

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

ON (1, 2)^{*} η-OPEN SETS IN BITOPOLOGICAL SPACES

Hamant Kumar

Department of Mathematics Veerangana Avantibai Government Degree College, Atrauli-Aligarh, U. P. (India)

Abstract: In this paper, we introduce $(1, 2)^*-\eta$ -open sets and obtain the relationships among some existing open sets like $(1, 2)^*$ -semi-open, $(1, 2)^*-\alpha$ -open and $\mathfrak{T}_{1,2}$ -open sets. Also we study some of basic properties of $(1, 2)^*-\eta$ -open sets. Further, we introduced $(1, 2)^*-\eta$ -neighbourhood and discuss some basic properties of $(1, 2)^*-\eta$ -neighbourhood.

Keywords : $(1, 2)^*$ -semi-open, $(1, 2)^*$ - α -open, $(1, 2)^*$ - η -open sets; $(1, 2)^*$ - η -closure and $(1, 2)^*$ - η -neighbourhood 2020 AMS Subject Classification: 54A05 54A10

2020 AMS Subject Classification: 54A05, 54A10

1. Introduction

The study of bitopological space was first intiated by Kelly [1] in the year 1963. By using the topological notions, namely, semi-open, regular-open, α -open and pre-open sets, many new bitopological sets are defined and studied by many topologists. In 2008, Ravi et al. [3] studied the notion of $(1, 2)^*$ -open sets in bitopological spaces. In 2004, Ravi and Thivagar [2] studied the concept of stronger from of $(1, 2)^*$ -quatient mapping in bitopological spaces and introduced the concepts of $(1, 2)^*$ -semi-open and $(1, 2)^*$ - α -open sets in bitopological spaces. In 2019, Subbulakshmi et al. [5] introduced the concept of η -open sets in topological spaces.

2. Preliminaries

Throughout the paper (X, \mathfrak{T}_1 , \mathfrak{T}_2), (Y, σ_1 , σ_2) and (Z, \wp_1 , \wp_2) (or simply X, Y and Z) denote bitopological spaces.

Definition 2.1 [2]. Let S be a subset of X. Then S is said to be \mathfrak{T}_1 , 2-open if $S = A \cup B$, where $A \in \mathfrak{T}_1$ and $B \in \mathfrak{T}_2$. The complement of a $\mathfrak{T}_{1,2}$ -open set is $\mathfrak{T}_{1,2}$ -closed.

Definition 2.2 [2]. Let S be a subset of X. Then

(i) the $\mathfrak{T}_{1,2}$ -closure of S, denoted by $\mathfrak{T}_{1,2}$ -cl(S), is defined as $\cap \{F : S \subset F \text{ and } F \text{ is } \mathfrak{T}_{1,2}\text{-closed}\}$; (ii) the $\mathfrak{T}_{1,2}$ -interior of S, denoted by $\mathfrak{T}_{1,2}\text{-int}(S)$, is defined as $\cup \{F : F \subset S \text{ and } F \text{ is } \mathfrak{T}_{1,2}\text{-open}\}$.

Note 2.3 [2]. Notice that $\mathfrak{I}_{1,2}$ -open sets need not necessarily form a topology.

Definition 2.4. A subset A of a bitopological space $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is called (i) **regular** $(1, 2)^*$ -**open** [6] if $A = \mathfrak{T}_{1,2}$ -int $(\mathfrak{T}_{1,2}$ -cl(A)), (ii) $(1, 2)^*$ -**semi-open** [2] if $A \subset \mathfrak{T}_{1,2}$ -cl $(\mathfrak{T}_{1,2}$ -int(A)), (iii) $(1, 2)^*$ - α -**open** [2] if $A \subset \mathfrak{T}_{1,2}$ -int $(\mathfrak{T}_{1,2}$ -int (A))). The complement of a $(1, 2)^*$ -regular open (resp. $(1, 2)^*$ -semi-open, $(1, 2)^*$ - α -open) set is called $(1, 2)^*$ -regularclosed (resp. $(1, 2)^*$ -semi-closed, $(1, 2)^*$ - α -closed).

The family of all $(1, 2)^*$ -regular-open (resp. $(1, 2)^*$ -semi-open, $(1, 2)^*$ - α -open) sets in X is denoted by $(1, 2)^*$ -RO(X) (resp. $(1, 2)^*$ -SO(X), $(1, 2)^*$ - α O(X)).

