CROP YIELD RECOMMENDATION SYSTEM BASED ON PRODUCTIVITY USING MACHINE LEARNING ALGORITHM

AMIRTHAVARSHINI .V¹, MEGA .S² ,SOWMIYA .A³ , Mr.J.SANTHANAKRISHNAN⁴

^{1,2,3} B.E., Final Year Students, ⁴Assistant Professor

Department of Computer Science and Engineering - University College of Engineering Thirukkuvalai.

(A Constituent College of Anna University::Chennai and Approved by AICTE, New Delhi)

ABSTRACT:

A limitless measure of the population of India considers farming as its primary occupation. The production of crops plays an crucial part in our country. Farming is a spinal cord for an enhancing financial system in India and there is an enormous need to maintain the agricultural financial development. It is a consequential contribution towards the economic and agricultural prosperity of the countries across the world. Low production of crops is often due to unpredictable whether condition. The motto of this paper is to propose an ML (machine learning) based agriculture system that can assist farmers or agriculturist in prediction of crop yield condition. The data sensed by these sensors is stored on the microcontroller and analyzed using machine learning algorithms like random forest and light GBM based on which suggestions for the growth suitable crops are made. Based on different condition of field factors we recommend the crops.

KEYWORDS:

crop prediction, crop recommendation, machine learning, support vector machine(SVM),random forest, decision tree, k-nearest neighbor(KNN).

INTRODUCTION:

Agriculture is crucial area for the Indian economy and human survival. It is one of the primary occupation which is essential for human life. Similarly, it contributes a wide part to our day to day life .In most cases agriculturist commit suicide due to production loss because they are not able to pay the bank loans taking for farmers purposes. We have perceived in present times that the climate is changing persistently which is harmful to the crops and leading agriculturist towards debts and suicide. Precision agriculture plays an significant role in the recommendation of crops. The recommendation of crop is dependent on various parameters.Machine learning focuses on the algorithm like supervise, unsupervised and reinforcement learning and each of them has its advantages and disadvantages.

This paper aims to recommend the most suitable crop based on input parameters like Nitrogen (N), Phosphorous(P), Potassium(K), PH value of the soil, Humidity, Temperature, and Rainfall . This paper predicts the accuracy of the future productions of the crops like rice, maize, mango, wheat, turmeric, banana etc....Various supervised machine learning approaches used in India to recommend the most suitable crops. The dataset contains like parameters various Nitrogen(N), Phosphorous(P), Potassium(K), PH value of soil,Humidity,Temperature and rainfall. This proposed system applied various kinds of machine learning like KNN(K nearest neighbor),Support Vector Machine(SVM),Random Forest(RF), Decision trees and Light GBM.

DATA COLLECTION:

The data related to the environmental factors like rainfall, climate, temperature, soil type, season and varieties are collected from the government website like <u>www.tnagrisnet.tn.gov.in</u> and <u>www.tnau.in</u> provides extensive paddy data.

The important attributes of the datasets are

Soil type: red soil(62%),black soil(12%),laterite soil(3%),coastal soil(7%).

Average rainfall: Rainfall variations immensely affects soil water accessibility to crops from season to season

Temperature: Dominates plant growth and development.

LITERATURE REVIEW

YEAR	AUTHOR	TITLE OF THE PAPER	ALGORITHM/METHODOLOGIES/ TECHNIQUES	FINDINGS
2019	Konstantinos	Machine learning	ANN Algorithm	Machine learning
	G.Liakos	In agriculture: A		is used for predict
		Review		the future
				demand
2020	Shreya S.	Crop and yield	KNN Algorithm	Crop yield
	Bhanose, Kalyani	prediction model		condition is
	A. Bogawar			predicted
2020	Avinash Jain,	Application of	COLLABORATIIVE	Its used for
	Kiran Kumar	recommendation	FILTERING	recommendation
		engines in	RECOMMENDATION	of agriculture
		agriculture	ALGORITHM	using
				collaborative
				filter
2021	Rajeswari and	Analysing Soil	HYBRID	Its predict the soil
	K.Arunesh	Data using Data	RECOMMENDATION	conditions
		Mining	ALGORITHM	
		Classification		
		Techniques		

JETIR2206205 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> c54

COMPARATIVE STUD

Types of crops	Attributes	Datasets	Methodology	Accuracy
Various crops	Temperature Rainfall, Humidity,	Kaggle website	RF,DT	RF gives best accuracy result
Rice,Jowar,Wheat, Soya beans,Sun flower,Cotton Sugar cane,Tobacco,Onion Dry chilli Groundnut pulses	Soil nutrients, location, data, weather information, temperature, humidity, Atmospheric pressure Soil characteristics soil	Online sources	SVM,RF	SVM=99.47% RF=97.48% RF gives
 cotton, vegetable, paddy Millet, groundnut , pulses, cotton, vegetables, Banana, Paddy, Sugarcana 	types,weather Soil characteristics, Soil types	Maharashtra, India Madurai, Tamilnadu, India	RF,CHAI D,KNN,N B RF,CHAI D,KNN,N B	accuracy result RF=88%
Coriander Rice, Ragi, Gram, Potato, Onion	Precipitation, Cloud cover, Area, Pressure, Season	Andhra pradesh	RF,LR,DT ,SVM	MV=94.78%
Millet,Groundnut,P ulses,Cotton,Vegeta bles,Banana,Paddy, Coriander	Soil characteristics, Soil types, Crop yield, Data collection	Online sources	RT,KNN, NB	RT gives the best accuracy result
Various crops	Seasonal soil, weather	Database server	CHAID,K NN,K means, DTNN,N B, LAD	SVM gives best accuracy results
Bajra,Jowar,Maize, Rice,Wheat,Barley, Cotton,Groundnut, Gram,Jute,Potato,R agi,Mustard,Sesame ,Sugarcane,Sun flower, Tobacco	Season, Geographical locations, soil characteristics, Temperature, Rainfall	Data contains from 13 major state of India	DT,KNN, RF,NN	DT=90.20% KNN=89.78% R=90.43% NN=91.00%
Cotton, Sugarcane, Rice, Wheat	Soil type, pH value, NPK value, Rainfall, Temperature, Sowing season	Government of India(data.gov.in)	RF, NB, linear, SVM	The average accuracy of crop classification into kharif and rabi crops is 99.91%

