
© 2023 JETIR February 2023, Volume 10, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2302107 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b41

AN OVER VIEW OF STATIC TEST

TECHNIQUES IN SOFTWARE DEVELOPMENT

PROCESS

1Dr. K.Sai Prasad Reddy, 2Prof. K.Nagabhushan Raju
1Mentor, 2Head of the Department

1Center for Skill Development, Entrepreneurship & Incubation,
1Sri Krishnadevaraya University, Ananthapuramu, India

Abstract: Static testing is a form of software testing. Static test techniques plays key role in Software development process. These

techniques provide an authoritative way to improve the quality and productivity of software development. Static testing techniques are

used to check the sanity of the code, Algorithms and all project documents. The fundamental objective of static testing is to improve the

quality of software work products by assisting engineers to recognize and fix their own defects early in the software development

process. Static techniques can improve both quality and productivity by impressive factors. Effective static test techniques reduces the

development time scale and also reduces the testing time and cost. Static testing will be performed by the Software development team

who writes the code and by Software testing team who involves in testing activities.

IndexTerms - Inspections, Reviews, Static Analysis, Walkthroughs.

I. INTRODUCTION

Techniques used for static testing are known as Static Testing Techniques. The static testing techniques depend on the manual

assessment and automated analysis of the project code and project documentation. Static testing is a form of testing where

project/application to be tested is not executed. Instead project/application code is checked for conformance to the functional

requirements, design, missed functionality and coding errors. Errors which are found during static testing are faster and cheap to resolve

than the defects found during dynamic testing phase or even at later stages. During static testing code will not get executed. During static

testing typical defects like deviations from client standards, client requirement defects, project design defects, insufficient

maintainability, incorrect interface specifications etc,. will be identified. Static test techniques are implemented from project initiation or

early stage of the Software Development Life Cycle i.e. from the requirements stage. This will help in finding the defects at the early

stage of the software project. By finding the defects at the early stage we can avoid defects multiplication. Static testing techniques will

be implemented at all stages or mile stones of Software development Life Cycle, Static Testing Techniques are mainly classified as 1.

People based techniques 2. Tool based techniques.

Benefits of static testing techniques are:

 Development productivity improvement

 Reduced development timescales

 Testing time and cost can be reduced

 Lifetime cost reductions

 Reduced fault levels

 Improved customer relations

II. PEOPLE BASED TECHNIQUES

A. Reviews

B. Walkthrough

C. Inspection

A. Reviews

 A group of persons or team looks for errors, mistaken assumptions, lack of clarity and deviation from standards or client

requirements. Review is an activity carried out to verify the code and documents at different stages for its completeness, correctness &

consistency [1]-[6]. This verification is done w.r.t to client requirements or previous documents in the Software Development Life

Cycle or with respect to established standards or norms that have been agreed upon. A review is performed as a manual activity, but

there is also tool support. Review is a static testing which will be performed on software work products, project code and has to be

performed well before dynamic testing. Goal of Review is to identify defects within the stage or phase of the software project where

http://www.jetir.org/

© 2023 JETIR February 2023, Volume 10, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2302107 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b42

they originate, rather than in the later stages. This is referred to as “Phase containment”. Reviews commonly find errors that are not

possible to detect by regular testing [2]. Reviews also provide a form of training, including technical and standards related to every

participant. From testing point of view, we can use reviews to allow ourselves to be involved much earlier in development lifecycle. As

at the beginning of the project there is nothing you can physically test, you can involve in the review process of various documents.

From team involvement at this very early stage of the development lifecycle, team will have a fair idea of requirements and testable

items. This will gives to team a head-start on thinking about how team has to approach testing the requirements also. During the

review process team will find defects like missings, gaps, corrections, clarifications etc,.

Distribution of Defects in Software Development Life Cycle

Fig.1 Distribution of Defects in Software Development Life Cycle

Steps in Reviewing of Project document

 Reading each and every line of the document

 Analyzing each line of the document

 Understanding each line of the document

 Finding and reporting the defects to the concerned author of the document or code.

The typical format of defect log document for reporting the defects which are found in reviewing of project document. This defect log

is provided to record the defects like Missings, Gaps, corrections, clarifications and suggestions provided by reviewers of each

document during reviews. Defects regarding individual typographical, grammatical and spelling corrections will be also reported in this

defect log document. All defects regarding content e.g. accuracy, consistency, etc,.

or pervasive quality concerns can be recorded in this defect log document.

Table 1 Defect log document.

General classification of Reviews

Informal Review

Generally a one to one meeting between the author of a work product and the peer, initiated as a request of input regarding a particular

artifact. Informal reviews Costs low and are widely used. These reviews have no formal process [3] . Informal reviews can be conducted

for project documents, designs and code and result may be documented. Pair programming is an informal review method.

