JETIR.ORGISSN: 2349-5162 | ESTD Year : 2014 | Monthly IssueJUIRNAL OF EMERGING TECHNOLOGIES AND
INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Evaluation of Stability Analysis of Karjan Dam using safety factors

Limbasiya Jigneshkumar M.¹, Payal Desai² Monika Shah³

¹PG Student, Civil Engineering Department, Navrachana University of Baroda, Gujarat, India ²Head Of Department, Civil Engineering Department, Navrachana University of Baroda, Gujarat, India ³Assistant Professor, Civil Engineering Department, Navrachana University of Baroda, Gujarat, India

Abstract:

A dam is a structure constructed across river which stores water and supplies water for various purposes. In this project, karjan dam is selected which are located near Jitgadh village in the NanodTaluka of Gujarat's Narmada District. The project area lies between 73.5' and 73.40' longitude east and 21.31' & 22.0' latitude north. In this paper, carry out a stability evaluation by manually, Matlab and Comsol 6.0 method. Dam break analysis and Dam sliding is done by comsol 6.0.Getting a negligible variation. The outcome will be getting such that the dam is safe next up to 70-90 years.

Key Words: Dam break analysis, Karjan dam, Comsol 6.0, Stability, Matlab.

Introduction:

- Dam is barrier constructed across the river to store the water. This stored water is useful for Domestic, Irrigation, Industrial, hydro electricity generation etc. Floods occur due to dam failure always dangerous for so it is necessary to analyse flood wave propagation at the downstream side of dam.
- In manually method, found out a principle stress, shear stress, pressure force, Momentum, F.O.S against overturning, sliding and shear friction, Resultant vertical force, resultant horizontal force,
- Comsol 6.0 is a finite element analysis, solver & simulation software or Finite Element Analysis software package for various physics and engineering applications. It is a powerful finite element, partial differential equation solution engine.
- There are many modules that expand in the following application areas such as a AC/DC module (For computational electromagnetics Modeling), Acoustics Module (For acoustics & vibrations analysis), Chemical Engg.(For modeling mass & energy balances & chemical reactions), Heat Transfer (For general purpose modeling of heat transfer in solids & fluids.),RF (For microwave & RF Design), MEMS (Micro Electromechanical Systems), Structural Mechanics, Plasma Module, Pipe flow Module, Battery Design Module.
- In project work, analysis of dam in 2D file as per solid mechanics from physics property.

- There are two analysis to be carried out:
 - (1) Dam Break Analysis (Boundary Condition) (2) Dam Sliding
- In Dam Break Analysis (Boundary Condition), Found out a velocity Magnitude, Total height, pressure.
- In Dam sliding, Found out a stress, displacement (Solid), Volume loads (Solid), boundary loads (Solid), Contact forces (Solid).
- Matlabis C++ & JAVA language codding related work. In this software, any type of structure cannot draw. It is a FEM related software. Can not a detailing design for any type of structure.
- Using matlab, found out a Principle stress, shear stress, sliding value with diagram and chart.

Objectives:

- To check out a stability of Karjan Dam using different techniques.
- To be carried out a dam break analysis using comsol 6.0.
- To be carried out a dam sliding using comsol 6.0.

Study area:

• The Karjan Reservoir Project is located near Jitagadh village in the NandodTaluka of Gujarat's Narmada District. River Karjan is left bank tributary of river Narmada. It is down stream of SardarSarovar Project. Through a left and right bank canal system, the project covers 51000 hectares of CCA. The project area lies on the western coast of the Indian continent, between 73.5' and 73.40' longitude east and 21.30' and 22.0' latitude north. The elevation of the project area varies between 18m to 120m above MSL.

Туре	Masonry and Concrete
Maximum Height	100 m
Length at the Top of the dam	903 m
Top width of dam	7.77 m
Full Reservoir Level	115.25 m
Maximum Reservoir Level	116.10 m
Area at Full Reservoir Level	36.77 Km ²
Gross Storage Capacity	630 Mm ³
Effective Storage Capacity	581 Mm ³
Mean annual rainfall	1209 mm

Figure-1: Study Area

Table-1: Salient features of Karjan Dam

Dam Geometry:

Figure-3: Uplift pressure head Diagram

Data collection and Analysis:

1. Manually

From government irrigation department, there are collected data related to dam and to be analyzed manually method. There are following analyzing table.

The following data are collected from Irrigation Department. Using following data, There are doing Stability check and various analysis. Matlab and Comsol software used for data collection analysis.

