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Abstract 

            When some items are put to test their lives on a life testing system or equipment, we see that after 

sometimes due to some abrupt change like shut down of the system, there is a break in sequence in 

recording their lives. This abrupt change can cause in dividing the sequence into two parts. For example 

If n items are put to test their lives then their lives will be 𝑥1, 𝑥2, … . . , 𝑥𝑛. If  there is one break in sequence, 

then sequence is divided into two parts. Suppose the change occurs at point mth, the sequence will be 

𝑥1, 𝑥2, … . . , 𝑥𝑚.  and  𝑥𝑚, 𝑥2, … . . , 𝑥𝑛+1. Now the problem is how to detect and estimate the break point. 

In this paper, we have applied the Bayesian estimation method and test our detection by preliminary test 

estimation technique. The numerical comparison is also done by using R software 

Keywords. Change-point analysis, abrupt change, CUSUM control Chart, Bayesian Estimation, 

Preliminary test estimator, LLF. 

1. Introduction. 

       Change-point analysis has proven to be an efficient tool in understanding the essential information 

contained in meteorological data, such as rainfall, ozone level, and carbon dioxide concentration.  

         Physical systems manufacturing the items are often subject to random fluctuations which results in 

discontinuity at any point of time in any sequence or model. Such point on which discontinuity occurs is 

known as change point. The problem is of detecting change in sequences of life times and has inference 

on it. In such models, the main parameter of interest is the change point, which indicates when or where 

the change occurred. There are two fundamental problems of interest related to this parameter, viz., 

detection of a change and estimation. In general, an investigator first performs a test to detect a change 

and, if it is indicated, then the change point is estimated under a specified loss function. 

         In statistical quality control such studies are very  much useful for the shifting in process mean for 

example cumulating sum(CUSUM) control chart are used in production process to detect in shift in target 

value, when small shift or change (<1.5𝜎) of interest occur, the cusum chart and the exponentially  

weighted chart are used. Montegomery (2001) and Wu et. al. (2004), discussed the procedure of CUSUM 

control in shifting in target value. Lim et. al. (2002), Wu and Tiau (2005) and Zhang and Wu (2005) 

considered the applications of CUSUM control charts. 

        The term structural change denotes a change in one or more of the parameters of a model. It is also 

employed to refer to a model, which has been mis-specified. Terms or phrases such as shift point, change 

point, transition function, switching regressions and two-phase regressions, although not identical in 

meaning to a structural change, are involved in some way with structural change. Change point models 

are used to describe discontinuous behavior in stochastic phenomena. The change point indexes where or 

when the shift occurs. It is a discrete random variable. The prior probability mass function of the shift 

point gives the nature of the change to be expected. 

      The Bayesian inferential applications can play an important role in study  of such problem of change 

points. Many of statisticians like Chin and Broemeling (1980), Calabria and Pulcini (1994), Zacks (1983), 
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Pandya and Jani (2006), Shah and Patel (2007,2009), Chib (1998), Altissemo and Corradi (2003) and 

Fiteni (2004) studied the change point Models in Bayesian framework. Broemeling (1985) and 

Broemeling and Tsurume (1987)are the useful references on structural change . 

            When a point estimate is required and alternative hypotheses lead to different estimates, an optimal 

Bayes estimate is obtained by minimizing posterior expected loss averaged over the hypotheses, with 

posterior probabilities used as weights. In order to reflect uncertainty regarding the validity of different 

hypotheses, Zellner and Vandaele (1975) suggested preliminary test estimation of the parameter under a 

specified loss function in Bayesian framework. Such a Bayesian preliminary test estimate (BPTE) 

incorporates prior information and is optimal relative to a given loss function. However, so far, no attempt 

has been made to study BPTE of the change point. Some of the literature includes Dey et al. (1998), Martin 

et al. (1988), Dey and Micheas (2000), Rios ,Insua and Ruggeri (2000), Micheas and Dey (2004), and the 

references therein. 

        In this paper we have discussed Bayesian Preliminary Test Estimation (BPTE) of a change point in 

Weibull sequence under linex loss function and examine its robustness through numerical simulation. 

