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ABSTRACT 

In his lost notebook, Ramanujan has stated a beautiful two variable reciprocity theorem. Its 

three and four variable generalizations were recently, given by Kang. In this paper, we give new 

and an elegant approach to establish all the three reciprocity theorems via their finite forms. Also 

we give some applications of the finite forms of reciprocity theorems. 
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Introduction : 

 In this section, we obtain the generalizations of using Reciprocity theorem. Further, we 

deduce an interesting identity which contains the Jacobi’s identity as a special case. There from we 

obtain a number of identities involving theta functions which are analogous to the theta function 

identities found in Ramanujan’s second notebook [99]. 

Definition 1.1 

We define F(a,b,c) by 
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Where 
11, , ; 0,1,2,...,.n n n nab c a b a b n     
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Then, we have 

    , ,0 , ,F a b f a b  

Where (a, b) is the Ramanujan’s theta function. 

Theorem 1.2. 

We have 
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Proof. Changing 2q to q and z to z q  and then setting qz a and q z b   in the resulting identity 

we obtain (1.3) 

Theorem 1.3 

We have 
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Proof. 

Changing 2,q to q z to z q  c to cq 

We obtain 
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Replacing q by qk and z by p mz q , (1.4) can be written as 
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Change q to 1 2q  in (1.5), multiply the resulting identity throughout by ,xz  to obtain 
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Differentiating 

(1.6) with respect to z and setting z = 1, we obtain (1.3) on using (1.2). 

Change q to qk, z to -zpqm in (1.5); replace q by 1 2q  in the resulting identity and 

multiply throughout by zx; differentiate the resulting identity with respect to and set z = 1, 

and use (1.2) to obtain (1.4). 
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Theorem 1.4.  

We have 
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Proof. (2.1.1)  can be written as 
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Multiplying (1.8) throughout by 
1

z

z
 and then taking the limits as 1,z   we obtain (1.9). 

Corollary 1.5 
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Proof. Setting c = -q, we obtain (1.9). 

Corollary 1.6 
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Corollary 1.7 
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Proof. Changing q to q2 and then setting c =-q, we obtain (1.11). 

The Ramanujan’s reciprocity theorem found in his lost notebook [101], can also be stated as 

: 
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   (1.12) 

where 1, 0, 1, ,     nq z c q  where n Z  . In fact setting a cz q and b c q    we obtain 

(1.12) of the present paper we give proof of (1.11). 

 The firs proof is based on the well-known Euler-Cauchy q-binomial theorem. 
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