	Given Data:-		
1	Top widthW2(a1)	7.77	Μ
2	Bottom widthW2(a2)	7.77	Μ
3	Total heigth (H)	119.70	М
4	Reservoire water(hw)	115.25	Μ
5	Free bord(fb)	4.45	М
6	hl	36.30	М
7	z	5.15	М
8	W3(e)	66.58	М
9	Total base width (b)	79.50	М
10	dl	12.00	M
11	Coefficient of shear friction, μ (usual loading)	0.70	
12	Coefficient of shear friction, µ (extreme loading)	0.85	
13	shear strength at concrete-rock contact. C	150x10^6	N/m^2
14	weight density of water	1x10^4	N/m^3
15	weight density of concrete	2.4x10^4	N/m^3
16	weight density of sediment	1.36x10^4	N/m^4
17	Excess material density	1.925x10^4	N/m^5
18	Gallery distant	0.30	m
19	P=	960000	N/m^2
20	P'=	90000	N/m^2
21	ah	0.1	
22	αν	0.05	
23	w3(d)	107.7	M
24	Tail water depth(h tail)	10	М
25	Velocity Magnitude	0.778	m/s
26	Contact Force	2.0x 10^5	N/m^2
27	resistant force	6.0 x 10^4	N/m^2

Table:-2 FOS against various safety factor

Sr. No	Factor of Safety	90	Remarks	95	Remarks	100	Remarks	105	Remarks	110	Remarks	115.25	Remarks	119.7	Remarks
		mt	As per IS condition	mt	As per IS condition	mt	As per IS condition	mt	As per IS condition	mt	As per IS condition	mt	As per IS condition	mt	As per IS condition
	1	2	3	4	5	6	7	8	9	10	11	14	15	16	17
(A)	Usual loading														
i	Overturning	2.62	Safe	2.36	Safe	2.12	Safe	1.92	Safe	1.74	Safe	1.57	Safe	1.56	safe
II	Sliding	1.72	Safe	1.52	Safe	1.36	Safe	1.22	Safe	1.10	Safe	1.00	Safe	1	safe
	Shear Friction	4.82	Safe	4.30	Safe	3.85	Safe	3.47	Safe	3.15	Safe	3	Safe	3	safe
(B)							Extre	me loading							
i	Overturning	2.10	Safe	1.93	Safe	1.78	Safe	1.64	Safe	1.51	Safe	1.75	Safe	1.5	safe
ii	Sliding	1.77	Safe	1.61	Safe	1.48	Safe	1.35	Safe	1.24	Safe	1.44	Safe	1.2	safe
	Shear Friction	3.18	Safe	4.41	Safe	4.05	Safe	3.72	Safe	3.44	Safe	3.31	Safe	3.10	Safe

JETIR2206444

2. Analysed Using Matlab

Figure:5 Stability analysis with reservoir empty condition and upward force using matlab

utput Res	sults					
)ownwar	d weight of the dam (000 100		- Depute about acceptricity (a)	
W1	1218.02	Tension at	268.199	sate	Esserticity (e)	
W2	2315.15	Tension at	5.93105	safe	(e)	
W3	10789.4	Avg. Ver.	137.065	safe	Conclusio	
V1	14322.6	Principal Stress at	8.86172	safe	Resultant is near heel & tension will develope at toe	
Ioments a	about Toe (N.m)	Principal				
(+)M1	876055	Stress at	273.597	safe		
(+)M2	58480.2	Shear Stress	4.16917	safe		
(-)M3	43802.8	Shear Stress				
М	890733	at Heel:	38.0494	safe	<mark></mark>	
	1	Dimensions of	Assumed Diagram	-		
Earthqua	ke forces (g)	Height of Dam	n (h) : 11!	9.7	Front height 113.096	
Ver.(V	716.128	Complete Hei	obt of Dam	45	d1 11.0536	
Hor.(H)	1432.26	complete ries	3nt 01 Duni 124	.13	ten(2) 0.14197	
	10000 4	Top Width of	a dam 7.7	77	unito 0.14107	
V1-V2=	V 13000.4	Base Width	79.5		Freeboard Level 4.45	
		Martinalliant	Designation to		kh.w1 121.802	
		venicaropsi	ream Projection to	12	1h w2 004 545	
		Complete Bas	se Width 99.27	2	MI.W2 231.515	
		Height of Sm	all Triangle 94 59	45	kh.w3 1078.94 Open Diagram	
		neight of one	air mangie 04.00	40		

Figure:6 Stability analysis with reservoir empty condition and downward force using matlab

