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Abstract:  The Wavelet Transform is a relatively discovery in signal and image processing that allows us to simultaneously analyse temporal 

and frequency data. The enormous research on the topic necessitates a mathematical study. Linear algebra and Wavelet have a solid 

relationship. As a result, the investigation takes a linear algebra method. In this study, we examine Daubechies wavelet transforms 

approximation and details spaces using a representation based on linear maps and their accompanying properties. 
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1. Introduction 

The wavelet transform (WT) is a fast-growing tool for time-frequency analysis [1], [2]. If we need temporal information, the Fourier 

transform (FT) is an excellent tool to apply, as it is beneficial in analyzing stationary signals [3]. However, for non-stationary signals, the 

FT transform only gives the signal's overall frequency content, and temporal information is lost. Both time and frequency information are 

required in many signal and image processing applications. The advent of the wavelet transform, which decomposes data into multiple 

frequency bands, is a significant invention in this discipline. The inner product of the signal with the wavelet and scaling functions yields 

WT. 

An essential quality of WT is Multi resolution analysis [4], which is satisfied by the Daubechies family of wavelets. In our study, we have 

considered the Daubechies family for the mathematical construction of the WT. 

 

2. Preliminaries 

A wavelet is a tiny wave that decays rapidly and integrates to zero. The wavelet transformations express a signal f(t) using a single wavelet 

called the mother wavelet  𝜑𝑑(𝑡)  and its dilations and translations, resulting in a time-frequency representation. There are various wavelets, 

the most well-known of which is the Daubechies family [5]. This family has finite vanishing moments and compact support [6]. Daubechies 

family of wavelets follows Multi-Resolution Analysis (MRA) [7]. As a result of MRA, we have two functions  𝜑𝑑(𝑡) and  Ψ𝑑  (𝑡) whose 

dyadic translations form the approximation and detail spaces. The functions denote the dyadic translates  𝜑𝑑
𝑗,𝑘
(𝑡) and   Ψ𝑑𝑗,𝑘(𝑡)  are given 

below [8], [9], 

 𝜑𝑑
𝑗,𝑘
(𝑡) = 2−

𝑗

2 𝜑𝑑(2−𝑗𝑡 − 𝑘), 𝑗, 𝑘 𝜖 ℤ                                 (1) 

 Ψ𝑑𝑗,𝑘(𝑡) = 2
−
𝑗

2 Ψ𝑑(2−𝑗𝑡 − 𝑘), 𝑗, 𝑘 𝜖 ℤ                                 (2) 

 

  Next are some mathematical theories we have used in this paper. 

 

Definition 2.1. Null space [10]:  Let T be a linear map from a vector space V into a vector space W. Null space of T denoted by N(T ) is the 

set of elements in V that are mapped to the zero vector in W that is N(T ) = {v ∈ V: T (v) = 0} which is always a subspace of V. If V is of 

finite dimensional dim(N(T )) is called Nullity of T. 

Definition 2.2. Rank of T [11]: Rank of T is the dimension of the Range of T. 

 

3. Daubechies Wavelet Transform Properties [12] 

In the coming sections, we will discuss the mathematical concepts in the Daubechies wavelet transform. 

 

3.1 Approximation Space in Daubechies Wavelet Transform 

 Let 𝑉0
𝑑 be a 2n dimensional vector space spanned by integer translations of Daubechies wavelet   𝜑𝑑(𝑡)  of the length of support N. Then 

𝑉0
𝑑 = 𝑠𝑝𝑎𝑛 { 𝜑𝑑

0,𝑘
(𝑡): 𝑘 = 0, 1, 2, … , 2𝑛 − 1} , 𝑛 𝜖 ℕ 
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            = {∑ 𝑥(𝑘)

2𝑛−1

𝑘=0

 𝜑𝑑
0,𝑘
(𝑡): 𝑥(𝑘)  𝜖 ℝ, 0 ≤ 𝑘 ≤  2𝑛 − 1} 

 

Similarly, define the space 𝑉−1
𝑑  spanned by  𝜑𝑑

−1,𝑘
(𝑡), 0 ≤ 𝑘 ≤  2𝑛−1 − 1 

𝑉−1
𝑑 = { ∑ 𝑦(𝑘)

