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Abstract. The purpose of this paper is to introduce and study a new sequence space that is A"-absolutely almost
summable with respect to a modulus function in seminormed complex linear space. Some topological results and
certain inclusion relations on this space have been discussed. Furthermore, we construct the sequence space that
is A"-absolutely almost summable with respect to composite modulus function in seminormed complex linear
space and give some inclusion relations on this space.
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1. Introduction

By w we shall denote the space of all scalar sequences. l, and c, respectively, denote the Banach spaces of
bounded and convergent sequences X = (x;) with complex terms normed by ||x|| = supy |xx|- We write D for
the shift operator; that is D((xz)) = (xx4+1)- It may be recalled that a Banach limit L (see Banach [1]) is a
nonnegative linear functional on [, such that L is invariant under the shift operator (that is, L(Dx) = L(x) for all
X € ly) and such that L(e) = 1, where

e =(1, 1, ..). Various types of limits, including Banach limit, are considered in Das [2]. Let B be the set of all
Banach limits on [,,. A sequence X € [, is said to be almost convergent to the value | (see Lorentz [7]) if L(x) =
| for all L € B. Let ¢ denote the space of all almost convergent sequences. For any sequence X, write

ton = tnn () = (M4 )7 T X4

Lorentz [7] proved that x € ¢ if and only if t,,,,, (x) tends to a limit as m — oo uniformly in n.
We now extend the definition of ¢,,,, (x) tom =-1by taking t_;,, =t_; ,(X) =0.

We write, form, n>0

bmn = Pmn(X) = tmn — tm-1n-

A straightforward calculation shows that

bon = Xn;

1
d)mn =

m(m+1)
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Note that for any sequences X, y and scalar A , we have

Pmn (X+Y) = Pmn(X) + Gmn(y) @Nd P (AX) = Admn (X).

The sequence x is absolutely almost convergent (see Das et al. [3]) if )., |®mn| cOnverges uniformly in n. We
denote the set of absolutely almost convergent sequences by .

The idea of modulus was structured in 1953 by Nakano [11]. Following Ruckle [13] and Maddox [9] we recall
that a modulus f is a function from [0, o) to [0, o) such that

(i) f(x) =0 ifand only if x =0,

(i) f(x +y) < f(x) + f(y) forall x >0, y > 0,

(iii) f is increasing,

(iv) f is continuous from the right at 0.

Because of (ii), [f(x) - f(y)| < f(jx — y]|) so that in view of (iv), f is continuous everywhere on [0, o). A modulus

may be unbounded (for example, f(x) = xP, 0 < p < 1) or bounded (for example, f(x) = ﬁ).

It is easy to see that f; + f, is a modulus function when f; and f, are modulus functions, and that the function f*
(v is a positive integer), the composition of a modulus function f with itself v times, is also a modulus function.

Ruckle [13] used the idea of a modulus function f to construct a class of FK spaces
L(F) ={x = () + Xily fxe]) < o0}
The space L(f) is closely related to the space [; which is an L(f) space with f(x) = x for all real x > 0.

The notion of difference sequence spaces was introduced by Kizmaz [6]. It was generalized by Et and Colak [4]
as follows:

Let m be a non-negative integer. Then
X(A™) = {x = (xx) : (A™xx) € X}

for X = I, C, co; Where A% = (x;) and A™x = (A™x;) = (A™ x, - A™ 1x,,, ) for all k € N. The sequence
spaces X(A™) are BK spaces normed by ||x|| o =212 |%i] +1]1A™x]| oo »

X € {lw, c, co}. Etand Nuray [5] defined a more general space A™(X) = { x =(xy) : (A™x;) € X}, wherem €
N and X is any sequence space.

Let g, and g, be seminorms on a linear space X. Then g, is stronger than g, if there exists a constant L such that
q2(X) < Lqq(x) for all x € X. If each is stronger than the other, g, and g, are said to be equivalent (Wilansky

[14]).

Let X be a seminormed complex linear space with seminorm g, f be a modulus function, s > 0 be a real number
and p = (p,,) be a bounded sequence of strictly positive real numbers. The symbol w(X) denotes the space of all
X-valued sequences.

We now introduce the following generalized difference absolutely almost summable X-valued sequence space
with respect to a modulus function.
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(A", f,p,q,5) = {x ewX): i m~S [f (q(Ar Dmn (x)))]pm < oo uniformly inng.
m=1

where Ar(pmn(x) = Ar_l(pmn (X) - Ar_lq")m+1,n (x)

If we take X = C, q(x) = x|, f(x) = x and r = s = 0, then the sequence space defined above becomes I(p) (see Das
etal. [3]).

