SEMINORMED SPACE

INDU BALA
Department of Mathematics
Government College
Chhachhrauli-135103

Abstract

The purpose of this paper is to introduce and study a new sequence space that is Δ^{r}-absolutely almost summable with respect to a modulus function in seminormed complex linear space. Some topological results and certain inclusion relations on this space have been discussed. Furthermore, we construct the sequence space that is Δ^{r}-absolutely almost summable with respect to composite modulus function in seminormed complex linear space and give some inclusion relations on this space.

AMS Subject Classification: 40F05, 46A45, 40A05, 40C05.
Keywords and Phrases: Difference sequence space, modulus function, topological linear space, absolute almost convergence.

1. Introduction

By w we shall denote the space of all scalar sequences. l_{∞} and c , respectively, denote the Banach spaces of bounded and convergent sequences $\mathrm{x}=\left(x_{k}\right)$ with complex terms normed by $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$. We write D for the shift operator; that is $\mathrm{D}\left(\left(x_{k}\right)\right)=\left(x_{k+1}\right)$. It may be recalled that a Banach limit L (see Banach [1]) is a nonnegative linear functional on l_{∞} such that L is invariant under the shift operator (that is, $L(D x)=L(x)$ for all $x \in l_{\infty}$) and such that $L(e)=1$, where
$\mathrm{e}=(1,1, \ldots)$. Various types of limits, including Banach limit, are considered in Das [2]. Let B be the set of all Banach limits on l_{∞}. A sequence $\mathrm{x} \in l_{\infty}$ is said to be almost convergent to the value 1 (see Lorentz [7]) if $\mathrm{L}(\mathrm{x})=$ I for all $L \in B$. Let \hat{c} denote the space of all almost convergent sequences. For any sequence x, write

$$
t_{m n}=t_{m n}(x)=(m+1)^{-1} \sum_{j=0}^{m} x_{j+n}
$$

Lorentz [7] proved that $\mathrm{x} \in \hat{\mathrm{c}}$ if and only if $t_{m n}(\mathrm{x})$ tends to a limit as $\mathrm{m} \rightarrow \infty$ uniformly in n .
We now extend the definition of $t_{m n}(\mathrm{x})$ to $\mathrm{m}=-1$ by taking $t_{-1, n}=t_{-1, n}(\mathrm{x})=0$.
We write, for $\mathrm{m}, \mathrm{n} \geq 0$

$$
\phi_{m n}=\phi_{m n}(\mathrm{x})=t_{m n}-t_{m-1, n}
$$

A straightforward calculation shows that

$$
\begin{aligned}
\phi_{0 n} & =x_{n} \\
\phi_{m n} & =\frac{1}{m(m+1)} \sum_{j=1}^{m} j\left(x_{j+n}-x_{j+n-1)} \quad(\mathrm{m} \geq 1)\right.
\end{aligned}
$$

Note that for any sequences x, y and scalar λ, we have

$$
\phi_{m n}(\mathrm{x}+\mathrm{y})=\phi_{m n}(\mathrm{x})+\phi_{m n}(\mathrm{y}) \text { and } \phi_{m n}(\lambda \mathrm{x})=\lambda \phi_{m n}(\mathrm{x}) .
$$

The sequence x is absolutely almost convergent (see Das et al. [3]) if $\sum_{m}\left|\phi_{m n}\right|$ converges uniformly in n . We denote the set of absolutely almost convergent sequences by \hat{l}.

The idea of modulus was structured in 1953 by Nakano [11]. Following Ruckle [13] and Maddox [9] we recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
(i) $f(x)=0$ if and only if $x=0$,
(ii) $f(x+y) \leq f(x)+f(y)$ for all $x \geq 0, y \geq 0$,
(iii) f is increasing,
(iv) f is continuous from the right at 0 .

Because of (ii), $|f(x)-f(y)| \leq f(|x-y|)$ so that in view of (iv), f is continuous everywhere on $[0, \infty)$. A modulus may be unbounded (for example, $\mathrm{f}(\mathrm{x})=x^{p}, 0<\mathrm{p} \leq 1$) or bounded (for example, $\mathrm{f}(\mathrm{x})=\frac{x}{x+1}$).