2. Statistical Model and Loss Function 

      Weibull distribution has extensively been used in life testing and reliability problems. The Weibull 

distribution is a continuous probability distribution. It is named after Waloddi Weibull who described it 

in detail in 1951, although it was first identified by Fréchet (1927) and first applied by Rosin & Rammler 

(1933) to describe the size distribution of particles in connection with his studies on strength of material. 

Weibull (1939,1951) showed that the distribution is also useful in describing the wear out of fatigue 

failures. Estimation and properties of the Weibull distribution is studied by many author’s like Kao (1959), 

Johnson;Kotz; Balakrishnan; (1994), Lieblein, and Zelen, (1956),Mann(1968). 

         The probability density function of Weibull distribution is given as 

𝑓(𝑥) =
𝜃

𝜎
𝑥(𝜃−1) exp (−

𝑥𝜃

𝜎
)   ;              𝑥, 𝜃, 𝜎 > 0    ,                                                                             (2.1) 

Where ′𝜎′  is the scale and ‘𝜃’ is shape parameters. 

      The most widely used loss function in estimation problems is quadratic loss function given as (𝜎̂, 𝜎) =

𝑘(𝜎̂ − 𝜎)2 , where 𝜃  is the estimate of  𝜃,  the loss function is called quadratic weighed loss function. If   

k=1, we have  

𝐿(𝜎̂, 𝜎) = (𝜎̂ − 𝜎)2   ,                                                                                                                          (2.2) 

known as squared error loss function (SELF).  

3. The Detection of Change Point. 

     Suppose 𝑥1, 𝑥2, … , 𝑥𝑚, 𝑥(𝑚+1), … , 𝑥𝑛 is a sequence of independent random variables such that 

𝑥𝑖 = {
𝑓1(𝑥𝑖 ; 𝜎1, 𝜃1); 𝑖 = 1,2, …………… ,𝑚

𝑓1(𝑥𝑖 ; 𝜎2, 𝜃2), 𝑖 = (𝑚 + 1), ……… , 𝑛
                                                                                         (3.1)  

Here  x1, x2,....,xn (n ≥ 3)  be a sequence of observed life times. First let observations x1, x2,...............,xn have 

come from Weibull distribution with probability density  function (pdf)  as 

𝑓(𝑥) =
𝜃

𝜎
𝑥(𝜃−1) exp (−

𝑥𝜃

𝜎
)   ;        𝑥, 𝜃, 𝜎 > 0    ,                                                                                 (3.2) 

 Let ‘m’ is change point in the observation, which breaks the distribution in two sequences as (x1, 

x2,....,xm ) & (x(m+1), ....,xn). 

The probability density functions of the above sequences are 

f1(x) =
𝜃1

𝜎1
𝑥𝑖
𝜃1−1 exp (−

𝑥𝑖
𝜃1

𝜎1 
)   ;          𝑥, 𝜎1 , 𝜃1 > 0    ,                                                                       (3.3) 
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http://en.wikipedia.org/wiki/Weibull_distribution#CITEREFFr.C3.A9chet1927
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f2(x) =
𝜃2

𝜎2
𝑥𝑖
𝜃2−1 exp (−

𝑥𝑖
𝜃2

𝜎2
)   ;           𝑥, 𝜎2 , 𝜃2 > 0    ,                                                                       (3.4)                  

       This can be written with Weibull sequence before and after change point ‘m’ 

𝑥𝑖 =

{
 
 

 
 𝜃1
𝜎1
𝑥𝑖
𝜃1−1 exp (−

𝑥𝑖
𝜃1

𝜎1 
)                    𝑖 = 1,………… . ,𝑚

𝜃2

𝜎2
𝑥𝑖
𝜃2−1 exp (−

𝑥𝑖
𝜃2

𝜎2
)             𝑖 = (𝑚 + 1), ……… . , 𝑛

                                                               (3.5) 

4. Likelihood, Prior and Posterior. 

    The joint likelihood function of the Weibull sequences of before and after change point ‘m’ is given by  

𝑙(𝜎1, 𝜎2, 𝑝|𝑥) = ∏ 𝑓1(𝑥𝑖|𝜎1)∏ 𝑓2(𝑥𝑖|𝜎2)
𝑛
(𝑚+1)