We denote [ (A, f, p, q,s) by [ (A", p, g, s) when f(x) = x and by [ (A, f, p, @) when s = 0.
The following inequalities (see, e.g., [8, p. 190]) are needed throughout the paper.

Let p = (p,,) be a bounded sequence of strictly positive real numbers. If H = sup,,,p,,, then for any complex x,,
and y,, ,

1%m + YymlPm < C (IxulP™ + |(m)|P™) | 1)
where C = max(1,2171). Also for any complex 24,

|A|Pm < max(1, |A|). 2)
2. Main results

In this section we will prove the general results of this paper on the sequence space [ (A", f,p,q,s), those
characterize the structure of this space.

Theorem 2.1. For any modulus f, I (A", f, p,q, s) is a linear space over the complex field C.
The proof is a routine verification by using standard techniques and hence is omitted.
Theorem 2.2. [ (A", f,p, q,s) is a topological linear space, paranormed by

%) — 1
9a() = supp (Tinzy M [f (@7 mn(¥)))]Pm) /e
where G = max(1, sup,, pm)-

The proof follows by standard arguments and the fact that every paranormed space is a topological linear space
[15, p. 37].

Remark 2.3. g, need not be total, e.g., if X = (x,,) is defined by x,,, = m then ¢,,,(X) is constant for all m and
hence ga(X) is zero forr > 1.

Lemma 2.4[12]. Let f be a modulus function and let 0 < § < 1. Then for each x > § we have f(x) < 2f(1)§ ~1x.

Theorem 2.5. Let f, f;, f, be modulus functions, then
(i) Ifs>1,then [ (A", f,p,q,5) S [ (A7, fof,p,q,5),

(“) T(lA(Ar,fl,p,q,s) n lA(Ar'fZIP'q'S) c [\(Ar'fl + fZ'pJq'S)!

fi®)
f2(®)

(iii) If s> 1 and lim sup;_, < oo, then lA(AT,fz,p, q,s) € lA(AT,fl,p, q,5).

Proof. Letx € [ (AT, f1,p.q,5). Let e >0 and choose § with 0 < & < 1 such that f(t) < e for 0 < t < §. Write y,,,,

= f1(9(A” pmn (x))) and consider
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Zﬁzlm_s [f(ymn)]pm = Zymn < Sm_s [f(ymn)]pm + Z Vmn> Sm_s [f(ymn)]pm

<max(L,e”) Xy—ym™ + max (1, (2f (1) 7)) E=1 m™ [ymn]P™
< oo, uniformly in n,

by inequality (2) and Lemma 2.4 and hence x € [ (A”, fof,,p, q, s).

(ii) The proof follows trivially by using (1).

f1(®
f2(®

(iii) Letx € [ (A7, f,,p,q,5) and lim sup;_,e =b <co. Then for a given € >0

there is a positive integer N such that for all t with t > N we have f;(t) < (b+€) £, (1).

Let Ynn = QA" Ppmn(x)), then Tinog m™[f1(Ymn)]Pm = X1 +X, , Where the

first summation is over Y,,, < N and the second over Y,,,,, > N. Then using (2)
L1 mPLAYm)Pm < [N fi (D] Xieam™

and

Y2 M Lfa(Ymn)]Pm < max(1, (b+€)7) Xy m™ [fo(Ymn)]Pm

andso x € [ (A, f.,p,q,5) .

Proposition 2.6. For any modulus f and s >1, [ (A", p,q,s) S [ (A", f,p,q,5).
The proof follows by taking f; (x) = x in Theorem 2.5(i).

Maddox [10, Prop. 1] proved that for any modulus f there exits lim;_, )

Using this result we give a sufficient condition for the inclusion [ (A", f,p,q,s) S [ (A", p,q,s).
Theorem 2.7. For any modulus £, if lim,_ e &:) =B >0 thenl (A", f,p,q,s) S [ (AT,p,q,5).
@ _

Proof. Following the proof of proposition 1 of Maddox [10], we have g = lim;_« - = inf{@ 't >0}, s0

that 0 <fB < f(1). Let B > 0. By definition of g we have gt < f(t) forallt > 0.Since § > 0we have t <
B Lf(t)forall t > 0.Nowx € (A", f,p,q,s) implies.

Z=1m ™ [q(A Pn (0))]Pm < max (1, B~7) E=1 m™ [f (q(A Prn(x)))]P
by (2), whence x € [ (A", p,q,s) and the proof is complete.

Theorem 2.8. Let f be a modulus function, g, q;,q, be seminormsand s, s, , s, be non-negative real numbers .
Then

i L@ fp,qu) N L, f,p,q25) € LA f,p,01+ q25),
ii.  If q, is stronger than q, thenl (A", f,p,q1,8) € [ (A7, £,p,q2,5) ,

iii. If qq is equivalent to q; thenl (AT,f,p,q1,s) = [ (A7,f,p,q2,5)
iv. Ifs; < s, thenl (A", f,p,q,51) S [ (A7,f.p,q,5,) .
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Proof. The proof of (i) is straight forward using (1).

