

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JIDURNAL DF EMEREING TECHNDLDEIES AND INNDVATIVE RESEAREH (JETIR)
An International Scholarly Dpen Access, Peer-reviewed, Refereed Journal

ON $(1,2)^{*} \eta$-OPEN SETS IN BITOPOLOGICAL SPACES

Hamant Kumar
Department of Mathematics
Veerangana Avantibai Government Degree College, Atrauli-Aligarh, U. P. (India)

Abstract

In this paper, we introduce (1,2$)^{*}-\eta$-open sets and obtain the relationships among some existing open sets like $(1,2)^{*}$-semi-open, $(1,2)^{*}$ - α-open and $\mathfrak{J}_{1,2}$-open sets. Also we study some of basic properties of $(1,2)^{*}-\eta$-open sets. Further, we introduced (1, 2)*- η-neighbourhood and discuss some basic properties of (1, $2)^{*}-\eta$-neighbourhood.

Keywords : $(1,2)^{*}$-semi-open, $(1,2)^{*}-\alpha$-open, (1, 2)*- η-open sets; (1, 2)*- η-closure and (1, 2)*- η neighbourhood
2020 AMS Subject Classification: 54A05, 54A10

1. Introduction

The study of bitopological space was first intiated by Kelly [1] in the year 1963. By using the topological notions, namely, semi-open, regular-open, α-open and pre-open sets, many new bitopological sets are defined and studied by many topologists. In 2008, Ravi et al. [3] studied the notion of (1, 2)*-open sets in bitopological spaces. In 2004, Ravi and Thivagar [2] studied the concept of stronger from of $(1,2)^{*}$-quatient mapping in bitopological spaces and introduced the concepts of (1,2)*-semi-open and (1,2)*- α-open sets in bitopological spaces. In 2019, Subbulakshmi et al. [5] introduced the concept of η-open sets in topological spaces.

2. Preliminaries

Throughout the paper (X, $\left.\mathfrak{I}_{1}, \mathfrak{I}_{2}\right),\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ and $\left(\mathrm{Z}, \wp_{1}, \wp_{2}\right)$ (or simply X, Y and Z) denote bitopological spaces.

Definition 2.1 [2]. Let S be a subset of X. Then S is said to be \mathfrak{I}_{1}, 2-open if $S=A \cup B$, where $A \in \mathfrak{I}_{1}$ and $B \in$ \mathfrak{I}_{2}. The complement of a $\mathfrak{I}_{1,2}$-open set is $\mathfrak{I}_{1,2}$-closed.

Definition 2.2 [2]. Let S be a subset of X. Then
(i) the $\mathfrak{I}_{1,2}$-closure of S , denoted by $\mathfrak{I}_{1,2}$-cl(S), is defined as $\cap\left\{\mathrm{F}: \mathrm{S} \subset \mathrm{F}\right.$ and F is $\mathfrak{I}_{1,2}$-closed $\}$;
(ii) the $\mathfrak{I}_{1,2}$-interior of S, denoted by $\mathfrak{I}_{1,2}$-int (S), is defined as $\cup\left\{F: F \subset S\right.$ and F is $\mathfrak{I}_{1,2 \text {-open }\} \text {. }}$.

Note 2.3 [2]. Notice that $\mathfrak{I}_{1,2}$-open sets need not necessarily form a topology.
Definition 2.4. A subset A of a bitopological space $\left(X, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$ is called
(i) regular (1,2 $)^{*}$-open $[6]$ if $A=\mathfrak{J}_{1,2}-\operatorname{int}\left(\mathfrak{J}_{1,2}-\mathrm{cl}(\mathrm{A})\right)$,
(ii) $(\mathbf{1 , 2})^{*}$-semi-open [2] if $\mathrm{A} \subset \mathfrak{J}_{1,2}-\mathrm{cl}\left(\mathfrak{I}_{1,2}-\operatorname{int}(\mathrm{A})\right)$,
(iii) $(\mathbf{1}, \mathbf{2})^{*}-\alpha$-open [2] if $\mathrm{A} \subset \mathfrak{I}_{1,2}-\operatorname{int}\left(\mathfrak{I}_{1,2}-\operatorname{cl}\left(\mathfrak{I}_{1,2}-\operatorname{int}(\mathrm{A})\right)\right)$.