Figure:7 Stability analysis with water using matlab

We We V

W	eight of Dam	Danaari	Moments		er Forces						
W1:	1218.02	M1	876055	V1:	14322.6	Average Ver.	135.752				
w2	2315.15	M2	87735.2	V2	964.04	Tension at	15.8813	safe			
W3.	10789.4	M3	-69635.4	1/3.	1004.4	Tension at	255.622	safe			
	10103.4	M4	-43802.8	v	-1094.4	Principal stress at	376.99	safe			
/eight	of Water on slope	M5	-285679	V4:	-716.128	Principal atrana at	10.00				
W1	421.386	MG	-34186.2	V:	13476.1	Principal stress at	13.6312	safe			
W2	507.507	M7	-58480.2	-		Shear stress at	172.658				
W3	35.147	M:	472007			Shear stress at	15.8604				
	plift Forces		lor. Forces	1		Sliding Safety	1.02097	safe			
U1:	-168.759	H1:	-7114.05			Shear Fraction	2.63258	safe			
U2:	-925.643	H2:	-693.202								
		H3:	-1432.26	Heigh	tof 14	Dimen Dimen	sions of Assume	od Diagram	Tail water	10	
		+ve(H	9239.5	Comp	lete height of	124.15 Front	slop 0	.70294	X: 7.0294		
Ecce	ntricity(14.60	94		Top v	vidth of a	7.77 Fron	113.09	96	Pe 693.202	-	
				Base	79.5	5 Free	nard 4	45	P'(dash 10	_	
Resu	Itant is near toe &	tensior	n will develope	Vertic	al upstream pro	jection 12 tan@	0.14187	45	P: 119.7		
-				Comp	lete base	99.27 d1	1.0536			Open Diagram	

Figure:8 Stability analysis with water uplift using matlab

vith_water_without	_uplif	t						- 0	×
Veight of Dam		Moments							
1218.02	M1	876055	Ver. Forces V1: 14322.6	Average Ver.	146.776				
2215.02	M2	87735.2	V2 964.04	Tension at	36.2303	safe			
40790.4	M3	Absent	304.04	Tension at	257 322	safe			
10789.4	M4	-43802.8	V3: Absent	T	201:022	oafo			
of Water on slope	M5	-285679	V4: -716.128		379.53	saic			
421.386	MG	-34186.2	V: 14570.5	Principal stress at	34.3897	safe			
507 507	MT	-58480.2		Shear stress at	173.853				
35.147	M:	541643		Shear stress at	12.9735				
	1			Sliding Safety	1.10388	safe			
Uplin Forces		Hor. Forces		Shear Fraction	2 7155	safe			
Absent	H1:	-7114.05		F		Guit			
Absent	H2:	-693.202		Dimen	sions of Assume	d Diagram			
	H3:	-1432.26	Height of 119	9.7 Heigt	h of small	84.5845	Tail water	10	
	+ve(H	9239.5	Complete height of	124.15 Front	t slop 0.	70294	X: 7.0294		
entricity(12.46	1		Top width of a	7.77 From	t 113.09	6	Pe 693.202		
sultant is near toe &	tensio	n will develope	Base 79.5 Vertical upstream proj	Free ection 12 tan@ 99.27 d1	board 4.	45	P: 119.7	Open Diagram	

Figure:9 Stability analysis with water without uplift using matlab

Using comsol 6.0, there are carried out a two analysis. (1) Dam break analysis (2) Dam sliding.

In Dam break Analysis, there are found out a velocity magnitude, Total Height and Time vs Pressure force diagram. This chart show max velocity magnitude seems on which portion of Dam.

Figure:10 Velocity Magnitude

Using following equation, found out a velocity magnitude:

Figure:11 Total Height (SWE)

This chart show effect of water on different heights of dam at u/s.

Using following equation, found out a Total Height:

$$u.n = 0$$
$$-\Gamma h.n = 0$$
$$-\Gamma q.n = g.\frac{h^2}{2}$$

Figure:12 Time vs Pressure force diagram

From chart, max pressure force act on u/s portion of dam in beginning time. After that, pressure force gradually decreasing.

In Dam sliding, there are found out a Boundary loads, Contact forces, Displacement (Solid), Stress (Solid), Volume loads.

Figure:13 Boundary loads

Using following equation, found out a boundary load (Solid).

S. n= F_A
F_A =
$$\frac{Ftot}{A}$$

Figure:14 Contact force.

Using following equation, found out a boundary load (Solid).

 $Tn = if (gn \le 0, -pn.gn, 0)$

 $p_n = f_p \frac{Echar}{hmin}$

Figure:15 Volume loads

Using following equation, found out a Volume loads(Solid).

Figure:16 Principle Stress

Using following equation, found out a principle (Solid).

```
0 = \nabla . (FS)^T + Fv, \quad \mathbf{F} = \mathbf{I} + \nabla \mathbf{u}
```

```
Fv = \frac{Ftot}{V}
```

Results:

In manually, After analysed and checked, getting a value is a safe against overturning, sliding and shear friction.