𝑚
𝑖=1 ,                                                                                (4.1)  

𝑙(𝜎1, 𝜎2, 𝑝|𝑥) = ∏
𝜃1

𝜎1
𝑥𝑖
𝜃1−1 exp(−

𝑥𝑖
𝜃1

𝜎1 
)∏

𝜃2

𝜎2
𝑥𝑖
𝜃2−1 exp (−

𝑥𝑖
𝜃2

𝜎2
)𝑛

(𝑚+1)
𝑚
𝑖=1                                             (4.2)  

The joint prior for ‘m’ is given by 

𝑔(𝑚|𝑥) = ∬ 𝑔(𝜎1, 𝜎2, 𝑚|𝑥)𝑑𝜎1𝑑𝜎2
 

𝜎1,𝜎2
;                                                                                              (4.3) 

𝑠. 𝑡.    𝜎1 ∈ Θ1  ;    𝜎2  ∈  Θ2   𝑎𝑛𝑑     𝑚 = 1,2,… . (𝑛 − 1). 

With a change point at ‘m’, where m is unknown, using the equations (4.2) and (4.3), the joint posterior 

distribution is given by 

ℎ(𝜎1, 𝜎2, 𝑝|𝑥) = 𝑙(𝜎1, 𝜎2, 𝑚). 𝑔(𝜎1, 𝜎2, 𝑚); 𝜎1 ∈ 𝜃1, 𝜎2 ∈ 𝜃2,                                                               (4.4) 

such that  m=1,2,…(n-1) 

Detection of Change Point. 

Let the hypothesis for detecting change point ‘m’ is  

𝐻𝑜:𝑚 = 𝑛      𝑉𝑠       𝐻1: 𝑚 ≠ 𝑛 

Let us assume that the prior probability mass function of the change point ‘m’ is 

𝑔(𝑚) = {
𝑝,    𝑖𝑓 𝑚 = 𝑛

(1−𝑝)

𝑛−1
     𝑖𝑓 𝑚 ≠ 𝑛

       ;    𝑜 < 𝑝 < 1, 𝑝 is known  probability;                                             (4.5) 

        Let us assume that the scalar parameters 𝜎1and 𝜎2 and the change point ‘m’ are independent of each 

other. 

 Let us take prior of scalar parameter 𝜎1  as natural conjugate gamma prior given by, 

g(𝜎1)  =  {
b1
a1 

Γa1
𝜎1
−(a1+1)e−

b1
𝜎1
⁄  ;        𝜎1 > 0, (a1, b1) > 0

0                         ,          Otherwise
,                                                                  (4.6) 

   The prior of scalar parameter 𝜎2  as natural conjugate gamma prior given by 

g(𝜎2)  =  {
b2
a2 

Γa2
𝜎2
−(a2+1)e−

b2
𝜎2
⁄ ,     where   𝜎2 > 0 and (a2, b2) > 0

0                                                     ,                        Otherwise
,                                                 (4.7) 

    Again with independent  𝜎1, 𝜎2  and ‘m’, we have under null hypothesis𝐻0, the joint prior as 

𝑔(𝜎1, 𝜎2, 𝑚) = 𝑔(𝜎1). 𝑔(𝑚)   ,                                                                                                            (4.8) 
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However under alternative hypothesis 𝐻1, the joint prior is given by 

𝑔(𝜎1, 𝜎2, 𝑚) = 𝑔(𝜎1) 𝑔(𝜎2)𝑔(𝑚),                                                                                                       (4.9)  

Now the joint likelihood is given by  

𝑙(𝜎1, 𝜎2, 𝑚|𝑥)  = {
∏ 𝑓1(𝑥𝑖 ; 𝜎1)  ;                                        𝑖𝑓 𝑚 = 𝑛𝑛
𝑖=1

∏ 𝑓1(𝑥𝑖 ; 𝜎1)∏ 𝑓2(𝑥𝑖 ; 𝜎2);
𝑛
𝑖=𝑚+1         𝑖𝑓 𝑚 ≠ 𝑛𝑚

𝑖=1
;                                                (4.10)      

