ABSOLUTELY ALMOST SUMMABLE DIFFERENCE SEQUENCES OF ORDER r WITH RESPECT TO A MODULUS FUNCTION IN SEMINORMED SPACE

INDU BALA

Department of Mathematics Government College Chhachhrauli-135103

Abstract. The purpose of this paper is to introduce and study a new sequence space that is Δ^r -absolutely almost summable with respect to a modulus function in seminormed complex linear space. Some topological results and certain inclusion relations on this space have been discussed. Furthermore, we construct the sequence space that is Δ^r -absolutely almost summable with respect to composite modulus function in seminormed complex linear space and give some inclusion relations on this space.

AMS Subject Classification: 40F05, 46A45, 40A05, 40C05.

Keywords and Phrases: Difference sequence space, modulus function, topological linear space, absolute almost convergence.

1. Introduction

By w we shall denote the space of all scalar sequences. l_{∞} and c, respectively, denote the Banach spaces of bounded and convergent sequences $x = (x_k)$ with complex terms normed by $||x||_{\infty} = sup_k |x_k|$. We write D for the shift operator; that is $D((x_k)) = (x_{k+1})$. It may be recalled that a Banach limit L (see Banach [1]) is a nonnegative linear functional on l_{∞} such that L is invariant under the shift operator (that is, L(Dx) = L(x) for all $x \in l_{\infty}$) and such that L(e) = 1, where

e = (1, 1, ...). Various types of limits, including Banach limit, are considered in Das [2]. Let B be the set of all Banach limits on l_{∞} . A sequence $x \in l_{\infty}$ is said to be almost convergent to the value l (see Lorentz [7]) if L(x) = I for all $L \in B$. Let \hat{c} denote the space of all almost convergent sequences. For any sequence x, write

 $t_{mn} = t_{mn}(x) = (m+1)^{-1} \sum_{j=0}^{m} x_{j+n}$

Lorentz [7] proved that $x \in \hat{c}$ if and only if $t_{mn}(x)$ tends to a limit as $m \to \infty$ uniformly in n.

We now extend the definition of t_{mn} (x) to m = -1 by taking $t_{-1,n} = t_{-1,n}$ (x) = 0.

We write, for m, $n \ge 0$

 $\phi_{mn} = \phi_{mn}(\mathbf{x}) = t_{mn} - t_{m-1,n}.$

A straightforward calculation shows that

 $\phi_{0n} = x_n;$

$$\phi_{mn} = \frac{1}{m(m+1)} \sum_{j=1}^{m} j(x_{j+n} - x_{j+n-1}) \qquad (m \ge 1).$$

Note that for any sequences x, y and scalar λ , we have

 $\phi_{mn}(\mathbf{x} + \mathbf{y}) = \phi_{mn}(\mathbf{x}) + \phi_{mn}(\mathbf{y}) \text{ and } \phi_{mn}(\lambda \mathbf{x}) = \lambda \phi_{mn}(\mathbf{x}).$

The sequence x is absolutely almost convergent (see Das et al. [3]) if $\sum_{m} |\phi_{mn}|$ converges uniformly in n. We denote the set of absolutely almost convergent sequences by \hat{l} .

The idea of modulus was structured in 1953 by Nakano [11]. Following Ruckle [13] and Maddox [9] we recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that

(i) f(x) = 0 if and only if x = 0,

(ii) $f(x + y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$,

(iii) f is increasing,

(iv) f is continuous from the right at 0.

Because of (ii), $|f(x) - f(y)| \le f(|x - y|)$ so that in view of (iv), f is continuous everywhere on $[0, \infty)$. A modulus may be unbounded (for example, $f(x) = x^p$, $0) or bounded (for example, <math>f(x) = \frac{x}{x+1}$).

It is easy to see that $f_1 + f_2$ is a modulus function when f_1 and f_2 are modulus functions, and that the function f^{ν} (v is a positive integer), the composition of a modulus function f with itself v times, is also a modulus function.

Ruckle [13] used the idea of a modulus function f to construct a class of FK spaces

L(f) = {
$$x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty$$
 }.