MACHINE LEARNING TECHNIQUES:

Using repository from various sources , enormous non linear complication could be autonomously solved by machine learning techniques.ML authorizes finer decision making with minimal human intervention in real world scenarios.ML not only produce a dynamic framework for data driven decision making , but also malleable for incorporation of eminent knowledge into system.ML is clustered into supervised or unsupervised learning .

In this paper we use light GBM which comes under supervised learning.

LIGHTGBM:

LightGBM is a gradient boosting framework which increases the potency of the model and reduces memory usage. LightGBM is a quick , distributed, high performance framework based decision tree algorithmic program. Used for ranking, classification and many other machine learning task. The significance of lightGBM are quicker training speed and higher potency, better accuracy than any other boosting algorithms, capable of large number of data, compatibility with enormous datasets.

$$\begin{split} & \text{Mathematical equation:} \\ & \tilde{v}_j(d) = 1/n \; (\Sigma x \left\{ \; (\Sigma_{xi \in A1} gi + 1 \text{-} a/b \; \Sigma_{xi} \in B1^{g}_i)^2 \; / n_1{}^j(d) \right. \\ & \left. + (\Sigma_{xi} \in Ar^{g}_i + 1 \text{-} a/b \; \Sigma_{xi} \in Br^{g}_i)^2 \; / n_r{}^j(d) \; \right\} \end{split}$$

ARCHITECTURE:

In our framework, we have proposed a procedure that is separated into various stages as appeared in Figure

The five phases are as per the following:

- 1) Collection of Datasets
- 2) Pre-processing (Noise Removal)
- 3) Feature Extraction
- 4) Applied Various Machine Learning Algorithm
- 5) Recommendation System
- 6) Recommended Crop

EXPERIMENTAL RESULTS:

Here,

Blue represents Decision tree

Orange represents Naive bayes

Green represents Support Vector Machine(SVM)

Red represents Logistic Regression

Violet represents Random forest(RF)

Brown represents Light GBM.

)	15506 0	
Algorithm	Performance	171.
Decision tree	0.9	Soil Characteris
Naive Bayes	0.990909091	*
SVM	0.106818181	
Logistic	0.952272723	Environmental Characteristics
Regression		Acquisition o Training Dat
RF	0.9909091	
LGBM	0.99428181827	

RESULT AND DISCUSSIONS:

Before the suggested model in crop recommendation system we observe the features such as climate, soil nature, temperature, rainfall. With this we will assure that the agriculturists to get a supreme yield .It also helps to overcome the less production by recommending suitable crops for appropriate field.

Algorithm	Accuracy
Decision tree(DT)	90%
Naïve bayes(NB)	98%
Support Vector	10.68%
Machine(SVM)	
Random forest(RF)	99%
Light GBM	99.52%

CONCLUSION:

The proposed work will welfare agriculturists to enhance productivity agriculture in .By recommending the right crop considering various attributes. The proposed work aids agriculturists

to accurately select the crops for cultivation and attain sustainability.In upcomimg days the proposed system can be extended to consider market demand and availability of market infrastructure.This would deliver a comprehensive predictions on the basis of environmental factors.

REFERENCE:

- [1] Shreya S. Bhanose, Kalyani A. Bogawar(2016)"Crop And Yield Prediction Model", International Journal of Advance Scientific Research and Engineering Trends, Volume 1, April 2016
- [2] Tripathy, A.k.,et al.(2011) :Data mining and wireless sensor network for agriculture pest/disease predictions. "Information and Communication Technology(WICT),2011 World Congress on. IEEE.
- [3] Ramesh Babu Palepu(2017) " An Analysis of agriculture Soils by using Data Mining Techniques", International Journal of Engineering Science and Computing, Volume 7 Issue No.10 October.
- [4] Rajeswari and K.Arunesh (2016) "Analysing Soil Data using Data Mining

Classification Techniques", Indian Journal of Science and Technology, volume 9, May.

- [5] A.Swarupa Rani(2017), "The Impact of Data Analytics in Crop Management based on Weather Conditions", International Journal of Engineering Technology Science and Research, Volume 4, Issue 5, May.
- [6] S.Mamatha Jaipur, Soumya N.G., G.T. Raju "International Journal of Innovative Technology and Exploring Engineering, Volume-9, Issue-2S, December 2019.