This is derived as 

𝑙(𝜎1, 𝜎2, 𝑚|𝑥) = {
∏  

𝜃1

𝜎1
𝑥𝑖 

(𝜃1−1) exp (−
∑𝑥𝑖 

𝜃1

𝜎1
)𝑛

𝑖=1  ;                                                          

∏
𝜃1

𝜎1
𝑥𝑖 

(𝜃1−1) exp (−
∑𝑥𝑖 

𝜃1

𝜎2
)∏  

𝜃2

𝜎2
𝑥𝑖 

(𝜃2−1) exp (−
∑𝑥𝑖 

𝜃2

𝜎2
)𝑛

𝑖=𝑚+1
𝑛
𝑖=1

                                   (4.11) 

Combining the equations(4.5) ,(4.8),(4.9) and (4.11),we get the joint posterior of 𝜎1, 𝜎2    𝑎𝑛𝑑      𝑚     as 

ℎ(𝜎1, 𝜎2, 𝑚|𝑥) = {
𝑝 𝑔(𝜎1)∏ 𝑓1(𝑥𝑖 ; 𝜎1) 𝑑𝜎1 ;                                                           𝑖𝑓 𝑚 = 𝑛𝑛

𝑖=1
(1−𝑝)

(𝑛−1)
∏ 𝑓1(𝑥𝑖 ; 𝜎1)∏ 𝑓2(𝑥𝑖 ; 𝜎2) 𝑔(𝜎1, 𝜎21)𝑑𝜎1𝑑𝜎2;

𝑛
𝑖=𝑚+1

𝑚
𝑖=1   𝑖𝑓 𝑚 ≠ 𝑛

                           (4.12) 

And the marginal posterior of ‘m’ is given by 

ℎ(𝑚|𝑥) = {
𝑃  ∫ 𝑔(𝜎1)∏ 𝑓1(𝑥𝑖 ; 𝜎1)𝑑𝜎1 ;                                                   𝑖𝑓 𝑚 = 𝑛𝑛

𝑖=1
(1−𝑃)

(𝑛−1)
   ∬ ∏ 𝑓1(𝑥𝑖 ; 𝜎1)∏ 𝑓2(𝑥𝑖 ; 𝜎2)𝑑𝜎1𝑑𝜎2;

𝑛
𝑖=𝑚+1      𝑚

𝑖=1        𝑖𝑓 𝑚 ≠ 𝑛
;                                      (4.13) 

with constant of proportionality 

[𝐷(𝑥)]−1 = 𝑃∫ 𝑔(𝜎1)∏𝑓1(𝑥𝑖 ; 𝜎1)𝑑𝜎1 +
(1 − 𝑃)

(𝑛 − 1)
∑ ∬ ∏𝑓1(𝑥𝑖 ; 𝜎1) ∏ 𝑓2(𝑥𝑖 ; 𝜎2)𝑔(𝜎1𝜎2)𝑑𝜎1𝑑𝜎2

𝑛

𝑖=(𝑚+`1)

𝑚

𝑖=1

𝑛−1

𝑚=1

𝑛

𝑖=1

 

                                                                                                                                                            (4.14) 

Which is derived as 

𝒉(𝒎|𝒙) =

{
  
 

  
 𝐩∫[

𝐛𝟏
𝐚𝟏  

𝚪𝐚𝟏
𝝈𝟏

−(𝐚𝟏+𝟏)𝐞−
𝐛𝟏

𝝈𝟏⁄  
𝜽𝟏
𝝈𝟏
∏𝒙𝒊 

(𝜽𝟏−𝟏) 𝐞𝐱𝐩(−
∑𝒙𝒊 

𝜽𝟏

𝝈𝟏
)

𝒏

𝒊=𝟏

 ]𝒅𝝈𝟏;

𝒅𝝈𝟏

(𝟏 − 𝒑)