The space L(f) is closely related to the space l_1 which is an L(f) space with f(x) = x for all real $x \ge 0$.

The notion of difference sequence spaces was introduced by Kizmaz [6]. It was generalized by Et and Colak [4] as follows:

Let m be a non-negative integer. Then

$$\mathbf{X}(\Delta^m) = \{\mathbf{x} = (x_k) : (\Delta^m x_k) \in \mathbf{X}\}$$

for $X = l_{\infty}$, c, c_0 ; where $\Delta^0 x = (x_k)$ and $\Delta^m x = (\Delta^m x_k) = (\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1})$ for all $k \in \mathbb{N}$. The sequence spaces $X(\Delta^m)$ are BK spaces normed by $||x||_{\Delta} = \sum_{i=1}^m |x_i| + ||\Delta^m x||_{\infty}$,

 $X \in \{ l_{\infty}, c, c_0 \}$. Et and Nuray [5] defined a more general space $\Delta^m(X) = \{ x = (x_k) : (\Delta^m x_k) \in X \}$, where $m \in \mathbb{N}$ and X is any sequence space.

Let q_1 and q_2 be seminorms on a linear space X. Then q_1 is stronger than q_2 if there exists a constant L such that $q_2(x) \le Lq_1(x)$ for all $x \in X$. If each is stronger than the other, q_1 and q_2 are said to be equivalent (Wilansky [14]).

Let X be a seminormed complex linear space with seminorm q, f be a modulus function, $s \ge 0$ be a real number and $p = (p_m)$ be a bounded sequence of strictly positive real numbers. The symbol w(X) denotes the space of all X-valued sequences.

We now introduce the following generalized difference absolutely almost summable X-valued sequence space with respect to a modulus function.

(1)

$$\widehat{l}(\Delta^r, f, p, q, s) = \left\{ x \in w(X) \colon \sum_{m=1}^{\infty} m^{-s} \left[f\left(q(\Delta^r \phi_{mn}(x)) \right) \right]^{p_m} < \infty \text{ uniformly in } n \right\}.$$

where $\Delta^r \phi_{mn}(\mathbf{x}) = \Delta^{r-1} \phi_{mn}(\mathbf{x}) - \Delta^{r-1} \phi_{m+1,n}(\mathbf{x})$.

If we take $X = \mathbb{C}$, q(x) = |x|, f(x) = x and r = s = 0, then the sequence space defined above becomes $\hat{l}(p)$ (see Das et al. [3]).

We denote $\hat{l} (\Delta^r, f, p, q, s)$ by $\hat{l} (\Delta^r, p, q, s)$ when f(x) = x and by $\hat{l} (\Delta^r, f, p, q)$ when s = 0.

The following inequalities (see, e.g., [8, p. 190]) are needed throughout the paper.

Let $p = (p_m)$ be a bounded sequence of strictly positive real numbers. If $H = sup_m p_m$, then for any complex x_m and y_m ,

 $|x_m + y_m|^{p_m} \leq C (|x_m|^{p_m} + |(y_m)|^{p_m})$ where C = max(1,2^{*H*-1}). Also for any complex λ ,

 $|\lambda|^{p_m} \leq \max(1, |\lambda|^H).$

2. Main results

In this section we will prove the general results of this paper on the sequence space $\hat{l}(\Delta^r, f, p, q, s)$, those characterize the structure of this space.

(2)

Theorem 2.1. For any modulus f, $\hat{l}(\Delta^r, f, p, q, s)$ is a linear space over the complex field \mathbb{C} .

The proof is a routine verification by using standard techniques and hence is omitted.

Theorem 2.2. $\hat{l}(\Delta^r, f, p, q, s)$ is a topological linear space, paranormed by

$$g_{\Delta}(\mathbf{x}) = \sup_{n} \left(\sum_{m=1}^{\infty} m^{-s} \left[f(q(\Delta^{r} \phi_{mn}(\mathbf{x}))) \right]^{p_{m}} \right)^{1/g}$$

where $G = \max(1, \sup_{m} p_m)$.

