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1. INTRODUCTION: 

Many researchers have studied the Bayes Estimators of m, β1 and β2 under Linex Loss Function and 

General Entropy Loss Function which are Asymmetric in nature. It was found that those estimators were of 

changing auto regressive process with normal error. Zacks (1983) and Tsurumi (1987) are the noteworthy 

and useful references on structural changes. Later on further research was carried out where the experts 

studied the Bayesian Analysis of the Autoregressive Model 𝑿𝒕 = 𝜷𝟏 𝑿𝒕−𝟏 + 𝜺𝒕 (where t = 1, 2,…,m) and 𝑿𝒕 

= 𝜷𝟐 𝑿𝒕−𝟏 + 𝜺𝒕 (where t = m+1,…,n) and also 0 < 𝜷𝟏, 𝜷𝟐 < 1. It was found at the end of the research work 

that 𝛆𝐭 was an independent random variable with an exponential distribution with mean 𝜽𝟏 and it gets 

reflected in the sequence after 𝜺𝒎 is changed in mean 𝜽𝟐. 

2. PROPOSED FIRST ORDER AUTOREGRESSIVE AR (1) MODEL: 

Let us assume the first order autoregressive model AR (1) as under: 

𝑿𝒊 =  {
𝜷𝟏𝑿𝒊−𝟏 +  𝝐𝒊,         𝒊 = 𝟏, 𝟐, … , 𝒎.

  𝜷𝟐𝑿𝒊−𝟏 +  𝝐𝒊,        𝒊 = 𝒎 + 𝟏, … , 𝒏.
       (1) 

where, 𝜷𝟏 and 𝜷𝟐 are unknown autocorrelation coefficients, 𝒙𝒊  is the ith observation of the dependent 

variable, the error terms 𝝐𝒊 are the independent random variables following the normal distribution with N(0, 

𝝈𝟏
𝟐) for i = 1,2,…,m and N( 0, 𝝈𝟐

𝟐) for i = m+1,…,n and 𝝈𝟏
𝟐 and 𝝈𝟐

𝟐 both are known. Here, we note that ‘m’ 

is the unknown change point and 𝒙𝟎  is the initial quantity. 

3. BAYES ESTIMATION PROCEDURE: 

We clearly know that the procedure of Bayes Estimation is totally based on a posterior density, say, 

𝒈(𝜷𝟏, 𝜷𝟐, 𝒎 | 𝒁), which is proportional to the product of the likelihood function L(𝜷𝟏, 𝜷𝟐, 𝒎 | 𝒁), with a 

joint prior density, say, g(𝜷𝟏, 𝜷𝟐, 𝒎) representing uncertainty on the values of parameters. 

Hence, the likelihood function of 𝜷𝟏, 𝜷𝟐 and 𝒎, given the sample information  

𝒁𝒕 = (𝒙𝒕−𝟏, 𝒙𝒕) where t = 1, 2... , m, m+1…, n will be: 

𝐿(𝛽1, 𝛽2, 𝑚|𝑍) = 𝐾1 . 𝑒𝑥𝑝 (−
1

2
𝛽1

2 (
𝑆𝑚1

𝜎1
2

) + 𝛽1 (
𝑆𝑚2

𝜎1
2

) −
𝐴𝟏𝒎

2𝜎1
2

) . 𝑒𝑥𝑝 (−
1

2
𝛽2

2 (
𝑆𝑛1

− 𝑆𝑚1

𝜎2
2

)

+ 𝛽2 (
𝑆𝑛2

− 𝑆𝑚2

𝜎2
2

) −
𝐴𝟐𝒎

2𝜎2
2

) 𝜎1
−𝑚 𝜎2

−(𝑛−𝑚)
 

(2) 

where we have: 

𝑺𝒌𝟏
=  ∑ 𝒙𝒊−𝟏

𝟐

𝒌

𝒊=𝟏 

 𝑺𝒌𝟐
=  ∑ 𝒙𝒊 𝒙𝒊−𝟏

𝒌

𝒊=𝟏 
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𝑨𝟏𝒎
=  ∑ 𝒙𝒊

𝟐

𝒎

𝒊=𝟏 

 𝑨𝟐𝒎
=  ∑ 𝒙𝒊

𝟐

𝒏

𝒊=𝒎+𝟏 

 

𝒌𝟏 = (𝟐𝝅)−
𝒏
𝟐 

           (3) 

4. POSTERIOR DENSITY OF CHANGE POINT USING INFORMATIVE PRIORS (NORMAL 

DISTRIBUTION) ON 𝜷1, 𝜷2: 

Here, we have derived the posterior density of change point m, β1 and β2 of the model explained in 

equation (1) under informative priors. 