The $(1, 2)^*$ -semi-closure (resp. $(1, 2)^*$ - α -closure) of a subset A of X is denoted by $(1, 2)^*$ -s-cl(A) (resp. $(1, 2)^*$ - α -cl(A)), defined as the intersection of all $(1, 2)^*$ -semi-closed. (resp. $(1, 2)^*$ -semi-closed) sets containing A.

Remark 2.5. It is evident that any $\mathfrak{T}_{1,2}$ -open set of X is a $(1, 2)^*$ - α -open and each $(1, 2)^*$ - α -open set of X is $(1, 2)^*$ -semi-open. But the separate converses are not true.

3. (1, 2)*-η-open sets

Defination 3.1. A subset A of a bitopological space X is said to be $(1, 2)^*$ - η -open if $A \subset \mathfrak{J}_{1,2}$ -int $(\mathfrak{J}_{1,2}$ -cl $(\mathfrak{J}_{1,2}$ -int((A)) and $(1, 2)^*$ - η -closed if $A \supset \mathfrak{J}_{1,2}$ -cl $(\mathfrak{J}_{1,2}$ -cl $((A))) \cap \mathfrak{J}_{1,2}$ -int $(\mathfrak{J}_{1,2}$ -cl((A)).

The $(1, 2)^*-\eta$ -closure of a subset A of X is denoted by $(1, 2)^*-\eta$ -cl(A), defined as the intersection of all $(1, 2)^*-\eta$ -closed sets containing A.

The family of all $(1, 2)^*-\eta$ -open (resp. $(1, 2)^*-\eta$ -closed) subsets of X is denoted by $(1, 2)^*-\eta O(X)$ (resp. $(1, 2)^*-\eta C(X)$).

Proposition 3.2.

(i) Every $(1, 2)^{*} - \alpha$ -open set is $(1, 2)^{*} - \eta$ -open. (ii) Every $(1, 2)^{*}$ -semi-open set is $(1, 2)^{*} - \eta$ -open. (iii) Every regular $(1, 2)^{*}$ -open set is $(1, 2)^{*} - \eta$ -open. (iv) Every $\mathfrak{T}_{1,2}$ -open set is a $(1, 2)^{*} - \eta$ -open set. **Proof.** (i) Let A be a $(1, 2)^{*} - \alpha$ -open set, then $A \subset \mathfrak{T}_{1}\mathfrak{T}_{2}$ -int $(\mathfrak{T}_{1}\mathfrak{T}_{2} - cl(\mathfrak{T}_{1}\mathfrak{T}_{2} - int(A)))$ $\Rightarrow A \subset \mathfrak{T}_{1}\mathfrak{T}_{2}$ -int $(\mathfrak{T}_{1}, \mathfrak{T}_{2} - cl(\mathfrak{T}_{1}\mathfrak{T}_{2} - int(A))) \cup \mathfrak{T}_{1}\mathfrak{T}_{2} - cl(\mathfrak{T}_{1}\mathfrak{T}_{2} - int(A)))$ $\Rightarrow A \text{ is } (1, 2)^{*} - \eta$ -open set. Hence A is a $(1, 2)^{*} - \eta$ -open set.

(ii) Let A be a $(1, 2)^*$ -semi-open set, then $A \subset \mathfrak{I}_1\mathfrak{I}_2\text{-cl}(\mathfrak{I}_1\mathfrak{I}_2\text{-int}(A))$ $\Rightarrow A \subset \mathfrak{I}_1\mathfrak{I}_2\text{-cl}(\mathfrak{I}_1\mathfrak{I}_2\text{-int}(A))) \cup \mathfrak{I}_1\mathfrak{I}_2\text{-int}(\mathfrak{I}_1\mathfrak{I}_2\text{-cl}(\mathfrak{I}_1\mathfrak{I}_2\text{-int}(A)))$ or $A \subset \mathfrak{I}_1\mathfrak{I}_2\text{-int}(\mathfrak{I}_1\mathfrak{I}_2\text{-cl}(\mathfrak{I}_1\mathfrak{I}_2\text{-int}(A))) \cup \mathfrak{I}_1\mathfrak{I}_2\text{-cl}(\mathfrak{I}_1\mathfrak{I}_2\text{-int}(A)))$ $\Rightarrow A \text{ is } (1, 2)^* \text{-} \eta \text{-} \text{open set.}$ Hence A is a $(1, 2)^* \text{-} \eta \text{-} \text{open set.}$