The proof follows by standard arguments and the fact that every paranormed space is a topological linear space [15, p. 37].

Remark 2.3. g_{Δ} need not be total, e.g., if $x = (x_m)$ is defined by $x_m = m$ then $\phi_{mn}(x)$ is constant for all m and hence $g_{\Lambda}(\mathbf{x})$ is zero for $\mathbf{r} \ge 1$.

Lemma 2.4[12]. Let f be a modulus function and let $0 < \delta < 1$. Then for each $x > \delta$ we have $f(x) \le 2f(1)\delta^{-1}x$.

Theorem 2.5. Let f, f_1 , f_2 be modulus functions, then

(i) If
$$s > 1$$
, then $\hat{l}(\Delta^r, f, p, q, s) \subseteq \hat{l}(\Delta^r, fof_1, p, q, s)$,

(ii)
$$\hat{I}(\hat{l}(\Delta^r, f_1, p, q, s) \cap \hat{l}(\Delta^r, f_2, p, q, s) \subseteq \hat{l}(\Delta^r, f_1 + f_2, p, q, s),$$

(iii) If s > 1 and
$$\lim \sup_{t\to\infty} \frac{f_1(t)}{f_2(t)} < \infty$$
, then $\hat{l}(\Delta^r, f_2, p, q, s) \subseteq \hat{l}(\Delta^r, f_1, p, q, s)$.

Proof. Let $x \in \hat{l}$ (Δ^r, f_1, p, q, s). Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \epsilon$ for $0 \le t \le \delta$. Write y_{mn} = $f_1(q(\Delta^r \phi_{mn}(x)))$ and consider

19

$$\begin{split} \sum_{m=1}^{\infty} m^{-s} \left[f(y_{mn}) \right]^{p_m} &= \sum_{y_{mn} \le \delta} m^{-s} \left[f(y_{mn}) \right]^{p_m} + \sum_{y_{mn} > \delta} m^{-s} \left[f(y_{mn}) \right]^{p_m} \\ &< \max(1, \epsilon^H) \sum_{m=1}^{\infty} m^{-s} + \max(1, (2f(1) \delta^{-1})^H) \sum_{m=1}^{\infty} m^{-s} \left[y_{mn} \right]^{p_m} \\ &< \infty, \text{ uniformly in n,} \end{split}$$

by inequality (2) and Lemma 2.4 and hence $x \in \hat{l}(\Delta^r, fof_1, p, q, s)$.

(ii) The proof follows trivially by using (1).

(iii) Let $x \in \hat{l}(\Delta^r, f_2, p, q, s)$ and $\lim \sup_{t \to \infty} \frac{f_1(t)}{f_2(t)} = b < \infty$. Then for a given $\epsilon > 0$

there is a positive integer N such that for all t with t > N we have $f_1(t) < (b+\epsilon)f_2(t)$.

Let $\mathcal{Y}_{mn} = q(\Delta^r \phi_{mn}(x))$, then $\sum_{m=1}^{\infty} m^{-s} [f_1(\mathcal{Y}_{mn})]^{p_m} = \sum_1 + \sum_2$, where the

first summation is over $\mathcal{Y}_{mn} \leq N$ and the second over $\mathcal{Y}_{mn} > N$. Then using (2)

 $\sum_{1} m^{-s} [f_1(\mathcal{Y}_{mn})]^{p_m} \leq [N f_1(1)]^H \sum_{m=1}^{\infty} m^{-s}$ and

$$\sum_{2} m^{-s} [f_1(\mathcal{Y}_{mn})]^{p_m} \le \max(1, (b + \epsilon)^H) \sum_{m=1}^{\infty} m^{-s} [f_2(\mathcal{Y}_{mn})]^{p_m}$$

and so $x \in \hat{l} (\Delta^r, f_1, p, q, s)$.

Proposition 2.6. For any modulus f and s > 1, $\hat{l}(\Delta^r, p, q, s) \subseteq \hat{l}(\Delta^r, f, p, q, s)$.

The proof follows by taking $f_1(x) = x$ in Theorem 2.5(i).