It is easy to see that $f_{1}+f_{2}$ is a modulus function when f_{1} and f_{2} are modulus functions, and that the function f^{v} (v is a positive integer), the composition of a modulus function f with itself v times, is also a modulus function.

Ruckle [13] used the idea of a modulus function f to construct a class of FK spaces
$\mathrm{L}(\mathrm{f})=\left\{x=\left(x_{k}\right): \sum_{k=1}^{\infty} f\left(\left|x_{k}\right|\right)<\infty\right\}$.
The space $\mathrm{L}(\mathrm{f})$ is closely related to the space l_{1} which is an $\mathrm{L}(\mathrm{f})$ space with $\mathrm{f}(\mathrm{x})=\mathrm{x}$ for all real $\mathrm{x} \geq 0$.
The notion of difference sequence spaces was introduced by Kizmaz [6]. It was generalized by Et and Colak [4] as follows:

Let m be a non-negative integer. Then
$\mathrm{X}\left(\Delta^{m}\right)=\left\{\mathrm{x}=\left(x_{k}\right):\left(\Delta^{m} x_{k}\right) \in \mathrm{X}\right\}$
for $\mathrm{X}=l_{\infty}, \mathrm{c}, c_{0}$; where $\Delta^{0} \mathrm{x}=\left(x_{k}\right)$ and $\Delta^{m} \mathrm{x}=\left(\Delta^{m} x_{k}\right)=\left(\Delta^{m-1} x_{k}-\Delta^{m-1} x_{k+1}\right)$ for all $\mathrm{k} \in \mathbb{N}$. The sequence spaces $\mathrm{X}\left(\Delta^{m}\right)$ are BK spaces normed by $\|x\|_{\Delta}=\sum_{i=1}^{m}\left|x_{i}\right|+\left\|\Delta^{m} x\right\|_{\infty}$,
$\mathrm{X} \in\left\{l_{\infty}, c, c_{0}\right\}$. Et and Nuray [5] defined a more general space $\Delta^{m}(\mathrm{X})=\left\{\mathrm{x}=\left(x_{k}\right):\left(\Delta^{m} x_{k}\right) \in \mathrm{X}\right\}$, where $\mathrm{m} \in$ \mathbb{N} and X is any sequence space.

Let q_{1} and q_{2} be seminorms on a linear space X . Then q_{1} is stronger than q_{2} if there exists a constant L such that $q_{2}(\mathrm{x}) \leq \mathrm{L} q_{1}(\mathrm{x})$ for all $x \in \mathrm{X}$. If each is stronger than the other, q_{1} and q_{2} are said to be equivalent (Wilansky [14]).

Let X be a seminormed complex linear space with seminorm q, f be a modulus function, $\mathrm{s} \geq 0$ be a real number and $\mathrm{p}=\left(p_{m}\right)$ be a bounded sequence of strictly positive real numbers. The symbol $\mathrm{w}(\mathrm{X})$ denotes the space of all X -valued sequences.

We now introduce the following generalized difference absolutely almost summable X -valued sequence space with respect to a modulus function.

$$
\hat{l}\left(\Delta^{r}, f, p, q, s\right)=\left\{x \in w(X): \sum_{m=1}^{\infty} m^{-s}\left[f\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{p_{m}}<\infty \text { uniformly in } n\right\} .
$$

where $\Delta^{r} \phi_{m n}(\mathrm{x})=\Delta^{r-1} \phi_{m n}(\mathrm{x})-\Delta^{r-1} \phi_{m+1, n}(x)$.
If we take $X=\mathbb{C}, q(x)=|x|, f(x)=x$ and $r=s=0$, then the sequence space defined above becomes $\hat{l}(p)$ (see Das et al. [3]).