2𝑛−1−1

𝑘=0

 𝜑𝑑
−1,𝑘

(𝑡): 𝑦(𝑘)  𝜖 ℝ, 0 ≤ 𝑘 ≤  2𝑛−1 − 1} 

Therefore, 

dim𝑉−1
𝑑 =

𝑑𝑖𝑚𝑉0
𝑑

2
 

In general, we can define 𝑉−𝑚
𝑑  as the space spanned by  𝜑𝑑

−𝑚,𝑘
(𝑡) ,0 ≤ 𝑘 ≤  2𝑛−𝑚 − 1 where 0 ≤ 𝑚 ≤  𝑛. For each 𝑉−𝑚

𝑑  form a vector space 

of dimension 2𝑛−𝑚 over ℝ under the operations, 

i) 𝑓(𝑡) + 𝑔(𝑡) = ∑ 𝑥(𝑘)2𝑛−𝑚−1−1
𝑘=0  𝜑𝑑

𝑚,𝑘
(𝑡) + ∑ 𝑦(𝑘)2𝑛−𝑚−1−1

𝑘=0  𝜑𝑑
𝑚,𝑘
(𝑡) 

                       = ∑ [𝑥(𝑘)

2𝑛−𝑚−1−1

𝑘=0

+𝑦(𝑘)] 𝜑𝑑
𝑚,𝑘
(𝑡) , ∀ 𝑓(𝑡), 𝑔(𝑡) ∈  𝑉−𝑚

𝑑   

 

ii) 𝛼𝑓(𝑡) = ∑ 𝛼𝑥(𝑘)2𝑛−𝑚−1−1
𝑘=0  𝜑𝑑

𝑚,𝑘
(𝑡) 

             = 𝛼 ∑ 𝑥(𝑘)

2𝑛−𝑚−1−1

𝑘=0

 𝜑𝑑
𝑚,𝑘
(𝑡) 

 

Similarly, we can define the detail space,  

                      𝑊−𝑚
𝑑 = 𝑠𝑝𝑎𝑛{ Ψ𝑑−𝑚,𝑘(𝑡): 𝑘 = 0, 1, 2, … , 2

𝑛−𝑚 − 1} where 0 ≤ 𝑚 ≤  𝑛. 

 

3.2 Approximation and Detail Map 

Consider the signal 𝑥(𝑡) ∈  𝐿2([0, 2𝑛]). Let f(t) be its approximation on the space 𝑉0
𝑑 which is given by 𝑓(𝑡) ∑ 𝑥(𝑘)2𝑛−1

𝑘=0  𝜑𝑑
0,𝑘
(𝑡). Define a 

map 𝐴𝑑
1 : 𝑉0

𝑑 → 𝑉−1 
𝑑   as, 

𝐴𝑑
1 [𝑓(𝑡)] = 𝐴𝑑

1 (∑ 𝑥(𝑘)

2𝑛−1

𝑘=0

 𝜑𝑑
0,𝑘
(𝑡)) 

             = ∑ 𝑎1(𝑘)

2𝑛−1−1

𝑘=0

 𝜑𝑑
−1,𝑘

(𝑡) 

 

Where 𝑎1(𝑘) = ∑ 𝑥(𝑚)2𝑘+𝑁−1
𝑚=2𝑘 ℎ𝑑(𝑚 − 2𝑘) and {ℎ𝑑(𝑛): 𝑛 = 0, 1, … , 𝑁 − 1 } is the low pass filter coefficients [13]. This map is well 

defined linear map. Also, this map 𝐴𝑑
1  is called the first Approximation map. Similarly, define the second approximation map 𝐴𝑑

2 = 𝑉−1
𝑑 →

𝑉−2 
𝑑  as, 

 

𝐴𝑑
2 [𝑔(𝑡)] = 𝐴𝑑

2 ( ∑ 𝑎1(𝑘)

2𝑛−1−1

𝑘=0

 𝜑𝑑
−1,𝑘

(𝑡)) 

     = ∑ 𝑎2(𝑘)

2𝑛−2−1

𝑘=0

 𝜑𝑑
−2,𝑘

(𝑡) 

where 𝑎2(𝑘) = ∑ 𝑎1(𝑘)2𝑘+𝑁−1
𝑚=2𝑘 ℎ𝑑(𝑚 − 2𝑘), 0 ≤ 𝑘 ≤  2𝑛−2 − 1. In general, mth approximation map 𝐴𝑑

𝑚 = 𝑉−(𝑚−1)
𝑑 → 𝑉−𝑚 

𝑑  where 1 ≤

𝑚 ≤ 𝑛 is defined as 

𝐴𝑑
𝑚[ℎ(𝑡)] = 𝐴𝑑

𝑚 ( ∑ 𝑎𝑚−1(𝑘)

2𝑛−(𝑚−1)−1

𝑘=0

 𝜑𝑑
−(𝑚−1),𝑘

(𝑡)) = ∑ 𝑎𝑚(𝑘)

2𝑛−𝑚

𝑘=0

 𝜑𝑑
−𝑚,𝑘

(𝑡) 

where 𝑎𝑚(𝑘) = ∑ 𝑎𝑚−1(𝑘)2𝑘+𝑁−1
𝑚=2𝑘 ℎ𝑑(𝑚 − 2𝑘), 0 ≤ 𝑘 ≤  2𝑛−𝑚 − 1. 

