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Abstract: Physiological measurements have been widely used by researchers and practitioners in order to 

address the stress detection challenge. So far, various datasets for stress detection have been recorded and are 

available to the research community for testing and benchmarking. The majority of the stress-related available 

datasets have been recorded while users were exposed to intense stressors, such as songs, movie clips, major 

hardware/software failures, image datasets, and gaming scenarios. However, it remains an open research 

question if such datasets can be used for creating models that will effectively detect stress in different contexts. 

This paper investigates the performance of the publicly available physiological dataset named WESAD 

(wearable stress and affect detection) in the context of user experience (UX) evaluation. More specifically, 

electrodermal activity (EDA) and skin temperature (ST) signals from WESAD were used in order to train three 

traditional machine learning classifiers and a simple feed forward deep learning artificial neural network 

combining continues variables and entity embeddings. Regarding the binary classification problem (stress vs. 

no stress), high accuracy (up to 97.4%), for both training approaches (deep-learning, machine learning), 

93.28% was reached by decision tree and 83.85% by logistic regression model was achieved. Regarding the 

stress detection effectiveness of the created models in another context, such as user experience (UX) evaluation, 

the results were quite impressive. More specifically, the deep-learning model achieved a rather high agreement 

when a user-annotated dataset was used for validation. 

 
Keyword: stress detection; UX evaluation; electro-dermal activity; deep learning; entity embeddings; 

machine learning; logistic regression. 
 

 
 

I. INTRODUCTION 

 
The Internet of Things, human computer interaction, modern computers, artificial intelligence, and other 

fields have all contributed to a significant increase in interest in the emotional components of packaged 

goods. User experience (UX) entitles teachers to realise interpretation of the users' interplay events by using 

equipment and proposals that transcend traditional usability metrics while taking into account physical world 

living conditions and commercial-off-the-shelf (COTS) instrument panels and sensors. Usability, usefulness, 

aesthetics, and emotions are just a few of the many components that make up UX. In many circumstances, 

UX design starts even before the consumer has the product in their hands, effectively anticipating their needs 

and wants. An in- depth understanding of people feelings while engaging with a system is required when 
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planning and creating for UX. We'll use a range of techniques, including post-questionnaires, interviews, and 

observation, to experience the emotional components of UX. Otherwise, projections are made for modalities 

like countenance, touchscreen patterns and speech tone analysis that may not be inheritable by embedded and 

robotic instrument panels and sensors.  

II. LITERATURE SURVEY 
 

A critical stage in confirming the value of research contributions is the examination of analysis artefacts. 

In addition to usability, HCI subfields frequently target fundamental objectives like property, Sustainable 

HCI (SHCI), HCI for development, or health and safety. It is necessary to build new standards for identifying, 

debating, and supporting relevant analysis methods for these disciplines because conventional analytical 

methods are not always decent or applicable. In this study, we prefer to reiterate the purpose and objectives 

of analysis in HCI and SHCI and elicit 5 essential elements that will provide guidance to various analysis 

approaches for SHCI research. Our essay is intended to serve as a springboard for discussion of current and 

emerging SHCI analysis practices. [1] The most significant influences on the quality of camera-based 

systems for recognising emotions are variations in head position and light conditions. The methods that provide 

2-Dimentional image analysis are particularly sensitive to these issues. Techniques that enforce 3-

Dimentional face models are far more promising. Because of its low cost and ease of use, we frequently 

employ Microsoft Kinect for 3D face modelling in our investigations.[2] Examples include work 

environments and user experience assessments. In the past, flow was evaluated through questionnaires, 

preventing its usage in online, timed contexts. In this study, we tend to outline our conclusions regarding 

assessing a user's flow state backed by physiological data captured by wearable technology. We frequently 

carry out research with people who are playing the Tetris game at various levels of difficulty, which causes 

boredom, stress, and flow. [5] Users' physiological data can be collected utilising sensors to provide 

important insights that are not possible with just traditional measurements. An indication of both 

physiological and psychological arousal is electrodermal activity (EDA). There are several uses for 

measuring arousal. For instance, persistently high arousal levels that occur frequently can be a sign of chronic 

stress. At the opposite extreme, for instance, consistently low arousal levels in geriatric care can indicate that 

the patients are not receiving enough movement and attention from the caregivers. Measurement of arousal 

can reveal when people become enthusiastic and when they are more tranquil in the context of events. In this 

study, an EDA measurement pilot study that was carried out at a trade show is presented. [8] Despite the 

recent explosion in popularity of computer games, methods for assessing players' emotional states as they 

play are far behind. There are few techniques for determining one's emotional state, and even fewer for 

measuring emotion while playing. The method for continually modelling emotion using physiological data is 

presented in this research. Four physiological inputs were translated into arousal and valence using a fuzzy 

logic model. Arousal and valence were turned into the five emotional states of boredom, challenge, 

excitement, aggravation, and joy in a second fuzzy logic model. The means were also assessed with subjective 

self-reports, showing the same tendencies as reported feelings for joy, boredom, and excitement. Modeled 

emotions performed well compared to a manual technique. [10]  
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III. PROPOSED WORK 
 