We denote $\hat{l}\left(\Delta^{r}, \mathrm{f}, \mathrm{p}, \mathrm{q}, \mathrm{s}\right)$ by $\hat{l}\left(\Delta^{r}, \mathrm{p}, \mathrm{q}, \mathrm{s}\right)$ when $\mathrm{f}(\mathrm{x})=\mathrm{x}$ and by $\hat{l}\left(\Delta^{r}, \mathrm{f}, \mathrm{p}, \mathrm{q}\right)$ when $\mathrm{s}=0$.
The following inequalities (see, e.g., [8, p. 190]) are needed throughout the paper.
Let $\mathrm{p}=\left(p_{m}\right)$ be a bounded sequence of strictly positive real numbers. If $\mathrm{H}=\sup p_{m} p_{m}$, then for any complex x_{m} and y_{m},
$\left|x_{m}+y_{m}\right|^{p_{m}} \leq \mathrm{C}\left(\left|x_{m}\right|^{p_{m}}+\left|\left(y_{m}\right)\right|^{p_{m}}\right)$,
where $\mathrm{C}=\max \left(1,2^{H-1}\right)$. Also for any complex λ,
$|\lambda|^{p_{m}} \leq \max \left(1,|\lambda|^{H}\right)$.

2. Main results

In this section we will prove the general results of this paper on the sequence space $\hat{l}\left(\Delta^{r}, f, p, q, s\right)$, those characterize the structure of this space.

Theorem 2.1. For any modulus $\mathrm{f}, \hat{l}\left(\Delta^{r}, f, p, q, s\right)$ is a linear space over the complex field \mathbb{C}.
The proof is a routine verification by using standard techniques and hence is omitted.
Theorem 2.2. $\widehat{l}\left(\Delta^{r}, f, p, q, s\right)$ is a topological linear space, paranormed by
$g_{\Delta}(\mathrm{x})=\sup _{n}\left(\sum_{m=1}^{\infty} m^{-s}\left[f\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{p_{m}}\right)^{1 / G}$
where $\mathrm{G}=\max \left(1, \sup _{m} p_{m}\right)$.
The proof follows by standard arguments and the fact that every paranormed space is a topological linear space [15, p. 37].

Remark 2.3. g_{Δ} need not be total, e.g., if $\mathrm{x}=\left(x_{m}\right)$ is defined by $x_{m}=\mathrm{m}$ then $\phi_{m n}(\mathrm{x})$ is constant for all m and hence $g_{\Delta}(\mathrm{x})$ is zero for $\mathrm{r} \geq 1$.

Lemma 2.4[12]. Let f be a modulus function and let $0<\delta<1$. Then for each $\mathrm{x}>\delta$ we have $\mathrm{f}(\mathrm{x}) \leq 2 \mathrm{f}(1) \delta^{-1} \mathrm{x}$.
Theorem 2.5. Let f, f_{1}, f_{2} be modulus functions, then
(i) If $\mathrm{s}>1$, then $\widehat{l}\left(\Delta^{r}, f, p, q, s\right) \subseteq \widehat{l}\left(\Delta^{r}, f o f_{1}, p, q, s\right)$,
(ii) $\hat{\mathrm{I}} \widehat{l}\left(\Delta^{r}, f_{1}, p, q, s\right) \cap \hat{l}\left(\Delta^{r}, f_{2}, p, q, s\right) \subseteq \hat{l}\left(\Delta^{r}, f_{1}+f_{2}, p, q, s\right)$,
(iii) If $s>1$ and $\lim \sup _{t \rightarrow \infty} \frac{f_{1}(t)}{f_{2}(t)}<\infty$, then $\widehat{l}\left(\Delta^{r}, f_{2}, p, q, s\right) \subseteq \widehat{l}\left(\Delta^{r}, f_{1}, p, q, s\right)$.

Proof. Let $\mathrm{x} \in \hat{l}\left(\Delta^{r}, f_{1}, p, q, s\right)$. Let $\epsilon>0$ and choose δ with $0<\delta<1$ such that $\mathrm{f}(\mathrm{t})<\epsilon$ for $0 \leq \mathrm{t} \leq \delta$. Write $y_{m n}$ $=f_{1}\left(\mathrm{q}\left(\Delta^{r} \phi_{m n}(x)\right)\right)$ and consider