(𝒏 − 𝟏)
∬[{∏{ 

𝜽𝟏
𝝈𝟏
𝒙𝒊 

(𝜽𝟏−𝟏)𝐞𝐱𝐩(−
∑𝒙𝒊 

𝜽𝟏

𝝈𝟐
)
𝜽𝟐
𝝈𝟐

∏  𝒙𝒊 
(𝜽𝟐−𝟏) 𝐞𝐱𝐩(−

∑𝒙𝒊 
𝜽𝟐

𝝈𝟐
) ∗

𝐛𝟏
𝐚𝟏  

𝚪𝐚𝟏
𝝈𝟏

−(𝐚𝟏+𝟏)𝐞−
𝐛𝟏

𝝈𝟏⁄ 𝐛𝟐
𝐚𝟐  

𝚪𝐚𝟐
𝝈𝟐

−(𝐚𝟐+𝟏)𝐞−
𝐛𝟐

𝝈𝟐⁄

𝒏

𝒊=(𝒎+𝟏)

𝒎

𝒊=𝟏

}]𝒅𝝈𝟏𝒅𝝈𝟏

 

                                                                                                                                                            (4.13) 

On simplifying we get 

ℎ(𝑚|𝑥) =

{
 
 

 
 

𝑝θ1a1b1
a1∏ 𝑥𝑖 

(𝜃1−1)𝑛
𝑖=1

(b1+∑𝑥𝑖 
𝜃1)

(a1+1)

(1−𝑝)

(𝑛−1)
∗
θ1a1b1

a1∏ 𝑥𝑖 
(𝜃1−1)𝑚

𝑖=1

(b1+∑𝑥𝑖 
𝜃1)

(a1+1)
∗
a2θ2b2

a2∏ 𝑥𝑖 
(𝜃2−1)𝑛

𝑖=(𝑚+1)

(b2+∑𝑥𝑖 
𝜃2)

(a2+1)

   ;                                                  (4.15) 

The posterior in favour of the null hypothesis 𝐻0 is  

𝑂(𝐻0|𝑥) = 𝑝[(𝑚 = 𝑛|𝑥)]/𝑝{𝑚 ≠ 𝑛|𝑥},                                                                                         (4.16) 

=
𝑝∫ 𝑔(𝜎1)∏ 𝑓1(𝑥|𝜎1)𝑑𝜎1

𝑛
𝑖=1

(1 − 𝑝)/(𝑛 − 1)∑ ∬∏ 𝑓1(𝑥|𝜎1)∏ 𝑓2(𝑥|𝜎2)𝑔(𝜎1, 𝜎2)
𝑛
𝑖=(𝑚+1)

𝑚
𝑖=1 𝑑𝜎1𝑑𝜎2

(𝑛−1)
𝑚=1
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= 
𝐩∫

𝐛𝟏
𝐚𝟏
 

𝚪𝐚𝟏
𝝈𝟏
−(𝐚𝟏+𝟏)𝐞

−
𝐛𝟏

𝝈𝟏
⁄ 𝜽𝟏

𝝈𝟏
∏  𝒙𝒊 

(𝜽𝟏−𝟏) 𝐞𝐱𝐩(−
∑𝒙𝒊 

𝜽𝟏

𝝈𝟏
)𝒎

𝒊=𝟏 𝒅𝝈𝟏

(𝟏−𝒑)

(𝒏−𝟏)
∑ ∬ {

𝜽𝟏
𝝈𝟏
∏  𝒙𝒊 

(𝜽𝟏−𝟏) 𝐞𝐱𝐩(−
∑𝒙𝒊 

𝜽𝟏

𝝈𝟐
)∗ 

𝜽𝟐
𝝈𝟐
∏  𝒙𝒊 

(𝜽𝟐−𝟏) 𝐞𝐱𝐩(−
∑𝒙𝒊 

𝜽𝟐

𝝈𝟐
)
𝐛𝟏
𝐚𝟏
 

𝚪𝐚𝟏
𝝈𝟏
−(𝐚𝟏+𝟏)𝐞

−
𝐛𝟏

𝝈𝟏
⁄ 𝐛𝟐

𝐚𝟐
 

𝚪𝐚𝟐
𝝈𝟐

−(𝐚𝟐+𝟏)𝐞
−
𝐛𝟐

𝝈𝟐
⁄𝒏

𝒊=𝒎+𝟏
𝒎
𝒊=𝟏 }𝒅𝝈𝟏𝒅𝝈𝟏

(𝒏−𝟏)
𝒎=𝟏

 

