ON RADIO HERONIAN DD-DISTANCE MEAN LABELING OF SOME BASIC GRAPHS

¹K. JOHN BOSCO, ² DINESH M

¹Assistant Professor, ² Research Scholar

Department of Mathematics

St. Jude's college, Thoothoor,

Tamilnadu-629176

Abstract

A Radio Heronian Mean Dd-distance Labeling of a connected graph G is an injective map f from the vertex set V(G) to the N such that for two distinct vertices u and v of G, $D^{\mathrm{Dd}}(u,v) + \left\lceil \frac{f(u) + \sqrt{f(u)f(v)} + f(v)}{3} \right\rceil \geq 0$

 $1 + diam^{\mathrm{Dd}}(G)$ where $D^{\mathrm{Dd}}(u,v)$ denotes the Dd-distance between u and v and $diam^{\mathrm{Dd}}(G)$ denotes the Dd-diameter of G. The radio heronian Dd-distance number of f, $rhmn^{\mathrm{Dd}}(f)$ is the maximum label assigned to any vertex of G. The radio heronian Dd-distance number of G, $rhmn^{\mathrm{Dd}}(G)$ is the minimum value of $rhmn^{\mathrm{Dd}}(f)$ taken over all radio heronian Dd-distance labeling f of G.

Keywords: Dd-distance, Radio heronian mean Dd-distance number.

1. Introduction

A graph G = (V, E) we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. Graph labeling was introduced by Alexander Rosa in 1967. Radio mean labeling was introduced by S. Somasundaram and R. Ponraj in 2004. Harmonic mean labeling was introduced by S. Somasundaram and S S Sandhya in 2012.

The concept of D-distance was introduced by D. Reddy Babu et al. The concept of radio D-distance was introduced by T. Nicholas and K. John Bosco in 2017. The concept of radio mean D-distance was introduced by T. Nicholas and K. John Bosco in 2017. The concept of heronian mean labeling was introduced by S S Sandhya in 2017. The Dd-distance was introduced by A. Anto kinsely and P. Siva Ananthi [1]. For a connected graph G, u - v path is defined as $D^{Dd}(u, v) = D(u, v) + \deg(u) + \deg(v)$.

We are introduce the concept of radio heronian Dd-distance mean labeling of some basic graphs. A Radio Heronian Mean Dd-distance Labeling of a connected graph G is an injective map f from the vertex set V(G) to the N such that for two distinct vertices u and v of G, $D^{\mathrm{Dd}}(u,v) + \left\lceil \frac{f(u) + \sqrt{f(u)f(v)} + f(v)}{3} \right\rceil \geq 1 + C$

 $diam^{\mathrm{Dd}}(G)$ where $D^{\mathrm{Dd}}(u,v)$ denotes the Dd-distance between u and v and $diam^{\mathrm{Dd}}(G)$ denotes the Dd-diameter of G. The radio heronian Dd-distance number of f, $rhmn^{\mathrm{Dd}}(f)$ is the maximum label assigned to any vertex of G. The radio heronian Dd-distance number of G, $rhmn^{\mathrm{Dd}}(G)$ is the minimum value of $rhmn^{\mathrm{Dd}}(f)$ taken over all radio heronian Dd-distance labeling f of G.

2. Main Result

Theorem 2.1

The radio heronian mean Dd-distance number of a complete graph K_n , $rhmn^{Dd}(K_n) = n$.

Proof:

Let $V(K_n) = \{v_1, v_2, v_3, \dots, v_n\}$ be the vertex set. Then $D^{Dd}(v_i, v_i), 1 \le i, j \le n, i \ne j$.

It is
$$diam^{Dd}(K_n) = 3(n-1)$$
.

The radio heronian mean Dd-distance condition is
$$D^{\mathrm{Dd}}(u,v) + \left\lceil \frac{f(u) + \sqrt{f(u)f(v)} + f(v)}{3} \right\rceil \ge 1 + diam^{\mathrm{Dd}}(G)$$

Now
$$D^{\mathrm{Dd}}(v_1, v_2) + \left[\frac{f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2)}{3} \right] \ge 1 + diam^{\mathrm{Dd}}(K_n)$$

$$f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2) \ge 1$$
, which implies $f(v_1) = 1$ and $f(v_2) = 2$

So
$$f(v_i) = i, 1 \le i \le n$$
.

Hence $rhmn^{Dd}(K_n) = n$.