 

 
Fig  1. Schematic flow representation of Stress Detection Methodology 

 

         

 

 

Figure 2. Conceptual Model of STRESS detection.              Figure 3. The block diagram 

The conceptual flow diagram of the stress detection methodology is shown in Figure 5.1. 
 

The abstract model of our study on stress is depicted in Figure 5.2. the significance of sleep, exercise, 

a variety of working hours, and changes in pulse in relation to stress levels. The stress detection approach is 

divided into several steps, such as knowledge gathering, knowledge pre-processing, feature selection, 

hypothesis formulation, stress detection model, hypothesis testing, and result interpretation (see Figure 

5.3). 
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Extraction of the Dataset and Features: 

The dataset used for this investigation is WESAD. Attila Reiss, Philip Schmidt, et al. first presented and 

made this dataset available to the public in 2018 [1]. This multimodal dataset assembles mobility information 

and physiological characteristics from 15 people using the wrist- and chest-worn sensors Empatica E4 and 

RespiBAN Professional, respectively. The physiological signals of the subjects were captured while they 

through various study protocols, including preparation, baseline condition, amusement condition, stress 

condition, meditation, and recuperation. Reference [1] provides specifics on sensor placement, setup, and the 

method used to create this dataset, including which data are gathered during which subject-specific study 

protocol. The ACC, RESP, ECG, EDA, EMG, and TEMP were measured using the RespiBAN. At 700 Hz, all 

signals were captured. The TEMP, EDA, ACC, and BVP were all measured by the E4 using samples at 4 Hz, 

4 Hz, 32 Hz, and 64 Hz, respectively. Each subject in the dataset has a folder (SX, where X is the subject ID). 

The subsequent files are located in each subject folder: • The SX readme.txt file contains information about 

the subject (SX), as well as details about the gathering and grading of data (if applicable). • The SX quest.csv 

file contains all the data needed to gather ground truth, such as the SX procedure schedule and responses to 

the self-report questions. • SX respiban.txt: this file contains information from the RespiBAN device, 

including ECG, EDA, EMG, TEMP (°C), RESP, and other data. Data from the Empatica E4 device, such as 

ACC, BVP, EDA, and TEMP, are included in the file SX E4 Data.zip. Additional files in this subdirectory 

include: - ACC.csv: The three data columns represent the three channels of the accelerometer. - BVP.csv: 

Photoplethysmograph data (PPG). Data is provided in S in the EDA.csv file. - TEMP.csv: Data is given in 

degrees Celsius. • SX.pkl: contains labels and synchronised data. All sensor signals were segmented using a 

sliding window with a 1 second shift. The features that were extracted using various modalities from the 

WESAD dataset are shown in Table I. These characteristics are a subset of the characteristics listed in [1]. On 

the raw ACC signal, other statistical aspects were calculated, such as the standard deviation, mean, minimum, 

and maximum value, as well as adding up for all axes (3D) as absolute magnitudes. 

 

Developing a Deep Learning Model Using Entity Embedding and Continual Variables: 

A deep learning methodology for stress detection is projected in this segment. In an extremely neural 

network model, the projected model incorporates the continuous and categorical load variables from the 

dataset. For the illustration of categorical variables, in which every secured utility of the variable is 

constituted as a numerical vector, often with a low measure, we tend to hold the entity embedding 

technique. The method stated earlier uses a surface of linear neurons to translate different values to a 

three-dimensional space. Because of this, the relationship between different values is frequently 

represented in the distance of the above vectors using a same methodology embedding, which takes into 

account semantic resemblance in the NLP province (e.g., stated as specific variable, Sunday may be 

reviewed almost like Saturday than it is to Monday). We include each category and continuous variable 

in our representation. It specifically contains 21 continuous variables that correspond to the choices 

removed from the WESAD dataset. The continuous variables consist the mean value of the SC signals 

(following ironing as well as normalising them as intended), the median, the standard deviation, and other 

intended properties. The categorical factors include the user's gender, information on whether or not they 

smoke, whether they smoked in the hour prior to the experiment, and whether or not they drank coffee in 

that hour. The batch normalisation layer for the continuous columns and embedding layers for the 

individual columns were both included in the proposed neural network model for stress categorization. 