                                                                                                                                                             (4.17)  

= 

𝑝θ1a1b1
a1 ∏ 𝑥𝑖 

(𝜃1−1)𝑛
𝑖=1

(b1+∑𝑥𝑖 
𝜃1)

(a1+1)

(1−𝑝)

(𝑛−1)
∑ {

θ1a1b1
a1 ∏ 𝑥𝑖 

(𝜃1−1)𝑚
𝑖=1

(b1+∑𝑥𝑖 
𝜃1)

(a1+1)
∗
a2θ2b2

a2 ∏ 𝑥𝑖 
(𝜃2−1)𝑛

𝑖=(𝑚+1)

(b2+∑𝑥𝑖 
𝜃2)

(a2+1)
}

(𝑛−1)
𝑚=1

; 

                                                                                                                                                             (4.18) 

𝑂(𝐻0|𝑥) =

𝑝∏ 𝑥𝑖 
(𝜃1−1)𝑛

𝑖=1

(b1+∑𝑥𝑖 
𝜃1)

(a1+1)

(1−𝑝)

(𝑛−1)
∑ {

∏ 𝑥𝑖 
(𝜃1−1)𝑚

𝑖=1

(b1+∑𝑥𝑖 
𝜃1)

(a1+1)
∗
a2θ2b2

a2 ∏ 𝑥𝑖 
(𝜃2−1)𝑛

𝑖=(𝑚+1)

(b2+∑𝑥𝑖 
𝜃2)

(a2+1)
}

(𝑛−1)
𝑚=1

;                                                          (4.19) 

The hypothesis 𝐻0 is not accepted, if the Posterior odds are less than 1. 

5. Bayesian Preliminary Test Estimation (BPTE) of the Change Point 

Suppose 𝑥1, 𝑥2, …… , 𝑥𝑚, 𝑥(𝑚+1),…… , 𝑥𝑛 is a sequence of independent random variables such that 

𝑥𝑖 = {
𝑓1(𝑥𝑖 ; 𝜎1, 𝜃1); 𝑖 = 1,2,……………𝑚

𝑓2(𝑥𝑖 ; 𝜎2, 𝜃2), 𝑖 = (𝑚 + 1),………𝑛
  ;                                                                                         (5.1) 

      The change point ‘m’ is an unknown discrete random parameter. Further suppose that the scalar 

parameters 𝜎1, 𝜎2 and ‘m’ are independent of each other. 

     Let  𝑝0 denote the posterior probability of the hypothesis 𝐻0:𝑚 = 𝑛  of no change so that  (1 − 𝑝0)  is 

the posterior probability of the alternative hypothesis 𝐻1: 𝑚 ≠ 𝑛 of a change. 

The posterior expected loss under the linex loss function 𝐿(𝑚, 𝑚̂) with change point ‘m’ is given by 

𝐸(𝐿(𝑚, 𝑚̂|𝑥) = 𝑃0𝐸(𝐿(𝑚, 𝑚̂|𝐻0𝑥) + (1 − 𝑃0)𝐸(𝐿(𝑚, 𝑚̂|𝐻1𝑥))                                                        (5.2) 

= 𝑃0𝐿(𝑛, 𝑚̂) + (1 − 𝑃0)𝐸(𝐿(𝑚, 𝑚̂|𝐻1𝑥))                                                                                            (5.3) 

Thus the BPTE   𝑚̂ of change point ‘m’ under linex loss function is 

𝐿𝑢(𝑚, 𝑚̂) = 𝑣(exp(𝑢(𝑚̂ − 𝑚) − 𝑢(𝑚̂ − 𝑚) − 1) ;              𝑣 > 0, 𝑢 ≠ 0 

is given by  

𝑚̂𝑢 = −
1

𝑢
log {𝑃0𝑒

−𝑢𝑛 + (1 − 𝑝0)𝐸(𝑒
−𝑢𝑛|𝐻1, 𝑥)}, 

= −
1

𝑢
log {𝑒−𝑢𝑛 +

1

(1+𝐾01)
(𝐸(𝑒−𝑢𝑚|𝐻1, 𝑥) − 𝑒

−𝑢𝑛)} ;                                                                         (5.4) 