 

  In the same manner, we can define the detail map 𝐷𝑑
1: 𝑉0

𝑑 → 𝑊−1 
𝑑  as 𝐷𝑑

1[𝑓(𝑡)] = 𝐷𝑑
1 (∑ 𝑑1(𝑘)2𝑛−1

𝑘=0  Ψ𝑑0,𝑘(𝑡)), where 𝑑1(𝑘) =

∑ 𝑥(𝑚)2𝑘+𝑁−1
𝑚=2𝑘 𝑔𝑑(𝑚 − 2𝑘), 0 ≤ 𝑘 ≤  2𝑛 − 1. And  {𝑔𝑑(𝑛): 𝑛 = 0, 1, … , 𝑁 − 1 } are the high pass filter coefficients. In general, the mth detail 

map  𝐷𝑑
𝑚 = 𝑉−(𝑚−1)

𝑑 → 𝑊−𝑚 
𝑑  where 1 ≤ 𝑚 ≤ 𝑛 is defined as 
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𝐷𝑑
𝑚[ℎ(𝑡)] = 𝐷𝑑

𝑚 ( ∑ 𝑎𝑚−1(𝑘)

2𝑛−(𝑚−1)−1

𝑘=0

 𝜑𝑑
−(𝑚−1),𝑘

(𝑡)) = ∑ 𝑑𝑚(𝑘)

2𝑛−𝑚

𝑘=0

 Ψ𝑑−𝑚,𝑘(𝑡) 

where  𝑑𝑚(𝑘) = ∑ 𝑎𝑚−1(𝑘)2𝑘+𝑁−1
𝑚=2𝑘 𝑔𝑑(𝑚 − 2𝑘), 0 ≤ 𝑘 ≤  2𝑛−𝑚 − 1. 

 

3.3 Matrix representation of Approximation and Detail map 

Let 𝑋 = [𝑥(0)   𝑥(1) … 𝑥(2𝑛 − 1)]𝑇, the mth approximation and detail coefficients are given by [𝑎𝑚] =

[ 𝑎𝑚−1(0)  𝑎𝑚−1(1) … 𝑎𝑚−1(2𝑛−𝑚 − 1)]𝑇 and [𝑑𝑚] = [ 𝑑𝑚−1(0)  𝑑𝑚−1(1) … 𝑑𝑚−1(2𝑛−𝑚 − 1)]𝑇 respectively. Now consider the first 

approximation map 𝐴𝑑
1  

For any 𝑓(𝑡) ∈ 𝑉0
𝑑 , 𝐴𝑑

1 [𝑓(𝑡)] = [𝑎1]𝑇 =

[
 
 
 
 
 𝜑𝑑

−1,0

 𝜑𝑑
−1,1

⋮
 𝜑𝑑

−1,2𝑛−1−1]
 
 
 
 

 where 𝑓(𝑡) = ∑ 𝑥(𝑘)2𝑛−1
𝑘=0  𝜑𝑑

0,𝑘
(𝑡) = 𝑋𝑇

[
 
 
 
 
 𝜑𝑑

0,0

 𝜑𝑑
0,1

⋮
 𝜑𝑑

0,2𝑛−1]
 
 
 
 

 and   

[𝑎1] =

[
 
 
 
 
 
ℎ𝑑(0) ℎ𝑑(1) ℎ𝑑(2) ⋯ ⋯ ℎ𝑑(𝑁 − 1) 0 ⋯ 0

0 0 ℎ𝑑(0) ℎ𝑑(1) ⋯ ⋯ ⋯ ⋯ 0

0 0 0 0 ℎ𝑑(0) ℎ𝑑(1) ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 0 0 0 0 ℎ𝑑(0) ℎ𝑑(1)]

 
 
 
 
 

⏟                                                
𝐿𝑑

𝑋𝑇 

 

Matrix 𝐿𝑑 is called the low pass filter matrix. This matrix representation can be generalized to any arbitrary approximation map 𝐴𝑑
𝑚.  

