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Abstract:  The paper includes the solution of Riccati differential equation by the Frcational Homotopy Perturbation Transform Method 

(FHPTM). Traditional Variational Iteration Method (VIM) is used to solve the Riccati equation. It is observed that good approximations 

by VIM are obtained for the solution of Riccati equation. However, the limitation is that solution of Riccati equations  are obtained only 

in the neighborhood of the initial position. Thus, the method FHPTM has an advantage that convergence region of iteration solutions is 

increased. Numerical results suggest the application of the FHPTM techniques effectively.  
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1. Introduction  

A Fractional Homotopy Perturbation Transform Method (FHPTM) is presented for solving the  Riccati differential equation as follows: 

u′(x) = p(x) + q(x)u(x) + r(x)u2(x), 0 ≤ x ≤ X , 

u(0) = α,                                                                                                                                      (1) 

where p(x), q(x), r(x) are continuous, which plays a key role in many desciplines of applied mathematics as well as sciences, [1]. For 

example, it is well known that static Schrödinger equation is closely related to a Riccati differential equation. Also, solitary wave solution 

of a nonlinear partial differential equation (NPDE) is expressed as a polynomial in two basic elementary functions, which satisfy a 

projective Riccati equation, [2]. These problems are also useful in analyzing optimal control strategies. Optimal control analysis is a very 

useful tool in the application of mathematical modeling of infectious disease dynamics. Several researchers are interested in the analysis 

and applications of these problems. Also, only up to some extent the analytical solutions are obtained because it is really difficult to get 

an explicit form except only in very few cases. For example, analytical method is obtained in solving the Riccati differential equation 

with constant coefficients, [3]. 

This is the situation where numeric techniques or approximate approaches to get the solution nearly similar to the analytical solution. 

Once the numerical solutions are obtained, they get verified and compare with the other numerical methods. In the recent investigations, 

solution of Riccati differential equation has been obtained by Adomian’s decomposition method in [4]. Moreover, a special Riccati 

differential equation i.e., the quadratic Riccati differential equation is solved by Abbasbandy using He’s VIM, the homotopy perturbation 

method (HPM) and the iterated He’s HPM, [5–7]. In this investigation, the accuracy of solution of Riccati Differential equation has been 

compared with the Adomian’s decomposition method. Furthermore, piecewise VIM has been introduced by Geng for solving Riccati 

differential equation, [8]. Originally, He has proposed the VIM [9-14]. Also, several mathematicians have suggested the VIM to be an 

important tool to solve different linear and nonlinear problems, [15-25]. 

 

In this paper, we present the Fractional Homotopy Perturbation method to solve Riccati Differential equation. Our results will show the 

method FHPTM is more reliable and accurate in comparison to VIM. The method FHPTM will reduce the burden of computation work 

for sure.    
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2.  Preliminaries 

Definition 2.1 Consider a real function h (χ), χ > 0. It is called in space ,C R    
if  a real 

                         no. b (> ζ), s.t. h (χ) = χ b h1(χ), 1 [0, ]h C  . It is clear that C C  if γ ≤ ζ. 

Definition 2.2   Consider a function h (χ), χ > 0. It is called in space , {0},mC m N   if  

                          
( )mh C

 

Definition 2.3  The (left sided) Riemann–Liouville integral of fractional order 0  of a function 

 h, , 1h C   
 
is defined as 
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Definition 2.4 The Caputo fractional derivative (left sided) of h, 
1, {0},mh C m N  
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Definition 2.5 Mittag-Leffler function is demarcated by the given series representation, valid in  

                         entire complex plane: 
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Definition 2.6 Laplace transform of a (piecewise) continuous function g (t) in [0,∞) is given as: 

 

                                 G (p) = L [g (t)] = ∫ 𝑒−𝑝𝑡
∞

0
𝑔(𝑡)𝑑𝑡 

Definition 2.7  

a. Laplace transform of (Riemann–Liouville) fractional integral is given as: 

                            𝐿[𝐼𝛼𝑓(𝑡)] = 𝑝−𝛼𝐹(𝑝) 
b. Laplace transform of (Caputo) fractional derivative is given as: 

   𝐿[𝐷𝛼𝑔(𝑡)] = 𝑝𝛼𝐹(𝑝) − ∑ 𝑝𝛼−𝑘−1𝑛−1
𝑘=0 𝑔(𝑘)(0), 𝑛 − 1 < 𝛼 ≤ 𝑛 

 

 

 

3. The proposed FHPTM for the system of nonlinear fractional PDEs 

 

To illustrate the process of solution of the FHPTM, we ponder over the system of nonlinear time-fractional PDEs : 

( , )
( , ) ( , ) ( , )

u x t
S u v Q u v g x t

t






  


,                                                                               (2) 
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with initial values  u(x,0) = h(x),                                                                   (3) 

Here, 
t








is (Caputo) fractional derivative of order α, S and Q are operators, linear & nonlinear respectively; g1 and g2 are the source 

terms. Also, 0 < α ≤ 1. 

The method comprises of taking Laplace transform on both sides of Eq. (2) and Eq. (3), as 

[ ( , )] [ ( , )] [ ( , )] [ ( , )]tL D u x t L S u v L Q u v L g x t                                                                      (4) 

By differentiation property of Laplace transform,   

1[ ( , )] ( ) [ ( , )] [ ( , ) ( , )]L u x t p h x p L g x t p L S u v Q u v                                                           (5) 

Taking inverse transform in Eqs. (5), we get  

1( , ) ( , ) [ { ( , ) ( , )}]u x t G x t L p L S u v Q u v                                                                                  (6) 

Here G(x, t) are the terms coming from the source term and initial values.  