Theorem: 2.2

The radio heronian mean D-distance number of a path, $rhmn^{Dd}(P_n) \le \begin{cases} n, & 2 \le n \le 7 \\ 2n - 7, & n > 8 \end{cases}$

Proof:

Let
$$V(P_n) = \{v_1, v_2, v_3, \dots, v_n\}$$
 be the vertex set and $E(P_n) = \{v_i, v_{i+1}, 1 \le i \le n-1\}$ be the edge set.

Then
$$D^{Dd}(v_1, v_n) = D^{Dd}(v_n, v_2) = n + 1, D^{Dd}(v_i, v_{i+1}) = 7, 1 \le i \le n$$

So
$$diam^{\mathrm{Dd}}(P_n) = n + 1$$

Without loss of generality, let
$$f(v_1) < f(v_2) < \cdots < f(v_{n-1})$$
.

We shall check the radio heronian mean Dd-distance condition

$$D^{\mathrm{Dd}}(u,v) + \left\lceil \frac{f(u) + \sqrt{f(u)f(v)} + f(v)}{3} \right\rceil \ge 1 + diam^{\mathrm{Dd}}(G)$$

Now,
$$D^{\text{Dd}}(v_1, v_n) + \left[\frac{f(v_1) + \sqrt{f(v_1)f(v_n)} + f(v_n)}{3} \right] \ge 1 + diam^{\text{Dd}}(P_n)$$

$$f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2) \ge 1$$
, which implies $f(v_n) = n - 7$ and $f(v_1) = n - 6$

$$D^{\mathrm{Dd}}(v_1, v_2) + \left| \frac{f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2)}{3} \right| \ge 1 + diam^{\mathrm{Dd}}(P_n)$$

$$f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2) \ge 2n - 8$$
, which implies $f(v_1) = n - 6$ and $f(v_2) = n - 5$

$$D^{\mathrm{Dd}}(v_2, v_3) + \left[\frac{f(v_2) + \sqrt{f(v_2)f(v_3)} + f(v_3)}{3} \right] \ge 1 + diam^{\mathrm{Dd}}(P_n)$$

$$f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2) \ge 2n - 10$$
, which implies $f(v_2) = n - 5$ and $f(v_3) = n - 4$

Therefore
$$f(v_i) = n + i - 7, 1 \le i \le n$$

Hence
$$rhmn^{Dd}(P_n) \le \begin{cases} n, \ 2 \le n \le 7 \\ 2n - 7, \ n \ge 8 \end{cases}$$

Theorem 2.3

The radio heronian mean Dd-distance number of a star, $rhmn^{Dd}(K_{1,n}) \le {n+1, 2 \le n \le 4 \choose 2n-3, n > 5}$

Proof:

Let
$$V(K_{1,n}) = \{v_0, v_{1,i}, v_{2,i}, \dots, v_n\}$$
 be the vertex set and $E(K_{1,n}) = \{v_0, v_i, 1 \le i \le n-1\}$ be the edge set.

Then
$$D^{Dd}(v_i, v_j) = 4, 1 \le i, j \le n, i \ne j$$

$$D^{Dd}(v_0, v_i) = n + 2, 1 \le i \le n.$$

So
$$diam^{\mathrm{Dd}}(P_n) = n + 2$$

Without loss of generality, let $f(v_1) < f(v_2) < \cdots \ldots < f(v_{n-1})$.

We shall check the radio heronian mean Dd-distance condition

$$D^{\mathrm{Dd}}(u,v) + \left\lceil \frac{f(u) + \sqrt{f(u)f(v)} + f(v)}{3} \right\rceil \ge 1 + diam^{\mathrm{Dd}}(G)$$

Now,
$$D^{\mathrm{Dd}}(v_0, v_1) + \left[\frac{f(v_0) + \sqrt{f(v_0)f(v_1)} + f(v_1)}{3}\right] \ge 1 + diam^{\mathrm{Dd}}(K_{1,n})$$

$$f(v_0) + \sqrt{f(v_0)f(v_1)} + f(v_1) \ge 1$$
, which implies $f(v_0) = n - 3$ and $f(v_1) = n - 2$

$$D^{\mathrm{Dd}}(v_1,v_2) + \left\lceil \frac{f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2)}{3} \right\rceil \geq 1 + diam^{\mathrm{Dd}}(K_{1,n})$$

$$f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2) \ge 2n - 3$$
, which implies $f(v_1) = n - 2$ and $f(v_2) = n - 1$

$$D^{\mathrm{Dd}}(v_2, v_3) + \left[\frac{f(v_2) + \sqrt{f(v_2)f(v_3)} + f(v_3)}{3} \right] \ge 1 + diam^{\mathrm{Dd}}(K_{1,n})$$

$$f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2) \ge 2n - 3$$
, which implies $f(v_2) = n - 1$ and $f(v_3) \ge n - 2$