Maddox [10, Prop. 1] proved that for any modulus f there exits $\lim_{t\to\infty} \frac{f(t)}{t}$.

Using this result we give a sufficient condition for the inclusion $\hat{l}(\Delta^r, f, p, q, s) \subseteq \hat{l}(\Delta^r, p, q, s)$.

Theorem 2.7. For any modulus f, if $\lim_{t\to\infty} \frac{f(t)}{t} = \beta > 0$ then $\hat{l}(\Delta^r, f, p, q, s) \subseteq \hat{l}(\Delta^r, p, q, s)$.

Proof. Following the proof of proposition 1 of Maddox [10], we have $\beta = \lim_{t\to\infty} \frac{f(t)}{t} = \inf\{\frac{f(t)}{t} : t > 0\}$, so that $0 \le \beta \le f(1)$. Let $\beta > 0$. By definition of β we have $\beta t \le f(t)$ for all $t \ge 0$. Since $\beta > 0$ we have $t \le \beta^{-1} f(t)$ for all $t \ge 0$. Now $x \in \hat{l}(\Delta^r, f, p, q, s)$ implies.

 $\sum_{m=1}^{\infty} m^{-s} \left[q(\Delta^{r} \phi_{mn}(x)) \right]^{p_{m}} \leq \max \left(1, \beta^{-H} \right) \sum_{m=1}^{\infty} m^{-s} \left[f(q(\Delta^{r} \phi_{mn}(x))) \right]^{p_{m}}$

by (2), whence $x \in \hat{l}(\Delta^r, p, q, s)$ and the proof is complete.

Theorem 2.8. Let f be a modulus function, q, q_1, q_2 be seminorms and s, s_1, s_2 be non-negative real numbers. Then

- i. $\hat{l}(\Delta^r, f, p, q_1, s) \cap \hat{l}(\Delta^r, f, p, q_2, s) \subseteq \hat{l}(\Delta^r, f, p, q_1 + q_2, s),$
- ii. If q_1 is stronger than q_2 , then $\hat{l}(\Delta^r, f, p, q_1, s) \subseteq \hat{l}(\Delta^r, f, p, q_2, s)$,
- iii. If q_1 is equivalent to $q_{2,}$ then $\hat{l}(\Delta^r, f, p, q_1, s) = \hat{l}(\Delta^r, f, p, q_2, s)$,
- iv. If $s_1 \leq s_2$, then $\hat{l}(\Delta^r, f, p, q, s_1) \subseteq \hat{l}(\Delta^r, f, p, q, s_2)$.

Proof. The proof of (i) is straight forward using (1).

(ii) Let $x \in \hat{l}(\Delta^r, f, p, q_1, s)$. Then

$$\begin{split} \sum_{m=1}^{\infty} m^{-s} [f(q_2(\Delta^r \ \phi_{mn}(x)))]^{p_m} &\leq \sum_{m=1}^{\infty} m^{-s} [f(L \ q_1(\Delta^r \ \phi_{mn}(x)))]^{p_m} \\ &\leq (1 + [L])^H \sum_{m=1}^{\infty} m^{-s} [f(q_1(\Delta^r \ \phi_{mn}(x)))]^{p_m} \end{split}$$

by (2), whence $\in \hat{l} (\Delta^r, f, p, q_2, s)$.

The proofs of (iii) and (iv) are trivial.

Theorem 2.9. Let $r \ge 1$, then $\hat{l}(\Delta^{r-1}, f, p, q) \subseteq \hat{l}(\Delta^r, f, p, q)$.

Proof Let $x \in \hat{l}(\Delta^{r-1}, f, p, q)$ then

$$\begin{split} & \sum_{m=1}^{\infty} \left[f(q(\Delta^r \phi_{mn}(x))) \right]^{p_m} \\ & \leq C \left\{ \sum_{m=1}^{\infty} \left[f(q(\Delta^{r-1} \phi_{mn}(x))) \right]^{p_m} + \sum_{m=1}^{\infty} \left[f(q(\Delta^{r-1} \phi_{m+1,n}(x))) \right]^{p_m} \right\}, \end{split}$$

where $C = \max(1, 2^{H-1})$, Hence $x \in \hat{l}(\Delta^r, f, p, q)$.