The complement of a $(1,2)^{*}$-regular open (resp. (1, 2)*-semi-open, (1,2$)^{*}$ - α-open) set is called $(1,2)^{*}$-regularclosed (resp. (1, 2)*-semi-closed, (1, 2)*- α-closed).

The family of all (1, 2)*-regular-open (resp. (1, 2)*-semi-open, (1, 2)*- α-open) sets in X is denoted by $(1,2)^{*}$ $\mathrm{RO}(\mathrm{X})$ (resp. (1, 2) ${ }^{*}-\mathrm{SO}(\mathrm{X}),(1,2)^{*}-\alpha \mathrm{O}(\mathrm{X})$).

The (1, 2)*-semi-closure (resp. (1, 2)*- α-closure) of a subset A of X is denoted by (1, 2)*-s-cl(A) (resp. (1, 2)*-α-cl(A)), defined as the intersection of all (1,2)*-semi-closed. (resp. (1, 2)*-semi-closed) sets containing A.
 $2)^{*}$-semi-open. But the separate converses are not true.

3. $(1,2)^{*}-\eta$-open sets

Defination 3.1. A subset A of a bitopological space X is said to be (1,2)*- $\boldsymbol{\eta}-\mathbf{o p e n}$ if $A \subset \mathfrak{I}_{1,2}-\operatorname{int}\left(\mathfrak{I}_{1,2}-\operatorname{cl}\left(\mathfrak{I}_{1,2-}\right.\right.$ $\operatorname{int})(\mathrm{A})) \cup \mathfrak{I}_{1,2}-\operatorname{cl}\left(\mathfrak{I}_{1,2}-\operatorname{int}((\mathrm{A}))\right.$ and $(1,2) *-\eta-\operatorname{closed}$ if $\mathrm{A} \supset \mathfrak{I}_{1,2}-\operatorname{cl}\left(\mathfrak{I}_{1,2}-\operatorname{int}\left(\mathfrak{J}_{1,2}-\operatorname{cl}(\mathrm{A})\right)\right) \cap \mathfrak{I}_{1,2}-\operatorname{int}\left(\mathfrak{J}_{1,2}-\mathrm{cl}(\mathrm{A})\right)$.

The (1, 2)*- η-closure of a subset A of X is denoted by $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})$, defined as the intersection of all $(1,2)^{*}-$ η-closed sets containing A.

The family of all $(1,2)^{*}-\eta$-open (resp. (1, 2)*- η-closed) subsets of X is denoted by $(1,2)^{*}-\eta \mathrm{O}(\mathrm{X})\left(\right.$ resp. $(1,2)^{*}-$ $\eta \mathrm{C}(\mathrm{X})$).

Proposition 3.2.

(i) Every $(1,2)^{*}-\alpha$-open set is $(1,2)^{*}-\eta$-open.
(ii) Every $(1,2)^{*}$-semi-open set is $(1,2)^{*}-\eta$-open.
(iii) Every regular $(1,2)^{*}$-open set is $(1,2)^{*}-\eta$-open.
(iv) Every $\mathfrak{I}_{1,2}$-open set is a $(1,2)^{*}-\eta$-open set.

