
© 2022 JETIR August 2022, Volume 9, Issue 8                                                        www.jetir.org (ISSN-2349-5162) 

JETIR2208124 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b163 
 

Text-Audio Sentiment Analysis Using Cross-

Modal BERT 
Shubham Das  

M.Tech. (Data Science) 

 ASET, Amity University 

Noida, India 

shubhamdas747@gmail.com 

Dr. Tanya Singh 

Professor 

ASET, Amity University 

Noida, India 

tsingh2@amity.edu 

 

 

Abstract— Multimodal sentiment analysis is a relatively new 

field of research with the aim of enabling machines to perceive, 

analyse, and express emotion. We can learn more in-depth 

information about the speaker's emotional qualities through 

the cross-modal engagement. Bidirectional Encoder 

Representations from Transformers is a powerful pre-trained 

language representation model (BERT). Fine-tuning has 

provided novel, state-of-the-art results on ten natural language 

processing tasks, that included question-answering and natural 

language inference. Although the majority of earlier studies 

that improved BERT only used text data, it is still worthwhile 

to investigate how to learn a better representation by 

incorporating multimodal data. The Cross-Modal BERT 

(CM�BERT), which we suggest in this research, uses the 

communication between text and audio modality to hone the 

pre-trained BERT model. Masked multimodal attention, the 

core aspect of CM-BERT, combines the knowledge retrieved 

from text and audio modalities to dynamically modify the 

weight of words. On the open multimodal sentiment analysis 

datasets CMU-MOSI and CMU-MOSEI, we test our 

methodology. The findings of the experiment reveal that it has 

greatly outperformed prior baselines and text-only finetuning 

of BERT in terms of performance on all criteria. In addition, 

by using audio modality information, we demonstrate the 

masked multimodal attention and demonstrate that it can 

appropriately modify the weight of words.  

Keywords—Natural Language Processing, BERT, Cross-Modal 

BERT (CM-BERT) 

1. INTRODUCTION  

As a result of the development of communication 
technology and the widespread use of social media platforms 
like Facebook and Youtube, people generate a substantial 
amount of multimodal data each day that is rich in sentiment 
information. Emotion is essential to human interpersonal 
communication. Sentiment analysis, one of the essential 
technologies for human-computer interaction, is widely used 
in a range of application scenarios, such as automatic driving 
and human-machine conversation, and it has a substantial 
impact on progress in artificial intelligence [1]. Text is a 
fundamental kind of communication that uses words, 
sentences, and relationships to express emotion [28]. Text 
sentiment analysis has made significant advancements in 
recent years. For instance, TextCNN [13] outperforms the 
state-of-the-art on 4 out of 7 tests. TextCNN was trained on 
top of pre-trained word vectors for sentence-level 
classification tasks. The text modality has a rather 
constrained capacity for information. It could be challenging 
to appropriately discern emotion from writing in some 
situations. Text and aural modes are commonly blended in 

real life. The audio modality's available sentiment data can 
be identified by changes in pitch, energy, vocal effort, 
loudness, and other frequency-related parameters of voice 
quality [14]. It might be able to communicate more specific 
information and capture more emotional traits when text and 
speech are combined [3]. Figure 1 provides an example of 
the relationship between text and audio medium. But you 
know he did it" has a vague emotional meaning and shall be 
used to express a variety of emotions in different settings. It's 
challenging to understand this line's meaning just from its 
words. The speaker's low voice and sobs immediately after 
the introduction of the pertinent audio data make it clear that 
this line has a negative tone. Multimodal sentiment analysis 
addresses single-modality restrictions as  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. An example of cross-modal relationship between text 
and audio. 

 

the developing field of emotional computing has drawn a lot 
of attention [12]. Data from many modalities are combined 
through inter-modal interaction in multimodal fusion. The 
accuracy of the final result or conclusion is often increased 
since the combined information may include extra emotional 
aspects [18]. 

An efficient pre-trained language model called 
Bidirectional Encoder Representations from Transformers 
(BERT) recently showed state-of-the-art performance on a 
range of natural language processing tasks, including 
inference and question answering [5]. BERT develops 
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contextual word representations as opposed to the traditional 
pre-trained language model by simultaneously conditioning 
on both left and right context in all levels. [15]. 

To perform well on a range of tasks at the token and 
sentence levels, pre-trained BERT has been enhanced [25]. 
However, since the majority of fine-tune processes are only 
based on text modality, it is still unclear how to adapt them 
to multimodality and provide better representations. 