Further, we have considered the AR (1) model as shown in equation (1) with unknown 𝝈−𝟐. Also, we 

suppose uniform prior of change point same as Broemeling (1987) and we also suppose that m, β1 and β2 are 

independent. 

Thus we can write 𝑔(𝑚) =  
1

𝑛−1
 

Now, the normal prior density on β1 and β2 will be: 

𝑔(𝛽1) =
1

√2𝜋𝑎1

𝑒
− 

1
2

 (
𝛽1
𝑎1

)
2

 

𝑔(𝛽2) =
1

√2𝜋𝑎2

𝑒
− 

1
2

 (
𝛽2
𝑎2

)
2

 

Hence, joint prior p.d.f. of β1, β2 and m will be the joint prior density say 𝒈(𝜷𝟏, 𝜷𝟐, 𝒎) which is as under: 

𝑔(𝛽1, 𝛽2, 𝑚) =
1

2𝜋𝑎1𝑎2 (𝑛−1)
 𝑒

− 
1

2
 (

𝛽1
𝑎1

)
2

𝑒
− 

1

2
 (

𝛽2
𝑎2

)
2

     (4) 

Now, using the likelihood function shown in equation (2) with the joint prior density in equation (4), the 

joint posterior density of 𝜷𝟏, 𝜷𝟐, 𝒎 say 𝒈(𝜷𝟏, 𝜷𝟐, 𝒎|𝒁) will be: 

𝑔(𝛽1, 𝛽2, 𝑚|𝑍) =
𝐾1

ℎ1(𝑧)
[𝐿(𝛽1, 𝛽2, 𝑚|𝑍) . 𝑔(𝛽1, 𝛽2, 𝑚)] 

=
𝐾2

ℎ1(𝑧)
[𝑒[− 

1
2

 𝛽1
2𝐴1 + 𝛽1𝐵1] 𝑒[− 

1
2

 𝛽2
2𝐴2+ 𝛽2  𝐵2] 𝑒

[− ( 
𝐴1𝑚
2𝜎1

2 + 
𝐴2𝑚
2𝜎2

2)] 
 ] 𝜎1

−𝑚 𝜎2
−(𝑛−𝑚)

 

(5) 

where we have: 

𝑲𝟐 =
𝑲𝟏

𝟐𝝅 𝒂𝟏𝒂𝟐 (𝒏−𝟏)
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𝑨𝟏 =
𝑺𝒎𝟏

𝝈𝟏
𝟐

+
𝟏

𝒂𝟏
𝟐
                   𝑩𝟏 =

𝑺𝒎𝟐

𝝈𝟏
𝟐
 

𝑨𝟐 =
𝑺𝒏𝟏−𝑺𝒎𝟏

𝝈𝟐
𝟐

+
𝟏

𝒂𝟐
𝟐
            𝑩𝟐 =

𝑺𝒏𝟐−𝑺𝒎𝟐

𝝈𝟐
𝟐

      (6) 

Here, we note that ℎ1(𝑍) is the marginal density of 𝑧 which is as under: 

ℎ1(𝑍) = ∑ ∫ ∫ 𝐿(𝛽1, 𝛽2, 𝑚 | 𝑋) . g(𝛽1, 𝛽2, 𝑚 )𝑑𝛽1𝑑𝛽2
 

𝛽2

 

𝛽1

𝑛−1
𝑚=1                

= ∑ 𝑒
[− ( 

𝐴1𝑚
2𝜎1

2 + 
𝐴2𝑚
2𝜎2

2)] 
𝜎1

−𝑚 𝜎2
−(𝑛−𝑚)

∫ 𝑒[− 
1

2
 𝛽1

2𝐴1 + 𝛽1𝐵1] ∞

−∞
𝑑𝛽1 ∫ 𝑒[−  

1

2
 𝛽2

2𝐴2+ 𝛽2  𝐵2] ∞

−∞
𝑑𝛽2

𝑛−1
𝑚=1   

= 𝑘3 ∑ 𝑇1(𝑚)𝑛−1
𝑚=1          (7) 

where we have: 