Proof. (i)
Let A be a $(1,2)^{*}$ - α-open set, then
$\mathrm{A} \subset \mathfrak{J}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{J}_{1} \mathfrak{I}_{2}-\operatorname{cl}\left(\mathfrak{J}_{1} \mathfrak{J}_{2}-\operatorname{int}(\mathrm{A})\right)\right)$
$\left.\left.\Rightarrow A \subset \mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{I}_{1}, \mathfrak{I}_{2}-\operatorname{cl}\left(\mathfrak{I}_{1} \mathfrak{J}_{2}-\operatorname{int}(\mathrm{A})\right)\right) \cup \mathfrak{I}_{1} \mathfrak{I}_{2}-\mathrm{cl}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\right)(\mathrm{A})\right)\right)$
$\Rightarrow \mathrm{A}$ is $(1,2)^{*}-\eta$-open set.
Hence A is a $(1,2)^{*}-\eta$-open set.
(ii) Let A be a $(1,2)^{*}$-semi-open set, then
$\mathrm{A} \subset \mathfrak{I}_{1} \mathfrak{I}_{2}-\mathrm{cl}\left(\mathfrak{J}_{1} \mathfrak{J}_{2}-\operatorname{int}(\mathrm{A})\right)$
$\left.\Rightarrow A \subset \mathfrak{I}_{1} \mathfrak{I}_{2}-\mathrm{cl}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})\right)\right) \cup \mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{cl}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})\right)\right)$
or
$\mathrm{A} \subset \mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{cl}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})\right)\right) \cup \mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{cl}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})\right)$
$\Rightarrow \mathrm{A}$ is $(1,2)^{*}-\eta$-open set.
Hence A is a $(1,2)^{*}-\eta$-open set.
(iii) Let A be a $(1,2)^{*}$-regular open set, then
$\mathrm{A}=\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{J}_{1} \mathfrak{J}_{2}-\mathrm{cl}(\mathrm{A})\right)$.
$\Rightarrow \mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})=\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\mathrm{cl}(\mathrm{A})\right)\right)$
$\Rightarrow \mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})=\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})\right)$
Using (i)
$\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})=\mathrm{A}$

Hence A is $\mathfrak{I}_{1} \mathfrak{I}_{2}$-open.
Now we know that
$\mathrm{A} \subset \mathfrak{J}_{1} \mathfrak{I}_{2}-\mathrm{cl}(\mathrm{A})$
$\Rightarrow \operatorname{int}(\mathrm{A}) \subset \mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{cl}(\mathrm{A})\right)$
Using (ii)
$\mathrm{A} \subset \mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{I}_{1} \mathfrak{J}_{2}-\mathrm{cl}(\mathrm{A})\right)$
Again using (ii), we get
$\mathrm{A} \subset \mathfrak{J}_{1} \mathfrak{J}_{2}-\operatorname{int}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\mathrm{cl}\left(\mathfrak{J}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})\right)\right)$
$\Rightarrow A \subset \mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{cl}\left(\mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})\right)\right) \cup \mathfrak{I}_{1} \mathfrak{I}_{2}-\operatorname{cl}\left(\mathfrak{J}_{1} \mathfrak{I}_{2}-\operatorname{int}(\mathrm{A})\right)$
Hence, A is $(1,2)^{*}-\eta$-open set.
(iv) East to prove.

Remark 3.3. We have the following implications for the properties of subsets:

$\mathfrak{I}_{1,2}$-open $\quad \Rightarrow(1,2)^{*}$ - α-open $\Rightarrow(1,2)^{*}$-semi-open $\Rightarrow(1,2)^{*}-\eta$-open

Where none of the implications is reversible as can be seen from the following examples:
Example 3.4. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathfrak{I}_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}$ and $\mathfrak{I}_{2}=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$. Then
(i) The $\mathfrak{I}_{1,2}$-open sets are : $\phi,\{a\},\{b\},\{a, b\},\{a, b, c\}, X$.
(ii) The $(1,2)^{*}$-semi open sets are : $\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}$, d\}, $\{b, c, d\}, X$.
(iii) The $(1,2)^{*}$ - α-open sets are : $\phi,\{a\},\{b\},\{a, b\},\{a, b, c\},\{a, b, d\}, X$
(iv) The $(1,2)^{*}-\eta$-open sets are : $\phi,\{a\},\{b\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\}$, $\{b, c, d\}, X$.