Therefore
$$f(v_3) = n$$
, $f(v_i) = n + i - 3$, $0 \le i \le n$

Hence
$$rhmn^{Dd}(P_n) \le {n+1, 2 \le n \le 2 \choose 2n-3, n \ge 5}$$

Theorem: 2.4

The radio heronian mean Dd-distance number of a subdivision of a star,

$$rhmn^{Dd}(S(K_{1,n})) \le \begin{cases} 3, n = 1\\ 2n + 1, n > 2 \end{cases}$$

Proof:

Let $V(S(K_{1,n})) = \{v_0, v_1, v_2, v_3, \dots \dots v_n, u_1, u_2, \dots u_n\}$ be the vertex set , where v_0 is the apex vertex.

Let
$$E(S(K_{1,n})) = \{v_0v_i, v_iu_i \ 1 \le i \le n-1\}$$
 be the edge set.

Then
$$D^{Dd}(v_i, u_i) = 4, 1 \le i \le n, D^{Dd}(v_0, u_i) = n + 3, 1 \le i \le n$$

So
$$diam^{\mathrm{Dd}}(P_n) = n + 1$$

Without loss of generality, let $f(v_0) < f(v_1) < f(v_2) < \cdots \ldots < f(v_n)$.

We shall check the radio heronian mean Dd-distance condition

$$D^{\mathrm{Dd}}(u,v) + \left\lceil \frac{f(u) + \sqrt{f(u)f(v)} + f(v)}{3} \right\rceil \ge 1 + diam^{\mathrm{Dd}}(G)$$

Now,
$$D^{\mathrm{Dd}}(v_0, u_1) + \left[\frac{f(v_0) + \sqrt{f(v_1)f(u_1)} + f(u_1)}{3}\right] \ge 1 + diam^{\mathrm{Dd}}(S(K_{1,n}))$$

$$f(v_0) + \sqrt{f(v_0)f(u_1)} + f(u_1) \ge 1$$
, which implies $f(v_0) = 1$ and $f(u_1) = 3$

$$D^{\mathrm{Dd}}(u_1,u_2) + \left\lceil \frac{f(u_1) + \sqrt{f(u_1)f(u_2)} + f(u)}{3} \right\rceil \geq 1 + diam^{\mathrm{Dd}}(S(K_{1,n}))$$

$$f(u_1) + \sqrt{f(u)f(u_2)} + f(u_2) \ge 2n - 5$$
, which implies $f(u_1) = 3$ and $f(u_2) = n + 3$

Therefore $f(u_i) = n + i + 1, 2 \le i \le n$.

$$D^{\mathrm{Dd}}(u_n,v_1) + \left\lceil \frac{f(u_n) + \sqrt{f(u_n)f(v_1)} + f(v_1)}{3} \right\rceil \geq 1 + diam^{\mathrm{Dd}}(S(K_{1,n}))$$

$$f(u_n) + \sqrt{f(u_n)f(v_1)} + f(v_1) \ge 2n - 5$$
, which implies $f(u_n) = 2n + 1$ and $f(v_1) = n + 2$

Therefore $f(v_i) = n + i + 1, 1 \le i \le n$

Hence
$$rhmn^{D}(S(K_{1,n})) \le {3, n = 1 \atop 2n + 1, n \ge 2}$$

Theorem: 2.5

The radio heronian mean Dd-distance number of a fan graph, $rhmn^{Dd}(F_n) \le \{2n, n \ge 2\}$

Proof:

Let $V(F_n) = \{v_0, v_1, v_2, v_3, \dots, v_n\}$ be the vertex set and $E(F_n) = \{v_0, v_i, v_i, v_{i+1}, 1 \le i \le n\}$ be the edge set.

Then
$$D^{Dd}(v_0, v_1) = 2n + 2$$
, $D^{Dd}(v_1, v_2) = n + 5$

So
$$diam^{\mathrm{Dd}}(P_n) = 2n + 2$$

Without loss of generality, let $f(v_0) < f(v_1) < f(v_2) < \cdots < \cdots < f(v_n)$.