                         𝑇1(𝑚) =  𝑘𝑚𝐺1𝑚𝐺2𝑚                                                                       (8)  

𝐺1𝑚 =  ∫ exp [− 
1

2
 𝛽1

2𝐴1  +  𝛽1𝐵1] 𝑑𝛽1
∞

−∞
=

𝑒
𝐵1

2

2𝐴1 √2𝜋

√𝐴1
                                              (9)  

𝐺2𝑚 =  ∫ exp [−  
1

2
 𝛽2

2𝐴2 +  𝛽2  𝐵2] 𝑑𝛽2
∞

−∞
=

𝑒
𝐵2

2

2𝐴2 √2𝜋

√𝐴2
                                         (10)  

𝑘𝑚 = 𝑒
[− ( 

𝐴1𝑚
2𝜎1

2 + 
𝐴2𝑚
2𝜎2

2)] 𝜎1
−𝑚 𝜎2

−(𝑛−𝑚)

                                                                         (11)  

Now, the marginal posterior density of the change point m, 𝜷𝟏𝒂𝒏𝒅 𝜷𝟐 will be: 

𝑔1(𝑚|𝑥) =  
𝑇1(𝑚)

∑ 𝑇1(𝑚)𝑛−1
𝑚=1

                                                                                          (12)  

𝑔1(𝛽1|𝑋) =  
𝑘3

ℎ1(𝑋)
[∑ 𝑘𝑚𝑒[− 

1

2
 𝛽1

2𝐴1 + 𝛽1𝐵1] 𝑛−1
𝑚=1 ] 𝐺1𝑚                                           (13)  

𝑔1(𝛽2|𝑋) =  
𝑘3

ℎ1(𝑋)
[∑ 𝑘𝑚 𝑒[−  

1

2
 𝛽2

2𝐴2+ 𝛽2  𝐵2] 𝑛−1
𝑚=1 ] 𝐺2𝑚                                        (14)  

Here, 𝑮𝟏𝒎 , 𝑮𝟐𝒎 and 𝒌𝒎  are same as defined and shown in equations (9), (10) and (11) respectively. 

Now, the Bayes estimator of any function of parameter 𝛼, say 𝑔(𝛼) under the squared loss function is, 
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   𝑬𝜶|𝒛(𝒈(𝜶|𝒁)) = ∫ 𝜶(𝒈(𝜶|𝒁))
∞

𝟎
𝒅𝜶      (*)  

Here, g (α | Z) is marginal posterior density of α. It is very complicated to compute the equation (*) 

analytically in this case. Therefore, we shall apply MCMC methods to find the Bayes Estimates of β1, β2 and 

m. 

5. ALGORITHM USING GIBBS SAMPLING TECHNIQUE: 

We can easily identify the full conditional distribution g (αi|Z, αj) where j≠i up to proportionality by 

regarding g (α|Z) as a function of αi (i = 1,…, k) only, corresponding to all other αj, where j≠i, to be fixed 

given a posterior distribution g (α|Z) for unknown parameters α = (α1,…, αk) defined, at least up to 

proportionality, by multiplying the likelihood function with the corresponding prior distribution. 

For implementing the Gibbs Sampling Technique, we have to re-write equation (13) as the full 

conditional of 𝜷𝟏 by fixing all other parameters i.e. 𝜷𝟐 and m. Hence full conditional density of 𝜷𝟏 given 𝜷𝟐 and 

m is as follows: 

𝑔(𝛽1 | 𝛽2, 𝑚, 𝑍) ∝ 𝑁 (
𝐵1

𝐴1
 , (

1

√𝐴1
)

2

 )               (15) 

where A1 and B1 are the same as shown in equation (6). 

Now we shall re-write equation (14) as full conditional density of 𝜷𝟐 by fixing all other parameters 𝜷𝟏 and m. 

Hence, we get the full conditional density of 𝜷𝟐 given 𝜷𝟏, 𝜎-2 and m is as follows: 

𝑔(𝛽2 | 𝛽1, 𝑚, 𝑍) ∝ 𝑁 (
𝐵2

𝐴2
 , (

1

√𝐴2
)

2

 )              (16) 

where A2 and B2 are the same as shown in equation (6). 