Following a dropout layer, the following representations are sequentially fed into two layers that are 

completely connected and have 200 and 100 nodes, respectively. A two-hidden network is capable of 

accurately approximating any smooth mapping and representing any arbitrary decision boundary with 

rational activation functions. ReLU was employed as the activation function, as seen in figure below 

(Figure 7.1). As a result, the embedding layer transforms the category variables before they interact with 

the continuous input variables. Finally, based on the cross- entropy loss function, the output layer 

examines the "stress" / "no stress" categories. 
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Figure 4. A visualization of the neural network (deep-learning model) architecture and 

training process. Continuous and categorical variables (left part) are compressed in 

order to feed 2 interconnected hidden layers (dense 1 and 2). 

 

Training and Classification: 

According to a proposal in [40], 21 features were taken from the amplitude of the SC signal for the 

numeric inputs. As suggested in [26], fifteen features were also derived from amplitude of the ST signal. 380 

segments were withdrawn from the NS-SCR segments inside each TSST session in order to calculate all of 

these attributes. The 380 segments of the first characteristic of the SC signal's amplitude, or the mean value of 

the signal's first difference, are displayed in Figure 3a, and the corresponding values of the ST signal's 

amplitude are represented in Figure (b). 

 It should be observed that 215 of them relate to class non-stress, while 165 of them do not. Figure 3a 

shows that the stress and non-stress classes are well separated, which suggests a stronger predictive value than in 

Figure (b) where the feature values are not clearly separated. This is also shown in Table 1, where the 

measurements for skin conductance signal perform better than the analogous metrics for skin temperature.The 

retrieved features were then used as input for the deep learning model and the three machine learning 

algorithms like C-SVM, L-SVM, and Q-SVM that were designed to distinguish between the two emotional 

states (stress vs. non-stress).  

A 5-fold cross-validation training was used in all classification methods for the machine learning 

classification. The acquired performance metric for each trained classifier is shown in Table 1 with regard to 

the binary problem (stress vs. non-stress). High accuracy was attained by all classifiers (at least 91 percent ). 

The L-SVM classifier produced the best classification outcomes (93.2 percent ). These results show that the 

classification results utilising our training strategy were better than the 80 percent accuracy reported by [26] 

when using simply the SC signal. 
 

  
 

 

(a) (b) 

Figure 5. An instance of skin conductance predictors and skin temperature. The orange color 

indicates the stress class and blue the non-stress class: (a) skin conductance predictors separate 

classeswell; (b) temperature predictors did not separate the classes well. 
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 C- 

SVM 

L- 

SVM 

Q- 

SVM 

Precision 
SC 89.7% 92.6% 92.4% 

ST 37.1% 25.0% 33.3% 

Recall 
SC 89,7% 91.5% 88.5% 

ST 31.5% 03.6% 22.4% 

Accuracy SC 91.1% 93.2% 91.8% 

ST 47.1% 53.4% 46.8% 

F1-Score 
SC 89.7% 92.1% 90.4% 

ST 34.1% 06.3% 26.8% 

 

Table 1. Performance for each signal (skin conductance: SC, skin temperature: ST) per classifier. The 

F1-score is also an important metric when there are imbalanced classes as in our case. 

 
The area under this ROC curve is known as the area under the curve (AUC), and the plot of sensitivity 

versus 1-Specificity is known as the receiver operating characteristic (ROC) curve (see Figure 5). Both the 

ROC and AUC are useful metrics for accuracy. This curve is crucial in assessing how well diagnostic testing 

can distinguish between people' real states. The AUC can be thought of as the likelihood that a randomly 

selected stress signal will be regarded or ranked as being more likely to be stress than a randomly selected 

non-stress signal. Each classifier attained a high AUC (at least 94 percent ). L-SVM classifier obtained the 

best AUC outcome (98 percent). 
 