(i) Letx € [ (A", f,p,q41,5) . Then

Ym=1M°[f (28" Pmn (NP < Lmei M [f (L q1 (A" Prmn(x)))]Pm
< A+ [LDP Zm=1m ™ [f (@1 (A7 Pmn(¥)))]Pm
by (2), whence € [ (A", f,p,q,5) .

The proofs of (iii) and (iv) are trivial.
Theorem 2.9. Let r> 1, then I(A™™1, f,p,q) S I(A, f,p,q).
Proof Let x € 1 (A™"1,f,p, q) then
Ym=1 [f(@(A" pmn(x)))]Pm
<C{Zm=1 F @A $rmn (NP + Zinzt [f (@A™ Prmaa,n()))IP3,
where C = max(1, 2#71), Hence x € I(A",f,p,q).
In general I(Aif,p,q) S I(AT.f,p,q)foralli=1,2,...,r—1andthe inclusion is strict.
To show that the inclusion is strict, consider the following example.
Example 2.10. Let X =C, q(x) = | x|, f(x) = x and p,, = 1 forall m. Let
x = (x,,) be defined by x,,, = m3, thenx & I[(A% f,p,q) but x € I(A3.f,p, q).

Theorem 2.11. If p = (p,,) and t = (t,,) are bounded sequences of positive real numbers with 0 < p,,, < t,, <
oo for each m, then for any modulus £,

i) [ f,p,q) € (A" f,t,9),
i) IA"f.p.q) < [(A.f.p.q5).

Proof. Let x € I(A", f,p, q). This implies that

f@@@" ¢imn(x))) <1
for sufficiently large values of i, sayi>m, for some fixed m, € N. Since f is increasing, we have
Tmzm, [F (@A ¢mn(ON]™ < Xemy [f(@AT $nn(x)))]Pm < 0.
This shows that x € I(A, f,t,q).
The proof of (ii) is trivial.
3. Composite space (A", f?,p, q,s) using composite modulus function f?

Taking modulus function fV instead of f in the space I(A,f,p,q,s), we can define the composite space
I(AT, f7,p,q, s) as follows:

Definition 3.1. For a fixed natural v, we define
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A, f7,0,4,5) ={ x € w(X) : Ty m™° [f¥(q (A7 pmn (x)))]Pm < o0 uniformly in n}.

Theorem 3.2. For any modulus function fand v € N,

(i) 1" f*p,q,5) € IA"p,q,5) if lim 0=p>o0,
(i)  I(A",p,q,s) € I(AT, f7,p,q,s) if there exists a positive constant « such that f(t) < at forall t > 0.

Proof . Let € (A", f%,p,q,s) . Following the proof of Proposition 1 of Maddox [10], we have g = tlim %

=inf{&2:1>0}, sothat 0 < § < f(1). Let # > 0.
By definition of § we have Bt < f(t) for all t > 0. Since f is increasing we have %t < f2(t). So by
induction, we have BVt < f¥(t). Now using inequality (2),

i m ™ [(A G O™ < Tinoym™ [B7F7 (4(&7 b (1))
< max(1, B77) Bincy m ™ [F2(@(A7 $mn ()],

Pm

Hence x € I(A",p,q,s).
(i)  Letel(A",p,q,s). Since f(t) < at forall t >0 and f is increasing, we have f7(t) < a’t for each v €
N. Again, using (2), we have

Z?;;:l m=s [fv (q (AT¢mn(x)))]pm§ max(],aVH) Z?:L:l m=s [Q(Ar(pmn(x))]pm.

Hence x € [(A”, f,p,q,s) and this completes the proof.

Example 3.3. fi(t)=t + t/2 and f2(t)=log(1+t) for all t > 0 satisfy the conditions given in Theorem
3.2(i), (ii) respectively.
Theorem 3.4. Leti,v e Nand i <wv.If f isamodulus such that f(t) < at for all t > 0, where « is a
positive constant, then

I(A",p,q,s) < 1(A7, fi,p,q,8) S I(AT, f7,p,q,5).

Proof. Let j =v —i. Since f(t) < at , we have fU(t) < M/fi(t) < Mt , whereM =1 +
[a].Let x € (A", p, q,s). By the above inequality and using (2), we get

Sraei ™ [ (@A brn NI < MIH T m™ [FL(q(AT i O]

0 - Pm
<MvH Zm:lm s [Q(Ar¢mn(x))] .
Hence the required inclusion follows.
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