$$
\begin{aligned}
\sum_{m=1}^{\infty} m^{-s}\left[f\left(y_{m n}\right)\right]^{p_{m}}= & \sum_{y_{m n} \leq \delta} m^{-s}\left[f\left(y_{m n}\right]^{p_{m}}+\sum_{y_{m n}>\delta} m^{-s}\left[f\left(y_{m n)}\right]^{p_{m}}\right.\right. \\
& <\max \left(1, \epsilon^{H}\right) \sum_{m=1}^{\infty} m^{-s}+\max \left(1,\left(2 f(1) \delta^{-1}\right)^{H}\right) \sum_{m=1}^{\infty} m^{-s}\left[y_{m n}\right]^{p_{m}} \\
& <\infty, \text { uniformly in n, }
\end{aligned}
$$

by inequality (2) and Lemma 2.4 and hence $\mathrm{x} \in \widehat{\zeta}\left(\Delta^{r}, f o f_{1}, p, q, s\right)$.
(ii) The proof follows trivially by using (1).
(iii) Let $x \in \hat{l}\left(\Delta^{r}, f_{2}, p, q, s\right)$ and $\lim \sup _{t \rightarrow \infty} \frac{f_{1}(t)}{f_{2}(t)}=\mathrm{b}<\infty$. Then for a given $\epsilon>0$
there is a positive integer N such that for all t with $\mathrm{t}>\mathrm{N}$ we have $f_{1}(\mathrm{t})<(\mathrm{b}+\epsilon) f_{2}(\mathrm{t})$.
Let $\mathcal{Y}_{m n}=\mathrm{q}\left(\Delta^{r} \phi_{m n}(x)\right)$, then $\sum_{m=1}^{\infty} m^{-S}\left[f_{1}\left(\mathcal{Y}_{m n}\right)\right]^{p_{m}}=\sum_{1}+\sum_{2}$, where the
first summation is over $\mathcal{Y}_{m n} \leq \mathrm{N}$ and the second over $\mathcal{Y}_{m n}>N$. Then using (2)
$\sum_{1} m^{-s}\left[f_{1}\left(\mathcal{Y}_{m n}\right)\right]^{p_{m}} \leq\left[N f_{1}(1)\right]^{H} \sum_{m=1}^{\infty} m^{-s}$
and
$\sum_{2} m^{-s}\left[f_{1}\left(\mathcal{Y}_{m n}\right)\right]^{p_{m}} \leq \max \left(1,(\mathrm{~b}+\in)^{H}\right) \sum_{m=1}^{\infty} m^{-s}\left[f_{2}\left(\mathcal{Y}_{m n}\right)\right]^{p_{m}}$
and so $x \in \widehat{l}\left(\Delta^{r}, f_{1}, p, q, s\right)$.
Proposition 2.6. For any modulus f and $\mathrm{s}>1, \widehat{l}\left(\Delta^{r}, p, q, s\right) \subseteq \widehat{l}\left(\Delta^{r}, f, p, q, s\right)$.
The proof follows by taking $f_{1}(x)=x$ in Theorem 2.5(i).
Maddox [10, Prop. 1] proved that for any modulus f there exits $\lim _{t \rightarrow \infty} \frac{f(t)}{t}$.
Using this result we give a sufficient condition for the inclusion $\widehat{\imath}\left(\Delta^{r}, f, p, q, s\right) \subseteq \widehat{l}\left(\Delta^{r}, p, q, s\right)$.
Theorem 2.7. For any modulus f, if $\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\beta>0$ then $\hat{l}\left(\Delta^{r}, f, p, q, s\right) \subseteq \widehat{l}\left(\Delta^{r}, p, q, s\right)$.
Proof. Following the proof of proposition 1 of Maddox [10], we have $\beta=\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\inf \left\{\frac{f(t)}{t}: \mathrm{t}>0\right\}$, so that $0 \leq \beta \leq f(1)$. Let $\beta>0$. By definition of β we have $\beta t \leq f(t)$ for all $t \geq 0$. Since $\beta>0$ we have $t \leq$ $\beta^{-1} f(t)$ for all $t \geq 0$. Now $x \in \widehat{l}\left(\Delta^{r}, f, p, q, s\right)$ implies.
$\sum_{m=1}^{\infty} m^{-s}\left[q\left(\Delta^{\mathrm{r}} \phi_{m n}(x)\right)\right]^{p_{m}} \leq \max \left(1, \beta^{-H}\right) \sum_{m=1}^{\infty} m^{-s}\left[f\left(q\left(\Delta^{\mathrm{r}} \phi_{m n}(x)\right)\right)\right]^{p_{m}}$
by (2), whence $x \in \hat{l}\left(\Delta^{r}, p, q, s\right)$ and the proof is complete.
Theorem 2.8. Let f be a modulus function, q, q_{1}, q_{2} be seminorms and s, s_{1}, s_{2} be non-negative real numbers . Then
i. $\hat{l}\left(\Delta^{r}, f, p, q_{1}, s\right) \cap \hat{l}\left(\Delta^{r}, f, p, q_{2}, s\right) \subseteq \hat{l}\left(\Delta^{r}, f, p, q_{1}+q_{2}, s\right)$,
ii. If q_{1} is stronger than q_{2}, then $\hat{l}\left(\Delta^{r}, f, p, q_{1}, s\right) \subseteq \widehat{l}\left(\Delta^{r}, f, p, q_{2}, s\right)$,
iii. If q_{1} is equivalent to q_{2}, then $\hat{l}\left(\Delta^{r}, f, p, q_{1}, s\right)=\hat{l}\left(\Delta^{r}, f, p, q_{2}, s\right)$,
iv. If $s_{1} \leq s_{2}$, then $\widehat{l}\left(\Delta^{r}, f, p, q, s_{1}\right) \subseteq \widehat{l}\left(\Delta^{r}, f, p, q, s_{2}\right)$.