Which is equals to  

𝑚̂𝑢 = −
1

𝑢
𝑙𝑜𝑔 [𝐾01𝑒

−𝑢𝑛 +
1

(1+𝐾01)

(1−𝑝)

(𝑛−1)
∗∑ {𝑒−𝑢𝑚𝑒𝑥𝑝((𝜃1 − 1)∑ 𝑙𝑜𝑔𝑥𝑖

𝑚
𝑖=1 ) ∗ 

 
 

(𝑛−1)
𝑚=1   
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∗ 𝑒𝑥𝑝 ((𝜃2 − 1)∑ 𝑙𝑜𝑔𝑥𝑖
𝑛
𝑖=(𝑚+1) ) ∗

𝜃1b1
a1 

(b1+∑ 𝑥𝑖𝜃1
𝑚
𝑖=1 )

a1

𝜃2b2
a2 

(b2+∑ 𝑥𝑖𝜃1
𝑛
𝑖=(𝑚+1) )

a2]                                               (5.5)                                                                                                                                                             

Provided expectation exists. Here 𝐾01 =
𝑝0

(1−𝑝0)
    is the posterior odds ratio (POR) in favour of  𝐻0 . It is 

to note that 𝐾01 close to 1 suggests   that    𝐻0 is more or less as likelihood as   𝐻1 a posteriori while if 

this ratio is large, we regard   𝐻0  as relatively more likely than  𝐻1. 

        For  𝐾01 = 0, that is the posterior odds ratio indicates a change in the sequence. BPTE  𝑚𝑢̂ will 

reduce to the Bayes estimate under linex loss. However, for large values of   𝐾01, 𝑚𝑢̂ would be close to n. 

       As observed by Zeller and Vandale (1975), it may interest to recall that (i) 𝑚̂𝑢  is a continuous function 

of the observations (ii) prior information about m under 𝐻1 can be induced through use of an appropriate 

prior probability mass function and (iii) there is no arbitraries in the choice of the classical significance 

level. 

Numerical Illustration. 
Consider a sequence of 20 independent observations of Weibull distribution with σ =2 and θ =1.5, which 

are generated such that the first ten are from Weibull distribution where mean of first ten observation is 

σ1= 1.731334. The last ten observations are again drawn from Weibull distribution where mean of last ten 

observation is σ2= 1.067129 

1.45 3.03 2.42 2.14 0.46 2.65 3.03 0.89 1.27 1.16 

0.62 1.66 0.83 1.54 1.53 0.62 0.79 1.11 1.67 0.45 

Mean(x) =1.465699, Var(x) =0.6659064,  

Table (1) 

Bayesian Preliminary Test Estimate of m under Linex Loss function 

p    → 

    u 

↓ 

0.00  0.01  0.05  0.25  0.5  0.75  0.95  0.99 

-2 20 20 20 20 20 20 20 20 

20 18 18 18 18 18 17 17 16 

25 14 14 14 14 14 14 14 13 

30 11 11 11 11 11 11 11 11 

35 10 10 10 10 10 10 10 9 

40 9 9 9 9 9 9 9 9 

The following observations are made from Table (1)  

1. For u > 0, BPTE of change point ‘m’ started decreasing and provide an under-estimate of ‘m’ and vice-

versa, which shows that, overestimation, is more serious than underestimation. It seems to be true because, 

in particular, for small values of ‘p’ reflecting less faith in the hypothesis of no change. 

2. For fixed value of ‘p’, The BPTE of change point ‘m’ decreases as u increases from -2 and greater 

values of u=20, 25, 30, 35 and 40. However, for fixed u, as p increases, the estimate BPTE of change point 

‘m’ decreases. The effective range of u is from 25 to 35. We observe here that BPTE of change point ‘m’ 

is near the ‘true’ change point m=12. 

3. For u = −2, from p = 0.00 to p = 0.99, the BPTE of change point ‘m’ become constant, it means that we 

are almost sure of  H0.  
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