(iii) Let A be a (1, 2)*-regular open set, then $A = \mathfrak{I}_{1}\mathfrak{I}_{2} - int(\mathfrak{I}_{1}\mathfrak{I}_{2} - cl(A))....(i)$ $\Rightarrow \mathfrak{I}_{1}\mathfrak{I}_{2} - int(A) = \mathfrak{I}_{1}\mathfrak{I}_{2} - int(\mathfrak{I}_{1}\mathfrak{I}_{2} - cl(A)))$ $\Rightarrow \mathfrak{I}_{2} - int(A) = \mathfrak{I}_{1}\mathfrak{I}_{2} - int(\mathfrak{I}_{1}\mathfrak{I}_{2} - int(A))$ Using (i) $\mathfrak{I}_{1}\mathfrak{I}_{2} - int(A) = A(ii)$ Hence A is $\mathfrak{J}_1\mathfrak{J}_2$ -open. Now we know that $A \subset \mathfrak{J}_1\mathfrak{J}_2$ -cl(A) $\Rightarrow int(A) \subset \mathfrak{J}_1\mathfrak{J}_2$ -int($\mathfrak{J}_1\mathfrak{J}_2$ -cl(A)) Using (ii) $A \subset \mathfrak{J}_1\mathfrak{J}_2$ -int($\mathfrak{J}_1\mathfrak{J}_2$ -cl(A)) Again using (ii), we get $A \subset \mathfrak{J}_1\mathfrak{J}_2$ -int($\mathfrak{J}_1\mathfrak{J}_2$ -cl($\mathfrak{J}_1\mathfrak{J}_2$ -int(A))) $\Rightarrow A \subset \mathfrak{J}_1\mathfrak{J}_2$ -int($\mathfrak{J}_1\mathfrak{J}_2$ -cl($\mathfrak{J}_1\mathfrak{J}_2$ -int(A))) Hence, A is (1, 2)*-\eta-open set.

(iv) East to prove.

Remark 3.3. We have the following implications for the properties of subsets:

 $\mathfrak{I}_{1,2}$ -open \Rightarrow $(1,2)^*$ - α -open \Rightarrow $(1,2)^*$ -semi-open \Rightarrow $(1,2)^*$ - η -open

Where none of the implications is reversible as can be seen from the following examples:

Example 3.4. Let $X = \{a, b, c, d\}$, $\mathfrak{I}_1 = \{\phi, \{a\}, X\}$ and $\mathfrak{I}_2 = \{\phi, \{b\}, \{a, b, c\}, X\}$. Then (i) The $\mathfrak{I}_{1,2}$ -open sets are : $\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X$. (ii) The $(1, 2)^*$ -semi open sets are : $\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X$. (iii) The $(1, 2)^*$ - α -open sets are : $\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X$ (iv) The $(1, 2)^*$ - η -open sets are : $\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X$.

Example 3.5. Let $X = \{a, b, c\}, \Im_1 = \{\phi, \{b\}, X\}$ and $\Im_2 = \{\phi, \{c\}, X\}$. Then (i) The $\Im_{1,2}$ -open sets are : ϕ , $\{b\}, \{c\}, \{b, c\}, X\}$. (ii) The $(1, 2)^*$ -semi-open sets are : ϕ , X, $\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$. (iii) The $(1, 2)^*$ - α -open sets are : ϕ , X, $\{b\}, \{c\}, \{b, c\}$. (iv) The $(1, 2)^*$ - η -open sets are : ϕ , $\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X$.

Example 3.6. Let $X = \{a, b, c, \}$, $\mathfrak{I}_1 = \{\phi, \{a\}, X\}$ and $\mathfrak{I}_2 = \{\phi, \{b\}, X\}$. Then (i) The $\mathfrak{I}_1\mathfrak{I}_2$ -open sets are : ϕ , $\{a\}, \{b\}, \{a, b\}, X$. (ii) The $(1, 2)^*$ -semi open sets are : ϕ , $\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X$. (iii) The $(1, 2)^*$ - α -open sets are : ϕ , $\{a\}, \{b\}, \{a, b\}, X$. (iv) The $(1, 2)^*$ - η -open sets are : ϕ , $\{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X$.

Example 3.7. Let $X = \{a, b, c, d\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{c\}, \{a, c, d\}\}$. Then

(i) The ℑ₁ℑ₂-open sets are : φ, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, {b, c, d}.
(ii) The (1, 2)*-semi open sets : φ, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

(iii) The $(1, 2)^*$ - α -open sets are : ϕ , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, {b, c, d}. (iv) The $(1, 2)^*$ - η -open sets are : ϕ , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. (b, c, d}.