Now, in order to estimate the parameters 𝜷𝟏 and 𝜷𝟐, we shall apply the Gibbs Sampling Technique to generate 

sample from the full conditional density of 𝜷𝟏 and 𝜷𝟐 which are given respectively in the equations (15) and 

(16). We shall use the Gibbs Sampling Algorithm which is as under: 

Initialize 𝜷𝟏 = 𝜷𝟏𝟎, 𝜷𝟐 = 𝜷𝟐𝟎 and 𝒎 = 𝒎𝟎 and then follow the steps given below. 

Step-1: Generate 𝛽1~𝑁 (
𝐴1

𝐵1
, (

1

√𝐵1
)

2

), using Gibbs Sampling Technique.  

Step-2: Generate 𝛽2~𝑁 (
𝐴2

𝐵2
, (

1

√𝐵2
)

2

), using Gibbs Sampling Technique. 

Step-3: Repeat the above steps. 
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6. APPLYING MCMC TECHNIQUES: 

Here, we notice that the posterior distribution of the change point shown in equation (12) has no closed 

form. Hence, we propose to use MCMC techniques to generate the samples from the posterior distribution. To 

implement the MCMC Techniques, we re-write equation (12) as target function of m, by fixing all other 

parameters i.e. 𝜷𝟏 and 𝜷𝟐. Hence target function of m given 𝜷𝟏 and 𝜷𝟐 will be:  

𝑔(𝑚 |𝛽1, 𝛽2 , 𝑍) ∝  𝑘𝑚 𝑒[− 
1

2
 𝛽1

2𝐴1 + 𝛽1𝐵1] 𝑒[− 
1

2
 𝛽2

2𝐴2 + 𝛽2𝐵2] 
   (17) 

where A1, B1, A2, B2  𝒂𝒏𝒅 𝒌𝒎 are the same as shown in the equations (6) and (11) respectively. 

7. APPLICATION TO GENERATED DATA USING NUMERICAL EXAMPLE: 

Let us assume an AR (1) model as under: 

𝑿𝟏 =  {
𝟎. 𝟏 𝑿𝒊−𝟏 + ∈𝒊 , 𝒊 = 𝟏, 𝟐, … , 𝟏𝟎

   𝟎. 𝟑 𝑿𝒊−𝟏 + ∈𝒊  ,   𝒊 = 𝟏𝟏, 𝟏𝟐, . . . , 𝟐𝟎
     (18) 

Here, in the above equation, the error terms 𝝐𝒊 are independent random variables following Normal 

Distribution 𝑵(𝟎, 𝟏) for i = 1,2,…,10 and 𝑵(𝟎, 𝟒) for i = 11,12,13,…,20. Also we note that here 𝝈𝟏
𝟐 and 𝝈𝟐

𝟐 

are known. Further, we note that m is the unknown change point and 𝒙𝟎 = 𝟎. 𝟏 is the initial quantity. Here, 

we have generated 20 random observations from the proposed AR (1) model given in equation (18). Out of 

total twenty random observations, the first ten observations are from normal distribution with 𝝈𝟏
𝟐= 1 and 

next ten observations are from normal distribution with 𝝈𝟐
𝟐 = 4. Also, we note that 𝜷𝟏 and 𝜷𝟐 themselves 

are random observations from the normal distribution with prior means 
𝟏
 = 0.1, 

𝟐
 = 0.3 and variances 𝒂𝟏 

= 0.1 and 𝒂𝟐 = 0.1. These observations are given in the following TABLE 1. 

TABLE 1 

GENERATED OBSERVATIONS FROM PROPOSED AR (1) MODEL 

i 1 2 3 4 5 6 7 8 9 10 

Xi 0.167 -0.204 0.399 -0.259 -0.784 -1.058 0.819 0.404 1.215 1.537 

   ∈𝒊 0.157 -0.221 0.420 -0.299 -0.758 -0.979 0.925 0.322 1.175 1.416 

i 11 12 13 14 15 16 17 18 19 20 

Xi -3.833 -16.173 9.441 11.857 20.645 1.458 13.249 -9.335 19.812 30.657 

   ∈𝒊 -4.294 -15.023 14.293 9.025 17.088 -4.734 12.812 -13.310 22.613 24.713 

 

Here, the target function is bounded. In order to generate a random sample using the RWM-H 

algorithm, the selected proposal is uniform (2, 19) same as prior, which is symmetric around 10 with small 
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steps. The initial distribution is chosen as uniform (1, 19). Further, we truncate the initial distribution and 

then we get integer value of the Bayes Estimate of change point (m) as 10, when selected proposal is 

uniform (1, 19) and initial distribution is uniform (3, 14). Here, the results are shown in TABLE 2 for the 

data given in TABLE 1 when given value of 𝜷𝟏 = 0.1, 𝜷𝟐 = 0.3, 𝝈𝟏
𝟐 = 1 and 𝝈𝟐

𝟐 = 16. 