Proof. The proof of (i) is straight forward using (1).
(ii) Let $x \in \widehat{l}\left(\Delta^{r}, f, p, q_{1}, s\right)$. Then

$$
\begin{aligned}
\sum_{m=1}^{\infty} m^{-s}\left[f\left(q_{2}\left(\Delta^{r} \quad \phi_{m n}(x)\right)\right)\right]^{p_{m}} & \leq \sum_{m=1}^{\infty} m^{-s}\left[f\left(L q_{1}\left(\Delta^{r} \quad \phi_{m n}(x)\right)\right)\right]^{p_{m}} \\
& \leq(1+[L])^{H} \sum_{m=1}^{\infty} m^{-s}\left[f\left(q_{1}\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{p_{m}}
\end{aligned}
$$ by (2), whence $\in \hat{l}\left(\Delta^{r}, f, p, q_{2}, s\right)$.

The proofs of (iii) and (iv) are trivial.
Theorem 2.9. Let $\mathrm{r} \geq 1$, then $\hat{l}\left(\Delta^{r-1}, f, p, q\right) \subseteq \hat{l}\left(\Delta^{r}, f, p, q\right)$.
Proof Let $x \in \hat{l}\left(\Delta^{r-1}, f, p, q\right)$ then

$$
\begin{aligned}
& \sum_{m=1}^{\infty}\left[f\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{p_{m}} \\
& \leq \mathrm{C}\left\{\sum_{m=1}^{\infty}\left[f\left(q\left(\Delta^{r-1} \phi_{m n}(x)\right)\right)\right]^{p_{m}}+\sum_{m=1}^{\infty}\left[f\left(q\left(\Delta^{r-1} \phi_{m+1, n}(x)\right)\right)\right]^{p_{m}}\right\}
\end{aligned}
$$

where $\mathrm{C}=\max \left(1,2^{H-1}\right)$, Hence $x \in \hat{l}\left(\Delta^{r}, f, p, q\right)$.
In general $\hat{l}\left(\Delta^{i} f, p, q\right) \subseteq \hat{l}\left(\Delta^{r}, f, p, q\right)$ for all $\mathrm{i}=1,2, \ldots, \mathrm{r}-1$ and the inclusion is strict.
To show that the inclusion is strict, consider the following example.
Example 2.10. Let $\mathrm{X}=\mathrm{C}, \mathrm{q}(x)=|x|, f(x)=x$ and $p_{m}=1$ for all m . Let
$x=\left(x_{m}\right)$ be defined by $x_{m}=m^{3}$, then $x \notin \hat{l}\left(\Delta^{2}, f, p, q\right)$ but $x \in \hat{l}\left(\Delta^{3}, f, p, q\right)$.
Theorem 2.11. If $\mathrm{p}=\left(p_{m}\right)$ and $t=\left(t_{m}\right)$ are bounded sequences of positive real numbers with $0<p_{m} \leq t_{m}<$ ∞ for each m , then for any modulus f,
i) $\quad \hat{l}\left(\Delta^{r}, f, p, q\right) \subseteq \hat{l}\left(\Delta^{r}, f, t, q\right)$,
ii) $\quad \hat{l}\left(\Delta^{r}, f, p, q\right) \subseteq \hat{l}\left(\Delta^{r}, f, p, q, s\right)$.