Applying FHPTM, it is assumed that the result may be articulated as a power series,   
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                                                                                                  (7) 

Here, p is reflected as a small parameter ( [0,1])p  called homotopy parameter.  

The non-linear term is decomposed as              

0
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n

n
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



               (8) 

where nH  is He’s polynomials of 0 1 2 3,, , , ......, nu u u u u  respectively. They are calculated by the given formulae: 
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This is a pairing of FHPTM and transform of Laplace using He’s polynomials.  

Equating coefficients of the identical powers on both the sides, we get, 

 

0
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p u x t G x t
 

Continuing in this way, the enduring components can completely be achieved also. Thus the series solution is fully calculated. At last, 

the analytical solution is approximated by the series, 
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The above solutions in series converge very rapidly, in general. Cherruault and Abbaoui [36] proved the convergence of this above kind 

of series.  
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4. Test Examples.  

In this segment, we will apply the proposed method to some test problems.  

Example 1. Consider a inhomogeneous linear system of time-fractional equations as, 

21 2 ( ) ( ),  
u

u x u x
t






  


                              (11)                                 

Subject to the initial values  

u (x, 0) = 0,      

Taking Laplace transform on both sides of Eq. (11),  

 2

1

0 1
( , ) 1 2 ( ) ( )u p t p L u x u x

p p








                                                                                   (12)                      

Taking inverse transform on Eq. (12),  

 1 2( , ) 0 1 2 ( ) ( )
(1 )

t
u x t L p L u x u x






      
  

           (13) 

By applying HPM,  

 1 2

0
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n
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Equating coefficients of the identical powers of p in Eqs. (14) respectively,  

0

0: ( , ) 0p u x t  ,   
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,  and so on……. 

Exact Solution can be easily determined to be, 

𝑢(𝑥, 𝑡) = 1 + √2 tanh 

(

 
 
√2𝑥 + 

log (
−1 + √2

1 + √2
)

2
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.       
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Fig 1. Comparison between different values of α 

 

Fig. 2. Comparison between exact and approx. solution 

u (x, t) at x = 0.01 and α = 1 for different values of t 
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x 𝑬𝒙𝒂𝒄𝒕 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒖(𝒙) 𝑭𝑯𝑷𝑻𝑴 𝑴𝑽𝑰𝑴 VIM 

0.4 0.567812 0.567812 0.513543 0.538667 

1.2 1.95136 1.95136 1.90195 2.064 

2.0 2.35777 2.35777 2.41229 3.33333 

2.8 2.40823 2.40823 2.30603 3.32267 

3.6 2.41359 2.41359 2.40026 1.008 

4.0 2.41401 2.41401 2.50735 -1.33333 

Table 1. It shows approximate and exact solution u(x, t) numeration  

using FHPTM, MVIM and VIM for example 1 
 

Example 2. Consider a inhomogeneous linear system of time-fractional equations as, 

2 21 ( ),  
u

x u x
t






  


                              (15)                                 

Subject to the initial values  

u (x, 0) = 1,      

Taking Laplace transform on both sides of Eq. (15),  
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1 1
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                                                                                        (16)                      

Taking inverse transform on Eq. (16),  

 2 2
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By applying HPM,  
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Equating coefficients of the identical powers of p in Eqs. (18) respectively,  
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,  and so on……. 

Exact Solution can be easily determined to be,    𝑢(𝑥, 𝑡) = 𝑥 +
𝑒−𝑥
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0 1,  0 x 1 and  = 1

Fig. 3 The space -time graph of  exact solution 

u (x, t) at  t    
 

                        

0 1,  0 x 1 and  = 1

Fig. 4 The space -time graph of  approximate solution 

               u (x, t) at  t    
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Fig 5. Approximate solution for u(t) at different 

value of α 

 

 

Fig. 6. Comparison between exact and approx. solution 

(x, t) at x = 0.01 and α = 1 for different values of t 

 

x 𝑬𝒙𝒂𝒄𝒕 𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒖(𝒙) 𝑭𝑯𝑷𝑻𝑴 𝑴𝑽𝑰𝑴 VIM 

0.4 1.01765 1.01765 1.0153 1.01704 

1.2 1.11809 1.11809 1.10893 1.09907 

2.0 1.33114 1.33114 1.32233 1.17352 

2.8 2.00973 2.00973 2.04175 -1.03075 

3.6 2.80021 2.80021 2.76833 -23.3443 

4.0 4.00000 4.00000 3.56075 -135.829 

Table 2. It shows approximate and exact solution u(x, t) numeration 

 using FHPTM, MVIM and VIM for example 2 
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5. Conclusion 

     In this paper, FHPTM is employed successfully to solve very famous Riccati differential equation. Numerical results suggest that 

solution of Riccati equation has a rapid convergence to approximate numerical solutions. These numerical results obtained are compared 

with those approximations, which are obtained from MVIM and VIM. Further, FHPTM has the ability to reduce the computation cost 

significantly. Thus, it can be easily used for big and small parameters in differential equations. In wide class of differential equations 

involving highly nonlinear terms, FHPTM can also be applied which will give solution exactly similar to the solution obtained by 

analytical methods. The best part of this method is that there is no requirement of Adomian polynomials. Without linearization, FHPTM 

can be applied. This shows that FHPTM is not restrictive. Hence FHPTM is more convenient and accurate than other existing methods.  
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