In this paper, we create a Cross-Modal BERT (CM-
BERT), which incorporates audio modality data to help text 
modality fine-tune the pre-trained BERT model. The core of 
the CMBERT, masked multimodal attention, seeks to 
dynamically alter the weight of words through cross-modal 
interaction. The free and open-source multimodal sentiment 
analysis datasets CMU-MOSI [35] and CMU-MOSEI [36] 
are used to assess the efficacy of our model. 

2. RELATED WORKS 

2.1 Multi-modal Sentiment Analysis 

      Multimodal sentiment analysis is a current and popular 

area of study in natural language processing. Multimodal 

fusion can capture more intense emotional qualities for 

sentiment analysis when the internal correlation between 

several modalities is taken into account [2]. Multimodal 

fusion is difficult since it is unclear how to effectively 

combine the multimodal information. The two primary 

kinds of fusion approaches employed thus far are feature 

fusion and decision fusion [9, 21]. Concatenating features 

from different modalities or combining them in other ways 

is the aim of feature fusion. Fusion traits can unquestionably 

enhance performance because they carry more emotional 

information. The information from the audio and text modes  

was combined by Zhou et al. [37] to produce a semi-

supervised multi-path generative neural network with 

improved emotion recognition. Zadeh et al. [32] developed a 

tensor fusion network that makes use of the product of 

multimodal features in order to more efficiently express 

multimodal fusion information. The experiment's findings 

demonstrate that Liu et al's multimodal fusion technique[17] 

improves sentiment analysis performance in addition to 

using low-rank tensors to increase efficiency in contrast to 

the tensor fusion network. Given their connection, the two 

terms might influence one another. Poria et al. [22] have 

established a contextual long, short term memory network 

that can capture more emotional characteristics by utilising 

contextual data at the utterance level and considering the 

relationship between the utterances. 

  A decision vector is produced when the outcomes of the 

independent categorization and analysis of the features of 

various modalities are combined. Dobriek et al. [6] sum and 

weighted product rules were utilised for audio and video 

decision-level fusion; the experiment's findings demonstrate 

that the weighted product outperforms the weight sum. 

Along with their prominence, the role of attention processes 

in multimodal fusion is expanding. By using a multi-

attention block, a multi-attention recurrent network, 

developed by Zadeh et al. [34], can be utilised to identify 

interactions between different modalities. A multimodal 

multi-utterance bi-modal attention framework was 

introduced by Ghosal et al. [11] to study the factors that 

influence multimodal representations. In their Multimodal 

Transformer model, Tsai et al. [26] developed a directional 

paired crossmodal attention that can latently adapt streams 

from one modality to another while listening to interactions 

across multimodal sequences over different time steps.. 

 

 

 

2.2 Pre-Trained Language Model 

    Pre-trained language models are increasingly being used 

because they perform better on a variety of sentence- and 

token-level tasks, such as named entity recognition and 

question-answering [7]. The Extracted features from 

Language Models (ELMo) was developed by Peters et al. 

[19] and is pre-trained on a sizable text corpus using a deep 

bidirectional language model. The experiment's findings 

show that performance on six tasks can be significantly 

enhanced. The Generative Pre-trained Transformer was then 

presented by Radford et al. [23] to teach a universal 

representation (GPT). In contrast to previous approaches, 

they applied task-aware input transformations during fine-

tuning, and it can be effectively transferred with little 

architecture change. A masked language model that was 

already been trained on the unsupervised prediction tasks 

Masked LM and Next Sentence Prediction is called 

Bidirectional Encoder Representations from Transformers 

(BERT), which is different from ELMo and GPT. The pre-

trained BERT was modified to provide results that were 

state-of-the-art and definitely superior to those of earlier 

pre-trained language models on ten natural language 

processing tasks [5, 10]. 

3.  METHODOLOGY 

       In this paper, the Cross-Modal BERT (CM-BERT), a 

technique for integrating data from the text and audio 

modalities into the pre-trained BERT model, is introduced.  

Its essential element is the employment of hidden 

multimodal attention to cross-modal interaction to change 

the weight of words on the fly. The problem specification is 

covered in the subsections i.e. followed in Section 3.1, while 

Section 3.2 presents the CM-BERT model's design. 

Disguised multimodal attention is a concept that is 

introduced in Section 3.3. 

 

3.1 Problem Definition 

A text sequence made up of word-piece tokens is given 

as T = [T1,T2,...Tn], where, n is the sequence length. The 

last encoder layer produces a sequence of length n+ 1 since 

the embedding layer of the BERT model adds a particular 

classification embedding ([CLS]) before the input sequence. 