Proof. Let $x \in \hat{l}\left(\Delta^{r}, f, p, q\right)$. This implies that

$$
f\left(q\left(\Delta^{r} \phi_{i n}(x)\right)\right) \leq 1
$$

for sufficiently large values of i , say $\mathrm{i} \geq m_{0}$ for some fixed $m_{0} \in N$. Since f is increasing, we have

$$
\sum_{m \geq m_{0}}^{\infty}\left[f\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{t_{m}} \leq \sum_{m \geq m_{0}}^{\infty}\left[f\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{p_{m}}<\infty .
$$

This shows that $x \in \hat{l}\left(\Delta^{r}, f, t, q\right)$.
The proof of (ii) is trivial.

3. Composite space $\hat{l}\left(\Delta^{r}, f^{v}, p, q, s\right)$ using composite modulus function f^{v}

Taking modulus function f^{v} instead of f in the space $\hat{l}\left(\Delta^{r}, f, p, q, s\right)$, we can define the composite space $\hat{l}\left(\Delta^{r}, f^{v}, p, q, s\right)$ as follows:

Definition 3.1. For a fixed natural v, we define
$\hat{l}\left(\Delta^{r}, f^{v}, p, q, s\right)=\left\{x \in w(\mathrm{X}): \sum_{m=1}^{\infty} m^{-s}\left[f^{v}\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right]^{p_{m}}<\infty\right.\right.$ uniformly in n$\}$.
Theorem 3.2. For any modulus function f and $v \in \mathbb{N}$,
$\hat{l}\left(\Delta^{r}, f^{v}, p, q, s\right) \subseteq \hat{l}\left(\Delta^{r}, p, q, s\right)$ if $\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\beta>0$,
(ii) $\hat{l}\left(\Delta^{r}, p, q, s\right) \subseteq \hat{l}\left(\Delta^{r}, f^{v}, p, q, s\right)$ if there exists a positive constant α such that $\mathrm{f}(\mathrm{t}) \leq \alpha t$ for all $t \geq 0$.

Proof. Let $\in \hat{l}\left(\Delta^{r}, f^{v}, p, q, s\right)$. Following the proof of Proposition 1 of Maddox [10], we have $\beta=\lim _{t \rightarrow \infty} \frac{f(t)}{t}$ $=\inf \left\{\frac{f(t)}{t}: \mathrm{t}>0\right\}$, so that $0 \leq \beta \leq \mathrm{f}(1)$. Let $\beta>0$.

By definition of β we have $\beta t \leq \mathrm{f}(\mathrm{t})$ for all $\mathrm{t} \geq 0$. Since f is increasing we have $\beta^{2} \mathrm{t} \leq f^{2}(\mathrm{t})$. So by induction, we have $\beta^{v} \mathrm{t} \leq f^{v}(\mathrm{t})$. Now using inequality (2),

$$
\begin{aligned}
\sum_{m=1}^{\infty} m^{-s}\left[q\left(\Delta^{r} \phi_{m n}(x)\right)\right]^{p_{m}} & \leq \sum_{m=1}^{\infty} m^{-s}\left[\beta^{-v} f^{v}\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{p_{m}} \\
& \leq \max \left(1, \beta^{-v H}\right) \sum_{m=1}^{\infty} m^{-s}\left[f^{v}\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{p_{m}}
\end{aligned}
$$