Formal Review

Facilitated by a knowledgeable individual called a moderator, who is not a member of the team or the author of the product under review.

Full participation of all the members of the review team is required. The issues raised are captured and published in a formal report

distributed to participants and Management .

Types of Reviews

In-process Review: To verify the work product during a specific time/period of a life cycle to identify defects as works

progresses. Ex: In between any process like software requirements, detailed design etc.

Phase-end Review: To verify and to determine whether to continue with the planned activities. Ex: At the end of software

requirements, detailed design, test readiness, etc.

Post-implementation Review: Done after the implementation is completed. Process based on actual results and to identify the

opportunities for improvement. Also called as postmortems.

Project Id: Project Name: Document Name:

Defect ID.
Name of the

Reviewer

Date of

Review
Defect Type Page No.

Defect

Description
Resolution Remarks

Requirements

56%

27%

10%

7%

Coding

Design

Miscellaneous

http://www.jetir.org/

© 2023 JETIR February 2023, Volume 10, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2302107 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b43

Stages of Formal Review Process [4]

Planning: There should be awareness of company policies, product requirements and project plans that may provide specific

requirements in order to perform review. Personnel selection and Entry criteria & Exit criteria should be defined at this stage.

Kick-off: Moderator ensures that the item(Document/Design/Code…) is ready for review and will be distributed to all participants.

Moderator also briefs the attendees on their roles and responsibilities.

Preparation: All review participants examine the item to be reviewed. Reviewers checks for deviation from the standards. Comparison to

similar items can also be used.

Meeting: The review normally continues for One to Two hours. All items on the agenda/checklist are worked through. Findings are noted

by the recorder. Comments are aimed at the review item and not at the author.

Re-Work: The Moderator and Scribe document the findings in a Review Summary and report it to the Manager. The Review Summary

contains the defects found and actions of follow-up work to be carried out.

Follow-up: The Moderator ensures that all additional work by the author is checked for completeness and correctness. An additional

review may be required; dependant on the amount/complexity of re-works undertaken.

Exit Criteria: It can take the form of ensuring that all actions are completed, or that any uncorrected items are properly documented,

possibly in a defect tracking system.

Fig.2 Formal Review Process

Roles and Responsibilities in Review Process

There are different roles and corresponding responsibilities in review process.

Manager: The Manager is the person who makes the decision to hold the review. Managing people’s time with respect to the review is

also one of the responsibilities of a Manager. Moderator: The Moderator has overall control and responsibility of the review. He/she

schedules the review, controls the review and ensures any actions from the review are carried out successfully. Moderator will be

provided training to execute his role successfully.. Author: The Author is the person responsible for creating the items to be reviewed.

The Author may also be asked questions during the review. Reviewer: The reviewers are the attendees of the review and responsible for

finding errors in the item under review. In order to provide a well balanced review of the item, reviewers should come from different

perspectives.Scribe: The Scribe or Recorder is the person who is responsible for documenting the issues raised during the process of the

review meeting

Importance and Advantages of Review

Fig. 3 Defect Identification efficiency

 10 times reduction in faults reaching test, testing cost reduced by 50% to 80%

 Reduce faults by a factor of 10

 25% reduction in schedules, remove 80% - 95% of faults at each stage, 28 times reduction in maintenance cost, many others

 Reviews are almost 70 percent efficient in finding defect when compare to testing.

 As defects are identified by the review process in the earlier part of life cycle, they are less expensive to correct.

 Reviews are an efficient method of educating a large number of people on a specific product/project in a relatively short period

of time.

Planning Kick -

Off

Preparat

 ion

Rework
 Follow

- Up

Meeting

Exit

Criteria

Review
70%

Testing
30%

http://www.jetir.org/

© 2023 JETIR February 2023, Volume 10, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2302107 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b44

Methods of Review [5]

1. Flow Chart: The program is explained from a flowchart of the program logic.

2. Source Code: The review looks at each line of code to understand the program.

3. Sample Transactions: The lead programmer explains the programs by explaining the processing which arise representative sample of

transactions.

4. Program Specifications: The program specifications are reviewed in the matter of understanding the program.

B. Walk-through

Walk through is an Informal activity and will be conducted by the concerned author in which members of the group are also involved [3].

It’s an informal verification process by which some inputs given, that may or may not be considered for any changes. Walk-through is

used to aid Learning. This is basically carried for obtaining a second person view on the activity carried out. Basically walk–through is

done for the source codes e.g., Improving Programming Logic, Design approach etc

Sample criteria for Code walk-through

Minimize or eliminate use of global variables.

Use descriptive function and method names - use both upper and lower case, avoid abbreviations

Organize code for readability.