This is indicated by the expression Xt = [E[CLS], E1, 

E2,...En]. The word-level alignment audio features 

(described in Section 4.2) are prefixed with a zero vector to 

be consistent with text modality, and the features of the 

audio are designated as Xa = [A[CLS], A1, A2,...An], where 

A[CLS] is a zero vector. Our approach aims to better fine-

tune the pre-trained BERT model and By adjusting the 

weight of each word through the interplay between Xt and 

Xa, performance of sentiment analysis can be enhanced. 

 

3.2 Cross-Modal BERT (CM-BERT) 

Figure 2 depicts the configuration of the CM-

architectural BERT. The word-piece token sequence from 

the text and the audio features for word-level alignment 

make up the two components that make up the CM-BERT 

model's input. After the text sequence has initially been run 

through the trained BERT model, the output of the final 

encoder layer—defined as Xt = [E[CLS], E1, E2,...En]—

will be used as the text features. We utilise a 1D temporal 

convolutional layer to bring the text attributes Xt, which are 

obviously bigger in dimension than the word-level 

alignment audio characteristics Xa, to the same dimension: 

 

{𝑋ˆ 𝑡 ,𝑋ˆ 𝑎 } = Conv 1D ( {𝑋𝑡 , 𝑋𝑎 }, 𝑘{𝑡,𝑎} ) 

 

where kt,a are the corresponding convolutional kernel sizes 

for the text and audio modalities.  
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Figure 2. Overview of the Cross-Modal BERT 

Network's architecture. 

 

 

Since Xt has a much higher dimension than Xa, its worth 

will grow significantly throughout the course of training. To 

prevent the dot products from becoming exceedingly large 

in magnitude and forcing the softmax function into 

incredibly tight gradient areas, we scale the text features X t 

to X t′ and the audio characteristics X a to X a′: 

 
  𝑋ˆ𝑡 ′ = 𝑋ˆ𝑡 /q 𝑋ˆ𝑡 2  

  𝑋ˆ𝑎 ′ = 𝑋ˆ𝑎 /q 𝑋ˆ𝑎 2 

As soon as we have Xt, Xt′, and Xa, we enter them 

into the masked multimodal attention, which can modify the 

weight of words by fusing the way the words are performed 

across several modalities., to entirely interactively combine 

text and auditory information. In order to preserve the 

original structure of the data, we apply a residual connection 

on Xt and XAtt after receiving the result of the multimodal 

attention masked XAtt. After that, a normalisation layer and 

a linear layer will be applied. The output of the last linear 

layer may now be accessed, Yl = [L[CLS], L1, L2,...Ln. 

 

3.3 Masked Multi-modal Attention 

   The core aspect of the CM-BERT, known as masked 

multimodal attention, modifies the pre-trained BERT model 

and the text modality with the aid of audio input. The 

organisational structure of the veiled multimodal attention is 

shown in Figure 3. We begin by evaluating each word's 

significance in several modalities. The text modality's query 

Qt and key Kt are determined by the scaled text features, or 

Xt′, with Qt = Kt = Xt′. The Query Qa and the Key Ka of 

the audio modality are defined by the scaled word-level 

alignment audio characteristics, or Xa′. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. The masked-multimodal attention architecture. 

 

The text attention matrix t, and the audio attention matrix an 

are defined as follows: 

𝛼𝑡 = Relu(QtKt′) 

𝛽𝑎 = Relu(QaKa′) 

 

 

      The weighted fusion attention matrix Wf is calculated as 

follows: to adjust each word's emphasis through the 

summation of the auditory and textual modalities, we weight 

sum the text attention the audio attention matrix a matrix t. 

 

𝑊𝑓 = 𝑤𝑡 ∗ 𝛼𝑡 + 𝑤𝑎 ∗ 𝛽𝑎 + b 
 

 

where wt and wa stand for the next weights of the text and 

audio modalities, and b represents the bias. We develop a 

mask matrix M that uses 0 to represent the token position 

and −∞ utilises to represent the padding position in order to 

lessen the impact of the padding sequence (after softmax 

function the attention score of padding position will be 0). 

The multimodal attention matrix Wm is therefore described 

as follows: 

 

W𝑚 = Softmax ( 𝑊𝑓 + 𝑀 ) 
 

      To get the result of the multimodal attention XAtt 

matrix, we multiply Wm by the value of the multimodal 

attention that has been masked, Vm: 

 

X𝐴𝑡𝑡 = 𝑊𝑚𝑉m 
 

where Vm is the final encoder layer output of the BERT, 

defined as Vm = Xt. 