Theorem 3.8. Intersection of two $(1, 2)^*$ - η -open sets need not be a $(1, 2)^*$ - η -open set. **Proof.** East to verify.

Example 3.9. Let $X = \{a, b, c, d\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{c\}, \{a, c, d\}\}$. Then $(1, 2)^* - \eta O(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. Here $A = \{c, d\}$ and $B = \{a, b, d\}$ are $(1, 2)^* - \eta$ -open sets, but $A \cap B = \{d\}$ is not a $(1, 2)^* - \eta$ -open set.

Theorem 3.9. The finite union of $(1, 2)^* - \eta$ open sets is a $(1, 2)^* - \eta$ open set. **Proof**. East to verify.

4. $(1, 2)^*$ - η -neighborhood and their basic properties

In this section, we introduce $(1, 2)^*$ - η -neighborhood (shortly $(1, 2)^*$ - η -nbhd in bitopological spaces by using the notion of $(1, 2)^*$ - η -open sets. We prove that every nbhd of x in (X, \mathfrak{I}_1 , \mathfrak{I}_2) is $(1, 2)^*$ - η -nbhd of x but not conversely.

Definition 4.1. Let $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ be a bitopological space and let $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. A subset N of $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is said to be a $(1, 2)^*$ - η -nbhd of x iff there exists a $(1, 2)^*$ - η -open set G such that $x \in G \subset N$.

Definition 4.2. A subset N of a bitopological space (X, \mathfrak{I}_1 , \mathfrak{I}_2), is called a (**1**, **2**)^{*}- η -**nbhd** of A \subset (X, \mathfrak{I}_1 , \mathfrak{I}_2) iff there exists a (1, 2)^{*}- η -open set G such that A \subset G \subset N.

Remark 4.3. The $(1, 2)^*$ - η -nbhd N of $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$ need not be a $(1, 2)^*$ - η -open in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

Example 4.4. Let $X = \{a, b, c, d\}$ and $\mathfrak{I}_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}, X\}$ and $\mathfrak{I}_2 = \{\phi, \{a, c, d\}, X\}$. Then $(1, 2)^* - \eta O(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. Note that $\{a, d\}$ is not a $(1, 2)^* - \eta$ -open set, but it is a $(1, 2)^* - \eta$ -nbhd of a, since $\{a\}$ is a $(1, 2)^* - \eta$ -open set such that a $\in \{a\} \subset \{a, d\}$.

Theorem 4.5. Every nbhd N of $x \in (X, \mathfrak{J}_1, \mathfrak{J}_2)$ is a $(1, 2)^*$ - η -nbhd of $(X, \mathfrak{J}_1, \mathfrak{J}_2)$. **Proof.** Let N be a nbhd of point $x \in (X, \mathfrak{J}_1, \mathfrak{J}_2)$. To prove that N is a $(1, 2)^*$ - η -nbhd of x. By definition of nbhd, there exists an open set G such that $x \in G \subset N$. As every open set is $(1, 2)^*$ - η -open set so, G is $(1, 2)^*$ - η -open set such that $x \in G \subset N$. Hence N is $(1, 2)^*$ - η -nbhd of x.

Remark 4.6. In general, a $(1, 2)^*$ - η -nbhd N of $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$ need not be a nbhd of x in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$, as seen from the following example.

Example 4.7. Let $X = \{a, b, c, d\}$ with topology $\Im_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\Im_2 = \{\phi, \{a, b, d\}, X\}$ Then $(1, 2)^* - \eta O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. The set $\{a, c\}$ is $(1, 2)^* - \eta$ -nbhd of the point c, since the $(1, 2)^* - \eta$ -open set $\{a, c\}$ is such that $c \in \{a, c\} \subset \{a, c\}$. However, the set $\{a, c\}$ is not a nbhd of the point c, since no open set G exists such that $c \in G \subset \{a, c\}$.

Theorem 4.8. If a subset N of a space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is $(1, 2)^*$ - η -open, then N is a $(1, 2)^*$ - η -nbhd of each of its points.

Proof. Suppose N is $(1, 2)^*$ - η -open. Let $x \in N$. We claim that N is $(1, 2)^*$ - η -nbhd of x. For N is a $(1, 2)^*$ - η -open set such that $x \in N \subset N$. Since x is an arbitrary point of N, it follows that N is a $(1, 2)^*$ - η -nbhd of each of its points.