Hence $x \in \hat{l}\left(\Delta^{r}, p, q, s\right)$.
(ii) Let $\in \hat{l}\left(\Delta^{r}, p, q, s\right)$. Since $\mathrm{f}(\mathrm{t}) \leq \alpha t$ for all $\mathrm{t} \geq 0$ and f is increasing, we have $f^{v}(\mathrm{t}) \leq \alpha^{v} t$ for each $v \in$ \mathbb{N}. Again, using (2), we have

$$
\sum_{m=1}^{\infty} m^{-s}\left[f^{v}\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{p_{m}} \leq \max \left(1, \alpha^{v H}\right) \sum_{m=1}^{\infty} m^{-s}\left[q\left(\Delta^{r} \phi_{m n}(x)\right)\right]^{p_{m}}
$$

Hence $x \in \hat{l}\left(\Delta^{r}, f^{v}, p, q, s\right)$ and this completes the proof.
Example 3.3. $f_{1}(\mathrm{t})=t+t^{1 / 2}$ and $f_{2}(\mathrm{t})=\log (1+\mathrm{t})$ for all $\mathrm{t} \geq 0$ satisfy the conditions given in Theorem 3.2(i), (ii) respectively.

Theorem 3.4. Let $i, v \in \mathbb{N}$ and $i<v$. If f is a modulus such that $\mathrm{f}(\mathrm{t}) \leq \alpha t$ for all $\mathrm{t} \geq 0$, where α is a positive constant, then
$\hat{l}\left(\Delta^{r}, p, q, s\right) \subseteq \hat{l}\left(\Delta^{r}, f^{i}, p, q, s\right) \subseteq \hat{l}\left(\Delta^{r}, f^{v}, p, q, s\right)$.
Proof. Let $j=v-i$. Since $f(t) \leq \alpha t$, we have $f^{v}(\mathrm{t})<M^{j} f^{i}(t)<M^{v} t$, where $M=1+$ $[\alpha]$. Let $x \in \hat{l}\left(\Delta^{r}, p, q, s\right)$. By the above inequality and using (2), we get
$\begin{aligned} & \sum_{m=1}^{\infty} m^{-s}\left[f^{v}\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{p_{m}}<M^{j H} \sum_{m=1}^{\infty} m^{-s}\left[f^{i}\left(q\left(\Delta^{r} \phi_{m n}(x)\right)\right)\right]^{p_{m}} \\ &<M^{v H} \sum_{m=1}^{\infty} m^{-s}\left[q\left(\Delta^{r} \phi_{m n}(x)\right)\right]^{p_{m}}\end{aligned}$

$$
<M^{v H} \sum_{m=1}^{\infty} m^{-s}\left[q\left(\Delta^{r} \phi_{m n}(x)\right)\right]^{p_{m}}
$$

Hence the required inclusion follows.

REFERENCES

[1] S. Banach, Théorie des opérations linéaires, Warszawa, 1932.
[2] G. Das, Banach and other limits, J. London Math. Soc., 7(2)(1973), 501-507.
[3] G Das, B. Kuttner and S Nanda, Some sequence spaces and absolute almost convergence, Trans. Amer. Math. Soc., 283(2)(1984), 729-739.
[4] M. Et and R. Colak. On some generalized difference sequence spaces. Soochow J. Math., 21(1995), 377386.
[5] M. Et and F. Nuray, Δ^{m}-statistical convergence, Indian J. Pure Appl. Math., 32(6) (2001), 961-969.
[6] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(1981), 169-176.
[7] G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math.,80(1948), 167-190.
[8] I.J. Maddox, Elements of functional analysis, Cambridge Univ. Press, 1970.
[9] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb Philos. Soc., 100(1986), 161-166.
[10] I.J. Maddox. Inclusion between FK spaces and Kuttner's theorem, Math. Proc. Camb. Philos. Soc., 101(1987), 523-527.
[11] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
[12] S. Pehlivan and B. Fisher, On some sequence spaces, Indian J. Pure Appl. Math, 25(10)(1994), 1067-1071.
[13] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
[14] A. Wilansky, Functional analysis, Blaisdell Publishing Company, New York, 1964.
[15] A. Wilansky, Modern methods in topological vector spaces, McGraw-Hill, 1978.