TABLE 2 

BAYES ESTIMATES OF CHANGE POINT (m) USING RWM-H ALGORITHM UNDER 

SQUARED ERROR LOSS FUNCTION 

Bounded Selected 

Proposal 

Initial 

Distribution 

Bayes Estimate of 

change point (𝒎) 

Integer value of Bayes Estimate of 

change point (𝒎) 

BD (2,19) U (1,19)  U (1,19) 8.4 8 

BD (2,19) U (2,19)  U (2,19) 8.6 9 

BD (3,19) U (1,19)  U (1,19) 10.3 10 

BD (3,19) U (1,19)  U (3,14) 10.2 10 

 

Further, we also compute the Bayes Estimates of ‘m’ using RWM-H algorithm for different priors under 

consideration for the data given in TABLE 1. The results are shown in the following TABLE 3. 

TABLE 3 

BAYES ESTIMATES OF CHANGE POINT (𝒎) USING RWM-H ALGORITHM UNDER 

SQUARED ERROR LOSS FUNCTION FOR DIFFERENT PRIORS UNDER CONSIDERATION 

Serial Number 𝒂𝟏
𝟐 𝒂𝟐

𝟐 
Bayes Estimate of change point (m)  

(Posterior Mean) 

1 0.0100 0.01 10 

2 0.0400 0.04 10 

3 0.0490 0.04 10 

4 0.0550 0.09 10 

5 0.0600 0.25 10 

6 0.0625 0.49 10 

7 0.0900 0.64 10 

8 0.4900 0.81 10 

9 0.8100 1.00 10 

10 1.0000 4.00 10 

 

Now we compute the Bayes Estimates of 𝜷𝟏 (when given value of 𝜷𝟐 = 0.3, m = 10, 𝜎1
2 = 1 and 𝜎2

2 = 16) 

and 𝜷𝟐 (when given value of 𝜷𝟏 = 0.1, m = 10, 𝜎1
2 = 1 and 𝜎2

2 = 16) using Gibbs Sampling and MCMC 

algorithm for different priors under consideration for the data given in TABLE 1. The results are shown in 

the following TABLE 4. 
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TABLE 4 

BAYES ESTIMATES OF 𝜷𝟏 AND 𝜷𝟐 USING GIBBS SAMPLING MCMC ALGORITHM UNDER 

SQUARED ERROR LOSS FUNCTION FOR DIFFERENT PRIORS UNDER CONSIDERATION 

Serial  

Number 
𝒂𝟏

𝟐 𝒂𝟐
𝟐 

Bayes Estimates of 
S.D. of Bayes Estimates 

of 

β1 β2 β1 β2 

1 0.0100 0.01 0.025 0.255 0.048 0.008 

2 0.0400 0.04 0.090 0.305 0.048 0.008 

3 0.0490 0.04 0.107 0.305 0.048 0.008 

4 0.0550 0.09 0.118 0.344 0.048 0.008 

5 0.0600 0.25 0.126 0.367 0.048 0.008 

6 0.0625 0.49 0.130 0.374 0.048 0.008 

7 0.0900 0.64 0.172 0.376 0.048 0.008 

8 0.4900 0.81 0.415 0.377 0.048 0.008 

9 0.8100 1.00 0.475 0.378 0.048 0.008 

10 1.0000 4.00 0.496 0.381 0.048 0.008 

 

FIGURE 1 shows the graph of the full conditional of 𝛽1 when a sample of size 10,000 is generated. Here, 

Gibbs Sampling with MCMC algorithm has been run for β2 = 0.3, m = 10, 𝜎1
2 = 1 and 𝜎2

2 = 16. 
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FIGURE 2 shows the graph of the full conditional of 𝜷𝟐 when a sample of size 10,000 is generated. Here, 

Gibbs Sampling with MCMC algorithm has been run for 𝛃𝟏 = 0.1, m = 10, 𝜎1
2 = 1 and 𝜎2

2 = 16. 
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