Example 3.5. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathfrak{I}_{1}=\{\phi,\{\mathrm{b}\}, \mathrm{X}\}$ and $\mathfrak{I}_{2}=\{\phi,\{\mathrm{c}\}, \mathrm{X}\}$. Then
(i) The $\mathfrak{I}_{1,2}$-open sets are : $\left.\phi,\{b\},\{c\},\{b, c\}, X\right\}$.
(ii) The (1, 2)*-semi-open sets are : $\phi, \mathrm{X},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}$.
(iii) The $(1,2)^{*}$ - α-open sets are : $\phi, \mathrm{X},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}$.
(iv) The $(1,2)^{*}-\eta$-open sets are : $\phi,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}, X$.

Example 3.6. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},, \mathfrak{I}_{1}=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}$ and $\mathfrak{I}_{2}=\{\phi,\{\mathrm{b}\}, \mathrm{X}\}$. Then
(i) The $\mathfrak{I}_{1} \mathfrak{I}_{2}$-open sets are : $\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}$.
(ii) The $(1,2)^{*}$-semi open sets are : $\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}$.
(iii) The $(1,2)^{*}-\alpha$-open sets are : $\phi,\{a\},\{b\},\{a, b\}, X$.
(iv) The $(1,2)^{*}-\eta$-open sets are : $\phi,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\}, X$.

Example 3.7. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\}$ and $\mathfrak{I}_{2}=\{\phi, \mathrm{X},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}\}$. Then
(i) The $\mathfrak{I}_{1} \mathfrak{I}_{2}$-open sets are : $\phi, X,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(ii)The $(1,2)^{*}$-semi open sets : $\phi, X,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}$, c, d\}.
(iii) The (1, 2) ${ }^{*}$ - α-open sets are : $\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\},\{a, c, d\},\{b, c, d\}$.
(iv) The $(1,2)^{*}-\eta$-open sets are : $\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\}$, $\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.

Theorem 3.8. Intersection of two $(1,2)^{*}-\eta$-open sets need not be a $(1,2)^{*}-\eta$-open set.
Proof. East to verify.

Example 3.9. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\}$ and $\mathfrak{I}_{2}=\{\phi, \mathrm{X},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}\}$. Then $(1,2)^{*}-\eta O(X)=\{\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\}\}$. Here $A=\{c, d\}$ and $B=\{a, b, d\}$ are $(1,2)^{*}-\eta$-open sets, but $A \cap B=\{d\}$ is not $a(1,2)^{*}-\eta$-open set.

Theorem 3.9. The finite union of $(1,2)^{*}-\eta$ open sets is a $(1,2)^{*}-\eta$ open set.
Proof. East to verify.

4. (1,2)*- $\boldsymbol{\eta}$-neighborhood and their basic properties

In this section, we introduce (1, 2) ${ }^{*}-\eta$-neighborhood (shortly $(1,2)^{*}-\eta$-nbhd in bitopological spaces by using the notion of $(1,2)^{*}-\eta$-open sets. We prove that every nbhd of x in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ is $(1,2)^{*}-\eta$-nbhd of x but not conversely.

Definition 4.1. Let $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ be a bitopological space and let $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. A subset N of $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is said to be a (1, 2)*- $\boldsymbol{\eta}$-nbhd of x iff there exists a $(1,2)^{*}-\eta$-open set G such that $x \in G \subset N$.

Definition 4.2. A subset N of a bitopological space ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}$), is called a $(\mathbf{1}, \mathbf{2})^{*}-\boldsymbol{\eta}$-nbhd of $\mathrm{A} \subset\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ iff there exists a $(1,2)^{*}-\eta$-open set G such that $A \subset G \subset N$.