In general $\hat{l}(\Delta^i f, p, q) \subseteq \hat{l}(\Delta^r, f, p, q)$ for all i = 1, 2, ..., r - 1 and the inclusion is strict.

To show that the inclusion is strict, consider the following example.

Example 2.10. Let X = C, q(x) = |x|, f(x) = x and $p_m = 1$ for all m. Let

 $x = (x_m)$ be defined by $x_m = m^3$, then $x \notin \hat{l}(\Delta^2, f, p, q)$ but $x \in \hat{l}(\Delta^3, f, p, q)$.

Theorem 2.11. If $p = (p_m)$ and $t = (t_m)$ are bounded sequences of positive real numbers with $0 < p_m \le t_m < \infty$ for each m, then for any modulus f,

- i) $\hat{l}(\Delta^r, f, p, q) \subseteq \hat{l}(\Delta^r, f, t, q),$
- ii) $\hat{l}(\Delta^r, f, p, q) \subseteq \hat{l}(\Delta^r, f, p, q, s).$

Proof. Let $x \in \hat{l}(\Delta^r, f, p, q)$. This implies that

$$f(q(\Delta^r \phi_{in}(x))) \le 1$$

for sufficiently large values of i, say $i \ge m_0$ for some fixed $m_0 \in N$. Since f is increasing, we have

 $\sum_{m\geq m_0}^{\infty} \left[f(q(\Delta^r \phi_{mn}(x)))\right]^{t_m} \leq \sum_{m\geq m_0}^{\infty} \left[f(q(\Delta^r \phi_{mn}(x)))\right]^{p_m} < \infty.$

This shows that $x \in \hat{l}(\Delta^r, f, t, q)$.

The proof of (ii) is trivial.

3. Composite space $\hat{l}(\Delta^r, f^v, p, q, s)$ using composite modulus function f^v

Taking modulus function f^{v} instead of f in the space $\hat{l}(\Delta^{r}, f, p, q, s)$, we can define the composite space $\hat{l}(\Delta^{r}, f^{v}, p, q, s)$ as follows:

Definition 3.1. For a fixed natural *v*, we define

 $\widehat{l}(\Delta^r, f^v, p, q, s) = \{ x \in w(X) : \sum_{m=1}^{\infty} m^{-s} [f^v(q(\Delta^r \phi_{mn}(x)))]^{p_m} < \infty \text{ uniformly in n} \}.$

Theorem 3.2. For any modulus function f and $v \in \mathbb{N}$,

(i)
$$\hat{l}(\Delta^r, f^v, p, q, s) \subseteq \hat{l}(\Delta^r, p, q, s) \text{ if } \lim_{t \to \infty} \frac{f(t)}{t} = \beta > 0,$$

(ii) $\hat{l}(\Delta^r, p, q, s) \subseteq \hat{l}(\Delta^r, f^v, p, q, s)$ if there exists a positive constant α such that $f(t) \le \alpha t$ for all $t \ge 0$.

Proof. Let $\in \hat{l}(\Delta^r, f^v, p, q, s)$. Following the proof of Proposition 1 of Maddox [10], we have $\beta = \lim_{t \to \infty} \frac{f(t)}{t}$ = inf { $\frac{f(t)}{t}$: t > 0 }, so that $0 \le \beta \le f(1)$. Let $\beta > 0$.

By definition of β we have $\beta t \leq f(t)$ for all $t \geq 0$. Since f is increasing we have $\beta^2 t \leq f^2(t)$. So by induction, we have $\beta^{\nu} t \leq f^{\nu}(t)$. Now using inequality (2),

$$egin{aligned} & \sum_{m=1}^{\infty} m^{-s} \left[qig(\Delta^r \phi_{mn}(x)ig)
ight]^{p_m} &\leq \sum_{m=1}^{\infty} m^{-s} \left[eta^{-
u} f^
u ig(qig(\Delta^r \phi_{mn}(x)ig) ig)
ight]^{p_m} & \leq \max(1,eta^{-
u H}) \sum_{m=1}^{\infty} m^{-s} \left[f^
u (qig(\Delta^r \phi_{mn}(x))ig)
ight]^{p_m}. \end{aligned}$$

Hence $x \in \hat{l}(\Delta^r, p, q, s)$.