Predicted Classes / model 
 

Skin Conductance 

 

 

 

 

 

 

 

 

C-SVM L-SVM Q-SVM 

Stress No 

Stress 

Stres 

s 

No 

Stress 

Stress No 

Stress 

Stres 

s 

14 

8 

17 151 14 146 19 

No 

Stres 

s 

17 198 12 203 12 203 

Skin Temperature 

 

 

Figure 6.. Confusion matrix for each signal per classifier. Figure shows the correctly classified (green 

rectangles) cases per class. Overall, the training dataset consisted of 380 cases; 165 in the class stress 

and 215 in the class non stress. Green parts show the correctly classified cases for each classifier. 

C-SVM L-SVM Q-SVM 

Stres 

s 

52 113 6 159 37 128 

No 

Stres 

s 

88 127 18 197 74 141 
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To determine their effect on classification accuracy in deep learning, two versions of the model were 

examined, one in need of categorical variables and the other lacking. Based on its impact on loss, the learning 

rate hyper parameter's ideal value was chosen to improve model performance. 

The hyper parameter learning rate specifically determines how much gradient will be back propagated. 

The amount by which we progress towards the minima is then determined by this. When the learning rate is 

placed too small, the evaluation process takes a too long and only little modifies model's weights, which causes 

the model to converge slowly and with no apparent gain. The optimizer may overshoot the minimum and 

potentially diverge if the learning rate is too large. 

 
Figure 7. Learning rate chart. Pink rectangle indicates an area of optimal choices. In our case 

the ~7 × 10−2 learning rate was used 

Overfitting is a crucial problem while training a neural network [47]. A neural network model needs to 

be taught across a number of epochs, however during training, patterns particular to the test information are 

found. In other words, the model loses its generalizability when it is overfit to the training data. To avoid 

overfitting and increase the neural network's potential for generalisation, the model should be trained for the 

ideal number of epochs. The epoch number at which the model starts to overfit is determined by tracking the 

loss and accuracy on both the training and validation sets. Second table displays the gained performance metric 

for every trained classifier in relation to the binary problem (stress vs. non-stress). 

 

IV. RESULT 

Normalized Cross Correlation Coefficient: 
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Figure 8. Normalized Cross Correlation Coefficient  

 

      
 

 

Figure 9. Comparing AX base vs Stress vs Amusement vs Meditation 
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Figure 10. Comparing AY base vs Stress vs Amusement vs Meditation 

 

 

 

 

 

 

 
 

Figure 11. Comparing AZ base vs Stress vs Amusement vs Meditation 
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Figure 12. Comparing Temp base vs Stress vs Amusement vs Meditation 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 13. Comparing ECG base vs Stress vs Amusement vs Meditation 

 

 

http://www.jetir.org/


© 2022 JETIR August 2022, Volume 9, Issue 8                                                           www.jetir.org (ISSN-2349-5162) 

JETIR2208226 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b260 
 

 

 

Figure 14. Comparing EDA base vs Stress vs Amusement vs Meditation 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15. Comparing EMG base vs Stress vs Amusement vs Meditation 
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Figure 16. Comparing RESP base vs Stress vs Amusement vs Meditation 

 

 

 

 

 

 

 

V. CONCLUSION AND FUTURE WORK 

 
Numerous physiological datasets that have been collected during stress research are readily accessible 

to the general public. The majority of them were captured while subjects were subjected to strong stressors 

that are frequently present in real-life situations. Although these methods can produce stress prediction 

models with relatively good classification accuracy, it is still debatable whether they can be utilised to 

successfully capture subtle stress reactions, which are typically anticipated in various contexts, such as UX 

evaluation studies. 

By combining classic machine learning and deep learning techniques, we conduct an extensive 

analysis of the performance of such a dataset in the context of UX evaluation in this experiment to try 

to answer the question raised above. To the best of our knowledge, this work is the first to employ deep 

learning to identify stress in a user experience environment. More particular, three well-known machine 

learning classifiers and a neural network were trained using the WESAD dataset (NN). The NN 

classifier was able to achieve accuracy of up to 97.4% for the binary classification problem (stress vs. 

non-stress). Using a decision tree, the accuracy was 93.28 percent, while using a logistic regression 

model, it was 83.85 percent. By employing the Kappa coefficient in an inter-rater reliability analysis, 

we evaluated the effectiveness of the stress models. As a result, the ground truth dataset was a pre-

existing bio-signals dataset made up of SC segments. The ground truth dataset's SC segments contain 

user-reported instances of usability problems they encountered when engaging with a web- based 

platform during a UX study. Overall, the findings of this paper show that careful thought should be given to 

the usage of existing bio-signal datasets in various scenarios. Although a one-size-fits-all strategy is not 

advised, this study offers intriguing new information on how generalizable the bio-signals datasets are. 
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