Remark 4.3. The $(1,2)^{*}-\eta$-nbhd N of $x \in\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ need not be a $(1,2)^{*}-\eta$-open in $\left(X, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$.
Example 4.4. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathfrak{I}_{1}=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$ and $\mathfrak{I}_{2}=\{\phi,\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$. Then $(1,2)^{*}-\eta O(X)=\{\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\}\}$. Note that $\{a, d\}$ is not $a(1,2)^{*}-\eta$-open set, but it is a $(1,2)^{*}-\eta$-nbhd of a, since $\{a\}$ is a $(1,2)^{*}-\eta$-open set such that a $\in\{a\} \subset\{a, d\}$.

Theorem 4.5. Every nbhd N of $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$ is a $(1,2)^{*}-\eta$-nbhd of $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$.
Proof. Let N be a nbhd of point $x \in\left(X, \Im_{1}, \mathfrak{I}_{2}\right)$. To prove that N is a $(1,2)^{*}-\eta$-nbhd of x . By definition of nbhd, there exists an open set G such that $x \in G \subset N$. As every open set is $(1,2)^{*}-\eta$-open set so, G is $(1,2)^{*}-\eta$-open set such that $x \in G \subset N$. Hence N is $(1,2)^{*}-\eta$-nbhd of x.

Remark 4.6. In general, a $(1,2)^{*}-\eta$-nbhd N of $x \in\left(X, \Im_{1}, \mathfrak{J}_{2}\right)$ need not be a nbhd of x in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$, as seen from the following example.

Example 4.7. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with topology $\mathfrak{I}_{1}=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\mathfrak{I}_{2}=\{\phi,\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$, $X\}$ Then $(1,2)^{*}-\eta O(X)=\{X, \phi,\{a\},\{b\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c$, $d\},\{b, c, d\}\}$. The set $\{a, c\}$ is $(1,2)^{*}-\eta$-nbhd of the point c, since the $(1,2)^{*}-\eta$-open set $\{a, c\}$ is such that $c \in$ $\{a, c\} \subset\{a, c\}$. However, the set $\{a, c\}$ is not a nbhd of the point c, since no open set G exists such that $c \in G$ $\subset\{\mathrm{a}, \mathrm{c}\}$.

Theorem 4.8. If a subset N of a space $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is $(1,2)^{*}-\eta$-open, then N is a $(1,2)^{*}-\eta$-nbhd of each of its points.
Proof. Suppose N is $(1,2)^{*}-\eta$-open. Let $x \in N$. We claim that N is $(1,2)^{*}-\eta$-nbhd of x. For N is a $(1,2)^{*}-\eta$-open set such that $x \in N \subset N$. Since x is an arbitrary point of N, it follows that N is a $(1,2)^{*}-\eta$-nbhd of each of its points.

Definition 4.9. Let x be a point in a space $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. The set of all $(1,2)^{*}-\eta$-nbhd of x is called the $(\mathbf{1}, \mathbf{2})^{*}-\eta-$ nbhd system at x , and is denoted by $(1,2)^{*}-\eta-\mathrm{N}(\mathrm{x})$.

Theorem 4.10. Let $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ be a bitopological space and for each $x \in\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Let $(1,2)^{*}-\eta-N(x)$ be the collection of all $(1,2)^{*}-\eta$-nbhds of x. Then we have the following results.
(i) $\vee \mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right),(1,2)^{*}-\eta-\mathrm{N}(\mathrm{x}) \neq \phi$.
(ii) $\mathrm{N} \in(1,2)^{*}-\eta-\mathrm{N}(\mathrm{x}) \Rightarrow \mathrm{x} \in \mathrm{N}$.
(iii) $\mathrm{N} \in(1,2)^{*}-\eta-\mathrm{N}(\mathrm{x}), \mathrm{M} \supset \mathrm{N} \Rightarrow \mathrm{M} \in(1,2)^{*}-\eta-\mathrm{N}(\mathrm{x})$.
(iv) $\mathrm{N} \in(1,2)^{*}-\eta-\mathrm{N}(\mathrm{x}), \mathrm{M} \in(1,2)^{*}-\eta-\mathrm{N}(\mathrm{x}) \Rightarrow \mathrm{N} \cap \mathrm{M} \in(1,2)^{*}-\eta-\mathrm{N}(\mathrm{x})$.
(v) $N \in(1,2)^{*}-\eta-N(x) \Rightarrow$ there exists $M \in(1,2)^{*}-\eta-N(x)$ such that $M \subset N$ and $M \in(1,2)^{*}-\eta-N(y)$ for every y $\in \mathrm{M}$.