4. EXPERIMENTAL METHODOLOGY 

On the open multimodal sentiment analysis datasets 

CMUMOSI and CMU-MOSEI, we assess the Cross-Modal 

BERT's performance in this section. We will discuss our 

experiments from the subsequent angles. We will start by 

discussing the details of the datasets and the experimental 

environment. Following that, we'll discuss the audio features 

and multimodal alignment. Finally, we will provide the 

evaluation criteria and baselines that we employed in our 

study. 
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4.1 Dataset & Experimental Environment 

     We evaluate the efficacy of our methodology using the 

CMU Multimodal Opinion-level Sentiment Intensity (CMU-

MOSI) and CMU Multimodal Opinion Sentiment and 

Emotion Intensity (CMU-MOSEI) datasets. CMU-MOSI 

consists of 93 YouTube movie reviews and opinion videos. 

The videos cover over 2199 utterances. Five different 

workers classify each statement on a scale from -3 to +3, 

with -3 meaning extremely negative and 3 denoting highly 

positive. We split the 1284, 229, and 686 utterances from 

52, 10, and 31 films into training, validation, and test sets, 

respectively, keeping in mind that the speaker shouldn't 

appear in both the testing and training sets also, the balance 

of the positive and negative data. CMU-MOSEI is a emotion 

analysis dataset and multimodal sentiment that, like CMU-

MOSI, is composed of 23,454 YouTube movie review video 

clips. The strategy we employ is consistent with previously 

published publications [26, 30]. 

Our proposed CM-BERT employs the pre-trained BERT 

model's uncased BERTBASE variant, which contains 12 

transformer blocks. In order to prevent overfitting, we set 

the learning rates of the encoder layers to 0.01 and the 

remaining layers to 2e-5. To enhance performance, we 

freeze the embedding layer's parameters. For training the 

CM-BERT model, we set the batch size, maximum 

sequence length, and number of epochs to 24 and 50, 

respectively. We used the Adam optimizer with mean-

square error as the loss function. 

 

 

Table 1. Experimental results on CMU-MOSI dataset. 

 

4.2 Audio Features & Multi-Modal Alignment 

      COVAREP [4] is used in this study to extract audio 

features. Each segment is represented by a 74-dimensional 

feature vector, which contains twelve Mel-frequency 

cepstral coefficients (MFCCs), pitch and segmenting 

characteristics, glottal source parameters, peak slope 

parameters, and maxima dispersion quotients. Using P2FA 

[31] in the wake of [26], we acquire the timesteps for each 

word in order to extract the word-level alignment 

characteristics. Following that, the audio elements contained 

inside the pertinent word timesteps are averaged. The audio 

sequences are padded with zero vectors so that they match 

the sequence length of the text mode. 

 

4.3 Evaluation Metrics 

In line with prior research [30], the performance of our 

model and the baselines using the same assessment metrics 

in our experiment. The 7-class accuracy (Acc7) is used in 

the sentiment score classification task, the 2-class accuracy 

(Acc2) and the F1 score (F1) are used in the binary-

sentiment classification task, and the mean absolute error 

(MAE) and correlation (Corr) of model predictions with true 

labels are used in the regression task. In addition to MAE, 

the model will perform better when the other measures have 

higher values. We select five random seeds at random and 

average the results of five runs to increase the validity of the 

experiment results. 

4.3 Baseline Models 

We evaluate CM-multimodal BERT's sentiment analysis 

performance in comparison to earlier models. The models 

that we compared are as follows: 

LMF [17] Low-rank weight tensors are used in a method 

known as low-rank multimodal fusion, or LMF, to enhance 

performance without reducing efficiency. Performance is 

much improved, and computational complexity is 

significantly decreased. 

MFN [33] The Memory Fusion Network (MFN) is mainly 

composed of System of LSTMs, Delta-memory Attention 

Network, and Multi-view Gated Memory, which explicitly 

accounts for both interactions in neural architecture and 

continuously simulates them. 

 

 

 

 

 

MFM [27] The Multimodal Factorization Model (MFM) 

can factorise the multimodal representations into 

multimodal discriminative factors and modality-specific 

generative factors, helping each factor focus on learning 

from a portion of the joint knowledge across multimodal 

data and labels. 

MCTN [20] Multimodal Cyclic Translation Network 

(MCTN), which solely works with text modality data during 

testing, generates brand-new, cutting-edge output. It is 

intended to translate between several modalities to learn 

reliable joint representations. 

MulT [26] The most advanced technique utilised on the 

MOSI dataset is Multimodal Transformer (MulT), a state-

of-the-art technique that latently changes streams of one 

modality to another. MulT employs directed paired 

crossmodal attention to examine interactions among 

multimodal sequences over a number of time steps.  

A Bidirectional Encoder Representations from Transformers 

(BERT) called T-BERT [5] only employs text modality 

information for fine-tuning. 