Definition 4.9. Let x be a point in a space (X, \mathfrak{I}_1 , \mathfrak{I}_2). The set of all $(1, 2)^*$ - η -nbhd of x is called the $(1, 2)^*$ - η -**nbhd system** at x, and is denoted by $(1, 2)^*$ - η -N(x).

Theorem 4.10. Let $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ be a bitopological space and for each $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. Let $(1, 2)^* - \eta - N(x)$ be the collection of all $(1, 2)^* - \eta - n$ bds of x. Then we have the following results. (i) $\forall x \in (X, \mathfrak{I}_1, \mathfrak{I}_2), (1, 2)^* - \eta - N(x) \neq \phi$. (ii) $N \in (1, 2)^* - \eta - N(x) \Rightarrow x \in N$. (iii) $N \in (1, 2)^* - \eta - N(x), M \supset N \Rightarrow M \in (1, 2)^* - \eta - N(x)$. (iv) $N \in (1, 2)^* - \eta - N(x), M \in (1, 2)^* - \eta - N(x) \Rightarrow N \cap M \in (1, 2)^* - \eta - N(x)$. (v) $N \in (1, 2)^* - \eta - N(x) \Rightarrow$ there exists $M \in (1, 2)^* - \eta - N(x)$ such that $M \subset N$ and $M \in (1, 2)^* - \eta - N(y)$ for every $y \in M$.

Proof. (i) Since $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is a $(1, 2)^*$ - η -open set, it is a $(1, 2)^*$ - η -nbhd of every $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. Hence there exists at least one $(1, 2)^*$ - η -nbhd (namely - $(X, \mathfrak{I}_1, \mathfrak{I}_2)$) for each $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. Hence $(1, 2)^*$ - η -N $(x) \neq \phi$ for every $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$.

(ii) If $N \in (1, 2)^* - \eta - N(x)$, then N is a $(1, 2)^* - \eta$ -nbhd of x. So by definition of $(1, 2)^* - \eta$ -nbhd, $x \in N$.

(iii) Let $N \in (1, 2)^* - \eta - N(x)$ and $M \supset N$. Then there is a $(1, 2)^* - \eta$ -open set G such that $x \in G \subset N$. Since $N \subset M$, $x \in G \subset M$ and so M is $(1, 2)^* - \eta$ -nbhd of x. Hence $M \in (1, 2)^* - \eta - N(x)$.

(iv) Let $N \in (1, 2)^* - \eta - N(x)$ and $M \in (1, 2)^* - \eta - N(x)$. Then by definition of $(1, 2)^* - \eta$ -nbhd. Hence $x \in G_1 \cap G_2 \subset N \cap M \Rightarrow (1)$. Since $G_1 \cap G_2$ is a $(1, 2)^* - \eta$ -open set, (being the intersection of two $(1, 2)^* - \eta$ -open sets), it follows from (1) that $N \cap M$ is a $(1, 2)^* - \eta$ -nbhd of x. Hence $N \cap M \in (1, 2)^* - \eta - N(x)$.

(v) If $N \in (1, 2)^* - \eta - N(x)$, then there exists a $(1, 2)^* - \eta$ -open set M such that $x \in M \subset N$. Since M is a $(1, 2)^* - \eta$ -open set, it is $(1, 2)^* - \eta$ -nbhd of each of its points. Therefore $M \in (1, 2)^* - \eta - N(y)$ for every $y \in M$.

References

1. J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.

2. O. Ravi, M. L. Thivagar, On stronger forms of (1, 2)*-quotient mappings in bitopological spaces. Internat. J. Math. Game Theory and Algebra 14 (2004), 481-492.

3. O. Ravi, M. Lellis Thivagar and Erdal Ekici, On (1, 2)^{*}-sets and decompositions of bitopological (1, 2)^{*}-continous mappings, Kochi J. Math. 3 (2008), 181-189

4. O. Ravi, M. L. Thivagar, Remarks on λ -irresolute functions via (1, 2)*-sets, (submitted).

5. D. Subbulakshmi, K. Sumathi, K. Indirani, η -open sets in topological spaces, International J. of Innovative and Exploring Engineering, Vol. 8, Issue 10 S, 2019, 276-282.

6. M. L. Zbigniew Duszynski Thivagar and O. Ravi, A Notes on $(1, 2)^*$ -open sets and $(1, 2)^*$ - λ -irresolute function. (submitted)