As per Is Code 6512 1984 Pg no 14						
Usual loading						
Overturning	1.5					
Sliding	1					
Shear Friction	>3.0 to <5.0					
Extreme loading						
Overturning	1.5					
Sliding	1.2					
Shear Friction	>3.0 to <5.0					

In Dam break analysis:

Velocity magnitude is found out by linear langrage method. Getting maximum value is 0.35 m/s. and minimum value is 0.05 m/s.

- Total height is found out by Range kutta method. There are getting a maximum height 0.25778 m. and minimum height 0.13850 m. which are effecting on body of dam at u/s above F.S.L.
- There are found out a pressure force by Rangekutta method. Getting a maximum, middle, minimum value are 6.78 x 10⁻¹⁵N, 1.75 x 10⁻¹⁶ N and 7.79 x 10⁻¹⁷ N respectively.

In Dam Sliding:

- Boundary loads is found out by quadratic serendipity method. In this chart, getting a dam resistance effect which is 3.0 x 10⁴ N/m².
- Contact force is found out by quadratic serendipity method. Getting a maximum value is 1 x 10⁵ N/m².Which show resistance force of dam.
- Principle stress is found out by quadratic serendipity method. Getting a maximum and minimum value are 1.917 x 10⁵ N/m² and 1 x 10⁵ N/m² respectively.
- Volume load is found out by quadratic serendipity method. Its value is obtained a 3 x 10⁵ N/m³

Conclusion

- As per Is code: 6512-1984 limitation, There are analyzed of overturning, sliding and shear friction at 90m to 115.25m (FSL) & 119.70m (full height of Dam) with 5 m interval in case of usual load & Extreme load. As per analyzed results, Karjan dam is safe.
- As per Finite Element Method, using comsol 6.0 version, it has been analyzed of dam break analysis (Boundary condition for 2-D) with visualization effects such as velocity magnitude, Pressure force (time vs. pressure force for 3 second), Total height. As per obtained results, dam is seem to safe.
- As per Finite Element Method, using comsol 6.0 version, it has been analyzed of dam sliding analysis (2-D) with visualization effects such as boundary load (Resisting force), contact force, displacement, principal stress. As per obtained results, dam is seem to safe.
- After stability analysis of dam using Matlab, Dam is seems to safe for case-1 without water (Usual load) and case-2 with water (Extreme load).
- Finally, after all analysis of Dam with respect to stability and flood, Karjan Dam is appear safe up to next 70 to 90 years. But, in order to proper stability of dam, it is necessary to carry out periodic maintenance as per the required guidance of government.

Analysis	Principal Stress (N/m ²)	Sliding value	Pressure force(T vs.N)	Velocity Magnitude (m/s)	Contact Force (N/m^2)	Shear stress at toe (N/m^2)	Total Moment (N.m)	Resistant force
			1.28 x 10 ^{~-8}	0.778	2.0x 10^5			6.0 x 10^4
Manual	3.48 x 10 ^{^5}	1.0		(As per Gov.data)	(As per Gov.data)	1.52 x 10^6	4.32 x 10^5	(As per Gov.data)
Matlab	3.76 x 10 ^{^5}	1.02				1.72 x 10^6	4.72 x 10^5	
Comsol	3.46 x 10 ^{^5}	1.0	1.05 x 10 ^{^-8}	0.6336	1.81*10^5			5.43x 10^4

Evaluation of Stability Analysis of Karjan Dam by manually and software

References

- 1) Dam Break Analysis (Boundary Condition) Comsol Multiphasic software 5.6 Manual (www.comsol.com/trademarks.)
- 2) Sliding Wedge Comsol Multiphasic software 5.5 Manual (www.comsol.com/trademarks.)
- 3) Standards/Manuals/ Guidelines For Small Hydro Development.
- 4) Irrigation and Water resources Engineering,
- 5) "Thermally-induced cracking of a concrete arch dam using COMSOL Multi physics" Tobias Gasch, Daniel Ericsson May-2017
- 6) "Stress and Deformation Analysis of High Concrete Face Rockfill Dam Based on COMSOL Multiphysics." Wang and Keping Yu January-2013
- 7) "Sedimentation Optimization on River Dam Flow by Using COMSOL Multiphysics." Tulus, Marpung August-2018
- 8) "Development of Methodology for Seismic Design of Concrete Gravity Dam" Pratik Patra, Odisha May-2014
- 9) "A Comparative Study of Design of Dam". Priyadarshini Maitra1 et all, Mukutmanipur, Kolkata May-2019.
- 10) "On the Dynamic Capacity of Concrete Dams" Furgani1 et al. (MDPI) August-2019.
- 11) "Seismic Forces and Stability Analysis of Gravity Dam" VenkataRajuBadanapur Volume 8 Issue 6, June 2019