 

Model Modality Acc7(h) Acc2(h) F1 Score MAE(h) Corr(h) 

LMF [17] T+A+V 32.7 76.3 75.5 0.913 0.666 

MFN [33] T  + A + V 34.2 77.3 77.4 0.964 0.633 

MARN [34] T  + A + V 34.5 77.2 77.1 0.966 0.634 

RMFN [16] T  + A + V 38.2 78.3 78.1 0.923 0.682 

MFM [27] T  + A + V 36.1 78.2 78.3 0.952 0.662 

MCTN [20] T  + A + V 36.5 79.2 79.3 0.908 0.675 

MulT [26] T  + A + V 40.1 83.1 82.7 0.872 0.697 

T-BERT [5] T 41.4 83.1 83.3 0.783 0,775 

CM-BERT 

(ours) 

T  + A 44.8 84.4 84.5 0.730 0.792 
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5. RESULTS & DISCUSSION 

    The results of our test of the CM-BERT model using the 

CMU-MOSI dataset are shown in Table 1. It is obvious that 

the CM-BERT model produces a brand-new, brand�new 

result on the MOSI dataset and enhances performance 

across the board. The binary-sentiment classification task 

yields an Acch2 score of 84.4 percent for the CM-BERT 

model, which is around 1.5 percent -9.3 percent better than 

baselines. Our model raises F 1 from 8.6 to 9.2 percent, 

similar to Acch2. The sentiment score categorization task 

exhibits the strongest influence of the CM-BERT model on 

improvement. Our model outperforms the baselines by 4.8 

to 12.0 percentage points on Acch7, scoring 44.9 percent. In 

the regression task, the CM-BERT increases 0.093-0.183 on 

Corrh while decreasing 0.142-0.294 on MAEl. It is 

interesting that the p-value for the student t-test comparing 

CM-BERT with T-BERT in Table 1 is significantly less 

than 0.05 on all measures.  

T-BERT is the only baseline that utilises data from text, 

audio, and video modalities; nevertheless, our model only 

employs this data to produce a novel, cutting-edge result. 

According to the experimental results, the MulT model 

performs significantly better than the other baselines. The 

main reason for this is that the MulT extends transformer to 

multimodal situations and latently adapts elements across 

modalities using attention. The MulT model outperforms the 

T-BERT model in terms of performance since it can 

enhance the representations of the pre-trained BERT model. 

The pre-trained BERT model is extended from unimodal to 

multimodal in the CM-BERT model we developed, in 

contrast to the T-BERT model, and audio modality 

information is added to help text modality effectively 

modify the weight of words. Because the CM-BERT model 

can more correctly reflect the speaker's emotional state and 

can capture more emotive elements through the relation 

between textual and audio modalities, its performance on all 

assessment criteria is significantly enhanced.  

To demonstrate the applicability of our methodology to 

other multimodal language datasets, we also conduct tests 

on the CMU-MOSEI dataset. Following earlier research 

[24], we compare the Acch 2 and F 1 for the top 3 models in 

Table 1 for the sake of convenience. First off, the MulT 

scores an 82.7 on Acch 2 and an 82.3 on F 1. When 

compared to MulT, T-BERT performs better, scoring 83.3 

percent on Acch 2 and 83.1 percent on F 1. Additionally, 

CM-BERT succeeds at 84.5 percent on Acch 2 and 84.4 

percent on F 1. Our model improves on Acc 2 and F 1 by 

roughly 1.3 percent and 1.2 percent, respectively, as 

compared to the MulT and T-BERT. As a result, our 

suggested method's higher performance on the CMU-

MOSEI dataset also supports its generalizability. 

6. CONCLUSION 

In this paper, we provide a Cross-Modal BERT multimodal 

sentiment analysis model (CM-BERT). In contrast to past 

efforts, we change the pre-trained BERT model from 

unimodal to multimodal. We introduce the audio modality 

information in order to enhance representations and aid text 

modality BERT. Through the interaction of the textual and 

auditory modalities, the central component of CM-BERT, 

camouflaged multimodal attention, tries to dynamically 

modify the weight of words. The results show that, on the 

CMU-MOSI and CMU-MOSEI datasets, CM-BERT 

performs significantly better than earlier baselines and text-

only finetuning of BERT. In fact, CM-BERT can be used to 

integrate more than two modalities and is appropriate for 

both text and video. The main focus of future research will 

be on using neural networks to align different data 

modalities using pre-trained models to extract more accurate 

representations from multimodal data that is generally not 

aligned. This is due to the fact that multimodal data is rarely 

aligned in the real world. 
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