We shall check the radio heronian mean Dd-distance condition

$$D^{\mathrm{Dd}}(u,v) + \left\lceil \frac{f(u) + \sqrt{f(u)f(v)} + f(v)}{3} \right\rceil \ge 1 + diam^{\mathrm{Dd}}(G)$$

Now,
$$D^{\text{Dd}}(v_0, v_1) + \left[\frac{f(v_0) + \sqrt{f(v_0)f(v_1)} + f(v_1)}{3} \right] \ge 1 + diam^{\text{Dd}}(F_n)$$

$$f(v_0) + \sqrt{f(v_0)f(v_1)} + f(v_1) \ge 1$$
, which implies $f(v_0) = n$ and $f(v_1) = n + 1$

$$D^{\mathrm{Dd}}(v_1,v_2) + \left\lceil \frac{f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2)}{3} \right\rceil \geq 1 + diam^{\mathrm{Dd}}(F_n)$$

$$f(v_1) + \sqrt{f(v_1)f(v_2)} + f(v_2) \ge 2n + 1$$
, which implies $f(v_1) = n + 1$ and $f(v_2) = n + 2$

$$d^{\mathrm{Dd}}(v_2, v_3) + \left[\frac{f(v_2) + \sqrt{f(v_2)f(v_3)} + f(v_3)}{3} \right] \ge 1 + diam^{\mathrm{Dd}}(F_n)$$

$$f(v_2) + \sqrt{f(v_2)f(v_3)} + f(v_3) \ge 2n + 2$$
, which implies $f(v_2) = n + 2$ and $f(v_3) = n + 4$

Therefore
$$f(v_i) = n + i, 1 \le i \le n$$

Hence
$$rhmn^{Dd}(F_n) \le \{2n, n \ge 2\}$$

Reference

- [1] F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990. [2] G. Chartrand, D. Erwinn, F. Harary, and P. Zhang, "Radio labeling of graphs," Bulletin of the Institute of Combinatorics and Its Applications, vol. 33, pp. 77–85, 2001.
- [3] G. Chartrand, D. Erwin, and P. Zhang, Graph labeling problem suggested by FM channel restrictions, Bull. Inst. Combin.Appl., 43, 43-57(2005).
- [4] C. Fernandaz, A. Flores, M. Tomova, and C. Wyels, The Radio Number of Gear Graphs, arXiv:0809. 2623, September 15, (2008).
- [5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 19 (2012) #Ds6.
- [6] W.K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980), pp. 1497–1514.
- [7] F.Harary, Graph Theory, Addisionwesley, New Delhi (1969).
- [8] R. Khennoufa and O. Togni, The Radio Antipodal and Radio Numbers of the Hypercube, accepted in 2008 publication in ArsCombinatoria.
- [9] D. Liu, Radio number for trees, Discrete Math. 308 (7) (2008) 1153-1164.
- [10] D. Liu, X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math. 19 (3) (2005) 610-621.
- [11] P. Murtinez, J. OrtiZ, M. Tomova, and C. Wyles, Radio Numbers For Generalized Prism Graphs, Kodai Math. J., 22,131-139(1999).
- [12] T.Nicholas and K.JohnBosco, Radio D-distance number of some graphs communicated.
- [13] T.Nicholas and K.JohnBosco, Radio mean D-distance number of some graphs submitted to IJRESM,2017.
- [14] K. John Bosco and Dinesh M, Radio Heronian D-distance mean labeling of some cycle related graphs communicated.
- [15] R.Ponraj, S.Sathish Narayanan and R.Kala, Radio mean labeling of graphs, AKCE International Journal of Graphs and Combinatorics 12 (2015) 224–228.
- [16] R.Ponraj, S.Sathish Narayanan and R.Kala, On Radio Mean Number of Some Graphs, International J.Math. Combin. Vol.3(2014), 41-48.
- [17] R.Ponraj, S.Sathish Narayanan and R.Kala, Radio Mean Number Of Some Wheel Related Graphs, Jordan Journal of Mathematics and Statistics (JJMS) 7(4), 2014, pp.273 286.
- [18] M. T. Rahim, I. Tomescu, OnMulti-level distance labelings of Helm Graphs, accepted for publication in ArsCombinatoria.
- [19] Reddy Babu, D., Varma, P.L.N., D-distance in graphs, Golden Research Thoughts, 2(2013),53-58.
- [20] S S Sandhya and E. Ebin Raja Merly, Heronian mean labeling of graphs, International Mathematics Forum, Vol.12,2017.
- [21] S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy of Science Letters, 26 (2003), 210-213.
- [22] S. Somasundaram, R. Ponraj and S S Sandhya, Harmonic Mean labeling of graphs, JCMCC 2017.
- [23] V. Viola and T. Nicholas, Radio Mean Dd-distance number of Some Graphs, IJAER volume 14,2019.