Use white space generously - vertically and horizontally

Each line of code should contain 80 characters max.

One code statement per line. etc.

C. Inspection

A formal assessment of a work product conducted by one or more reviewers to detect defects, violation of development standards, etc,.

During inspection process defects are identified but inspection process do not attempt to resolve them[2]. During every stage of project

development lifecycle, anything that is written can be Inspected . Inspection can find deep-seated faults. All deep-seated faults can be

corrected.

What can be inspected?

 Policies,

 Strategy documents

 Business Plans

 Marketing or Advertising Material

 Contracts

 System requirements

 Feasibility studies

 Acceptance Test Plans

 Test Plans

 Test Designs

 Test Cases

 Test Results

 System Designs

 Software Code

 User manuals

 Procedures

 Training material etc,.

What can fail the Inspection Process?

 No appreciation for the fundamental importance of Rules.

 Slow checking rates.

 Not following the strict entry and exit criteria.

 False logging rates.

 Amount of responsibility given to the author

Inspection will be better and worthwhile only if the following criteria are satisfied [2]

 Entry criteria for inspection:

 Trained resources

 Optimum checking rate

 Prioritizing the words

 Following the standards

 Focus on constant process improvement

 Definite exit criteria

http://www.jetir.org/

© 2023 JETIR February 2023, Volume 10, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2302107 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b45

 Quantified estimates of remaining major faults per page

The following diagram illustrates the typical Inspection process

Fig. 4 Typical Inspection process

The inspection should demonstrate the effectiveness

Table 2. Effectiveness of Inspection

III. STATIC ANALYSIS

Static analysis is a set of methods designed to analyze software code without executing the program. Static Analysis provides an

understanding of structure of the code which ensures that whether code is as per industry standards or not. So, by using Static analysis,

we can effectively test the program even before it is written [7].

Some advantages of using Static Analysis are: Finding defects before any tests are even run early warning of unsatisfactory

code design finding dependency issues, such as bad links etc.

Static Analysis will detect the following types of defects

 Unreachable code

 Uncalled functions

 Undeclared variables

 Programming standard violations

 Syntax errors

Static Analysis is commonly performed by automatic processes. In the process of Static Analysis, code is checked for violations of

standards and for any faults. For example, A „Compiler‟ performs Static Analysis when it detects problems. So, in the process the

compiler statically analyses code, and “knows” a lot about it by finding variable usage, syntax faults, unreachable code, undeclared

variables, parameter type mismatches, uncalled functions and procedures, array bound violations, etc [8].

Static Analysis Methods

A. Data Flow Analysis

B. Control Flow Analysis

C. Cyclomatic Complexity Measurement

A. Data Flow Analysis

 It is the process of collecting information about the way the variables are defined and used in the program. Analysis is done at basic

block granularity. Collected information is represented as a set of data flow equations useful for performing several

optimizations, such as, constant propagation and copy propagation [9].

Look at the following code to understand the difference between the concept of variables used and variables defined.

 x = y + z

 IF a > b THEN read(S)

 In the first line of code x is defined, whereas y and z are used. If you can see the second line a and b are used and S is defined.

 Effectiveness Return on Investment

Typical Review 10 – 20 % Unknown

Early Inspection 30 – 40 % 6-8 Hrs/Inspection hrs

Matured Inspection 80 – 95% 8 – 30 Hrs/Inspection hrs

Software Development Stage Change Request Process Improvement

Kick - Off Entry

Individual

Check Meet Edit Exit

Planning

Next Software Development Stage

http://www.jetir.org/

© 2023 JETIR February 2023, Volume 10, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2302107 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b46

Data Flow Analysis Faults:

a := 0

read (m)

a:= 1

while m > n do

begin

 read (n)

write(a*n)

m:=m-a

end

read (n)

write(a*n)

m := m - a

end

B. Control Flow Analysis

Control Flow Analysis displays the logic structure of software. The flow of logic through the program is charted. Control Flow Analysis

is generally used only by Software Development team as it is low level testing and regularly implemented in structural Testing/Unit

testing/Component Testing. This is used to conclude number of test cases that are required to test the programs logic. It can also provide

confidence that the detail of the logic in the code has been checked [8].

Control Flow Analysis helps in analyzing and identifying:

 Nodes not accessible from start node

 Infinite loops

 Multiple entries to loops,

 Whether code is well structured, i.e. Reducible

 Whether code conforms to a flowchart grammar

 Any jumps to undefined labels

 Any labels not jumped to

 Cyclomatic complexity

The following is the example of unreachable code

Buffsize: 1000

Mailboxmax: 1000

IF Buffsize < Mailboxmax THEN

Error-Exit

ENDIF

In this case, Static Analysis finds the THEN clause unreachable, so it will flag a fault.