Proof. (i) Since $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ is a $(1,2)^{*}-\eta$-open set, it is a $(1,2)^{*}-\eta$-nbhd of every $x \in\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$. Hence there exists at least one $(1,2)^{*}-\eta$-nbhd (namely $-\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$) for each $\mathrm{x} \in\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Hence $(1,2)^{*}-\eta-N(x) \neq \phi$ for every $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.
(ii) If $N \in(1,2)^{*}-\eta-N(x)$, then N is a $(1,2)^{*}-\eta-n b h d$ of x. So by definition of $(1,2)^{*}-\eta-n b h d, x \in N$.
(iii) Let $N \in(1,2)^{*}-\eta-N(x)$ and $M \supset N$. Then there is a $(1,2)^{*}-\eta$-open set G such that $x \in G \subset N$. Since $N \subset M$, $x \in G \subset M$ and so M is $(1,2)^{*}-\eta$-nbhd of x. Hence $M \in(1,2)^{*}-\eta-N(x)$.
(iv) Let $N \in(1,2)^{*}-\eta-N(x)$ and $M \in(1,2)^{*}-\eta-N(x)$. Then by definition of $(1,2)^{*}-\eta$-nbhd. Hence $x \in G_{1} \cap G_{2}$ $\subset \mathrm{N} \cap \mathrm{M} \Rightarrow(1)$. Since $\mathrm{G}_{1} \cap \mathrm{G}_{2}$ is a (1,2)${ }^{*}-\eta$-open set, (being the intersection of two (1,2$)^{*}$ - η-open sets), it follows from (1) that $N \cap M$ is a $(1,2)^{*}-\eta$-nbhd of x. Hence $N \cap M \in(1,2)^{*}-\eta-N(x)$.
(v) If $N \in(1,2)^{*}-\eta-N(x)$, then there exists a $(1,2)^{*}-\eta$-open set M such that $x \in M \subset N$. Since M is a $(1,2)^{*}-\eta-$ open set, it is $(1,2)^{*}-\eta$-nbhd of each of its points. Therefore $M \in(1,2)^{*}-\eta-N(y)$ for every $y \in M$.

References

1. J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
2. O. Ravi, M. L. Thivagar, On stronger forms of (1, 2)*-quotient mappings in bitopological spaces. Internat. J. Math. Game Theory and Algebra 14 (2004), 481-492.
3. O. Ravi, M. Lellis Thivagar and Erdal Ekici, On $(1,2)^{*}$-sets and decompositions of bitopological $(1,2)^{*}$ continous mappings, Kochi J. Math. 3 (2008), 181-189
4. O. Ravi, M. L. Thivagar, Remarks on λ-irresolute functions via (1, 2)*-sets, (submitted).
5. D. Subbulakshmi, K. Sumathi, K. Indirani, η-open sets in topological spaces, International J. of Innovative and Exploring Engineering, Vol. 8, Issue 10 S, 2019, 276-282.
6. M. L. Zbigniew Duszynski Thivagar and O. Ravi, A Notes on (1, 2) ${ }^{*}$-open sets and (1,2$)^{*}-\lambda$-irresolute function. (submitted)