 Similarly, for detail map 𝐷𝑑
1 the matrix representation is,  𝐷𝑑

1[𝑓(𝑡)] = [𝑑1]𝑇 =

[
 
 
 
 
 Ψ𝑑−1,0

 Ψ𝑑−1,1
⋮

 Ψ𝑑−1,2𝑛−1−1]
 
 
 
 

 where  

 

[𝑑1] =

[
 
 
 
 
 
𝑔𝑑(0) 𝑔𝑑(1) 𝑔𝑑(2) ⋯ ⋯ 𝑔𝑑(𝑁 − 1) 0 ⋯ 0

0 0 𝑔𝑑(0) 𝑔𝑑(1) ⋯ ⋯ ⋯ ⋯ 0

0 0 0 0 𝑔𝑑(0) 𝑔𝑑(1) ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 0 0 0 0 𝑔𝑑(0) 𝑔(1)]

 
 
 
 
 

⏟                                                
𝐻𝑑

𝑋𝑇 

 

The matrix 𝐻𝑑 is called the High pass filter matrix. 

 

4 Nullity of Approximation map 

 

This section is about the properties of linear maps corresponding to the Daubechies wavelet transform. 

 

Theorem 4.1. Nullity of the approximation map   𝐴𝑑
1  is 2𝑛−1. 

Proof. Consider the Null space of the approximation map 

 

                      𝑁(𝐴𝑑
1 ) = {𝑓(𝑡) ∈  𝑉0

:𝑑: 𝐴𝑑
1 (𝑓(𝑡) = 0} 

                                  ={𝑓(𝑡) = ∑ 𝑥(𝑘)2𝑛−1
𝑘=0  𝜑𝑑

0,𝑘
(𝑡) ∈  𝑉0

:𝑑: ∑ 𝑎1(𝑘)2𝑛−1−1
𝑘=0  𝜑𝑑

−1,𝑘
(𝑡) = 0}                                        

                                       ⇒ 𝑎1(𝑘) = 0,0 ≤ 𝑘 ≤  2𝑛−1 − 1 

                                      ⇒ 𝑎1(𝑘) = ∑ 𝑥(𝑚)2𝑘+𝑁−1
𝑚=2𝑘 ℎ𝑑(𝑚 − 2𝑘) = 0, ,0 ≤ 𝑘 ≤  2𝑛−1 − 1  

We get a homogenous system of equations that has 2𝑛−1 equations with 2𝑛 unknowns. In matrix notation is 𝐿𝑑𝑋 = 0. That is 

 

[
 
 
 
 
 
ℎ𝑑(0) ℎ𝑑(1) ℎ𝑑(2) ⋯ ⋯ ℎ𝑑(𝑁 − 1) 0 ⋯ 0

0 0 ℎ𝑑(0) ℎ𝑑(1) ⋯ ⋯ ⋯ ⋯ 0

0 0 0 0 ℎ𝑑(0) ℎ𝑑(1) ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 0 0 0 0 ℎ𝑑(0) ℎ𝑑(1)]

 
 
 
 
 

⏟                                                

[

𝑥(0)
𝑥(1)
⋮

𝑥(2𝑛 − 1)

] = [

0
0
⋮
0

] 

 

The rank of the coefficient matrix 𝐿𝑑  is 2𝑛−1. Therefore Nullity of   𝐴𝑑
1 = 2𝑛−1. 

 

Corollary 4.2. Similarly, we can prove that Nullity of 𝐷𝑑
1 = 2𝑛−1. 
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Corollary 4.3. Rank of 𝐴𝑑
1= Rank of 𝐷𝑑

1=2𝑛−1. 

Proof. Using Rank Nullity theorem [14]. 

 

Corollary 4.4. For 1 ≤ 𝑚 ≤  𝑛,  Nullity of 𝐴𝑑
𝑚=Rank of 𝐴𝑑

𝑚=Nullity of 𝐷𝑑
𝑚= Rank of 𝐷𝑑

𝑚 = 2𝑛−𝑚−1. 

 

Remark 4.1. This result implies that the approximation map 𝐴𝑑
𝑚 and detail map 𝐷𝑑

𝑚 is an onto map. 

 

6 Conclusion 

The mathematical aspects of Daubechies wavelet transform are discussed in this study. Daubechies wavelet is a linear transformation 

on finite dimensional space, as we previously demonstrated. Approximation and detail space are represented by linear maps, which can be 

used to forecast approximation and detail spaces at various levels of decomposition. Our work is limited to one dimension, but it can also be 

expanded to two dimensions. 
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