C. Cyclomatic complexity

Cyclomatic Complexity is the software metric that is used to measure the complexity of a software program. If we know how complex

the program is, then we know how easy it will be to test. The complexity is calculated from a graph which describes the control flow of

the software program. The formula for calculating the Cyclomatic Complexity from the flow chart is

1 + Decisions ofNumber =C (1)

In the shown flow chart number of decisions is Two. So the Cyclomatic Complexity for the shown flow chart is 3.

 If the control flow graph is being used for analysis, then the Cyclomatic Complexity is calculated using the following formula

PNEC (2)

 Where:

 C = Cyclomatic Complexity

 E = Number of edges

 N = Number of nodes

 P = Number of components

Data flow Fault n is used before it
has been used defined (first time

around the loop)

Data flow anomaly: a is

Re-defined without being

used

http://www.jetir.org/

© 2023 JETIR February 2023, Volume 10, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIR2302107 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org b47

Fig. 5 Flow chart

Limitations of Static Analysis

 Cannot distinguish "fail-safe" code from programming faults or anomalies (often creates overload of spurious error messages).

 Does not execute the code, so not related to operating conditions.

Advantages of Static Analysis

 Can find faults difficult to see.

 Gives objective quality assessment of code.

For static analysis numerous tools are available and the majority of tools focus on software code. Static analysis tools are used by

developers before and during component and integration testing and designers uses during software modeling.

What can static analysis do?

 It is a form of automated testing.

 check for violations of standards

 check for things which may be a fault

Static Analysis tool is descending from compiler technology. Compiler is best example for Static Analysis tool.

 A compiler statically analyses code, and “knows” a lot about it, e.g. variable usage; finds syntax faults

 Can find unreachable code, undeclared variables, parameter type mis-matches, uncalled functions & array bound violations, etc.

IV. CONCLUSION

Static Test techniques are more efficient and effective in finding defects at different stages in Software development life cycle. Defects

that were found during static testing are much cheaper to remove. These techniques will prevent defect multiplication by identifying the

defects within the stage or phase of the software project where they originate. The main advantages of static test techniques over dynamic

testing are low cost of defects detection, enhancement of code and documents quality, identification of improvement opportunities.

REFERENCES

[1] Marc Roper, Murray Wood, James Miller, “ An empirical evaluation of defect detection techniques, Information and Software

Technology”, Volume 39, Issue 11,1997,Pages 763-775,ISSN 0950-5849,

 https://doi.org/10.1016/S0950-5849(97)00028-1.

 [2] A. A. Porter and P. M. Johnson, "Assessing software review meetings: results of a comparative analysis of two experimental

studies," in IEEE Transactions on Software Engineering, vol. 23, no. 3, pp. 129-145, March 1997, doi:

 10.1109/32.585501.

 [3] V. R. Basili and R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies," in IEEE Transactions on Software

Engineering, vol. SE-13, no. 12, pp. 1278-1296, Dec. 1987, doi: 10.1109/TSE.1987.232881.

 [4] Lott, Christopher & Rombach, Dieter. (1997). Repeatable Software Engineering Experiments for Comparing Defect- Detection

Techniques. Empirical Software Engineering. 1. 10.1007/BF00127447.

 [5] Sheikh Umar Farooq, SMK Quadri, “Empirical Evaluation of Software Testing Techniques – Need, Issues and Mitigation”,

Software Engineering : An International Journal (SEIJ), Vol. 3, No. 1, april 2013

 [6] L. Dong et al., "Survey on Pains and Best Practices of Code Review," 2021 28th Asia-Pacific Software Engineering Conference

(APSEC), 2021, pp. 482-491, doi: 10.1109/APSEC53868.2021.00055.

 [7] R. Haas, R. Niedermayr, T. Röhm and S. Apel, "Recommending Unnecessary Source Code Based on Static Analysis," 2019

IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE- Companion), 2019, pp. 274-275,

doi: 10.1109/ICSE-Companion.2019.00111.

 [8] Wang Wei, Meng Yunxiu, Han Lilong and Bai He, "From source code analysis to static software testing," 2014 IEEE

Workshop on Advanced Research and Technology in Industry Applications (WARTIA), 2014, pp. 1280-1283, doi:

 10.1109/WARTIA.2014.6976516

 [9] Runeson, Per & Andersson, C. & Thelin, T. & Andrews, A. & Berling, T.. (2006). What Do We Know about Defect Detection

Methods?. Software, IEEE. 23. 82 - 90. 10.1109/MS.2006.89.

http://www.jetir.org/
https://doi.org/10.1016/S0950-5849(97)00028-1

