NLCs formulation for enhancement of permeation of drug.

Conclusion:

Lipid formulations are promising approach for various categories of drug molecules having challenging drug properties. NLCs formulation has shown great potential to be given by the oral route, as it improves the oral bioavailability by bypassing the first-pass effect and also overcomes the disadvantage of SLN formulation. The NLCs formulation of various lipophilic, as well as hydrophilic drugs, are mentioned above. NLCs are biocompatible, biodegradable, non-irritating, non-sensitizing. Although, few works have been done on the
solubility, bioavailability, stability and permeability enhancement of drugs. Among the various lipid formulations, the Nanostructured lipid carrier offers additional advantages in the enhancement of solubility, bioavailability, permeability and stability ease of manufacture and scale-up. The Nanostructured lipid carrier is designed to overcome issues like poor solubility, bioavailability, stability, and permeability of hydrophilic as well as Lipophilic drug.

References:

1. Kraisit P. Development of Triamcinolone Acetonide-Loaded Nanostructured Lipid Carriers (NLCs) for Buccal Drug Delivery Using the Box-Behnken Design. 2018;68.

35. Harisa GI, Alomrani AH, Badran MM. Simvastatin-loaded nanostructured lipid carriers attenuate the atherogenic risk of erythrocytes in hyperlipidemic rats. PHASCL2016.09.004

47. Kraisit P. Development of Triamcinolone Acetonide-Loaded Nanostructured Lipid Carriers (NLCs) for Buccal Drug Delivery Using the Box-Behnken Design. 2018:68.

53. Samet Ozdemir1, Burak C,elik2 and Melike U ner3, Properties and therapeutic potential of solid lipid nanoparticles and nanostructured lipid carriers as promising colloidal drug delivery systems,2019,1-49

54. Makoni PA, Kasongo KW, Walker RB. Short term stability testing of efavirenz-loaded solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) dispersions. Pharmaceutics. 2019;11(8).

59. BAOCHENG TIAN, QIUHUA LUO, SHUANGSHUANG SONG, DANDAN LIU, HAO PAN, WENJI ZHANG, LING HE, et.al Novel Surface-Modified Nanostructured Lipid Carriers with Partially Deacetylated Water-Soluble Chitosan for Efficient Ocular Delivery.2011,1-10

60. JESSIE SOFIA PAMUDJI, RACHMAT MAULUDIN, NASYA INDIRIANI development of nanostructured lipid carrier formulation containing of retinyl palmitate original, International Journal of Pharmacy.
61. Chia-Lang Fanga, Saleh A. Al-Suwayehb, and Jia-You Fang*,c, Nanostructured Lipid Carriers (NLCs) for Drug Delivery and Targeting, Recent Patents on Nanotechnology, 2013, 7, 41-55

63. Hina Shrestha, Rajni Bala, and sandeep Arora, Lipid-Based Drug Delivery Systems.,2014.1`-11.sss