(ii) Let $\in \hat{l}(\Delta^r, p, q, s)$. Since $f(t) \le \alpha t$ for all $t \ge 0$ and f is increasing, we have $f^{\nu}(t) \le \alpha^{\nu} t$ for each $\nu \in \mathbb{N}$. Again, using (2), we have

$$\sum_{m=1}^{\infty} m^{-s} \left[f^{\nu} \left(q \left(\Delta^r \phi_{mn}(x) \right) \right) \right]^{p_m} \leq \max(1, \alpha^{\nu H}) \sum_{m=1}^{\infty} m^{-s} \left[q \left(\Delta^r \phi_{mn}(x) \right) \right]^{p_m}.$$

Hence $x \in \hat{l}(\Delta^r, f^v, p, q, s)$ and this completes the proof.

Example 3.3. $f_1(t) = t + t^{1/2}$ and $f_2(t) = \log(1+t)$ for all $t \ge 0$ satisfy the conditions given in Theorem 3.2(i), (ii) respectively.

Theorem 3.4. Let $i, v \in \mathbb{N}$ and i < v. If f is a modulus such that $f(t) \le \alpha t$ for all $t \ge 0$, where α is a positive constant, then

$$\begin{split} \hat{l}(\Delta^{r}, p, q, s) &\subseteq \hat{l}(\Delta^{r}, f^{i}, p, q, s) \subseteq \hat{l}(\Delta^{r}, f^{v}, p, q, s). \\ \text{Proof. Let } j &= v - i. \text{ Since } f(t) \leq \alpha t \text{ , we have } f^{v}(t) < M^{j}f^{i}(t) < M^{v}t \text{ , where}M = 1 + \\ [\alpha]. Let x &\in \hat{l}(\Delta^{r}, p, q, s). \text{ By the above inequality and using (2), we get} \\ \sum_{m=1}^{\infty} m^{-s} \left[f^{v}(q(\Delta^{r}\phi_{mn}(x))) \right]^{p_{m}} < M^{jH} \sum_{m=1}^{\infty} m^{-s} \left[f^{i}(q(\Delta^{r}\phi_{mn}(x))) \right]^{p_{m}} \\ < M^{vH} \sum_{m=1}^{\infty} m^{-s} \left[q(\Delta^{r}\phi_{mn}(x)) \right]^{p_{m}}. \end{split}$$

Hence the required inclusion follows.

REFERENCES

[1] S. Banach, Théorie des opérations linéaires, Warszawa, 1932.

[2] G. Das, Banach and other limits, J. London Math. Soc., 7(2)(1973), 501-507.

[3] G Das, B. Kuttner and S Nanda, Some sequence spaces and absolute almost convergence, Trans. Amer. Math. Soc., 283(2)(1984), 729-739.

[4] M. Et and R. Colak. On some generalized difference sequence spaces. Soochow J. Math., 21(1995), 377-386.

[5] M. Et and F. Nuray, Δ^m -statistical convergence, Indian J. Pure Appl. Math., 32(6) (2001), 961-969.

[6] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(1981), 169-176.

[7] G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80(1948), 167-190.

[8] I.J. Maddox, Elements of functional analysis, Cambridge Univ. Press, 1970.

[9] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb Philos. Soc., 100(1986), 161-166.

[10] I.J. Maddox. Inclusion between FK spaces and Kuttner's theorem, Math. Proc. Camb. Philos. Soc., 101(1987), 523-527.

[11] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.

[12] S. Pehlivan and B. Fisher, On some sequence spaces, Indian J. Pure Appl. Math, 25(10)(1994), 1067-1071.

[13] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.

[14] A. Wilansky, Functional analysis, Blaisdell Publishing Company, New York, 1964.

[15] A. Wilansky, Modern methods in topological vector spaces, McGraw-Hill, 1978.