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Abstract: In this paper, first we show that every fuzzy automaton has at least one strongly connected 

subautomaton and if M is a cyclic fuzzy automaton, then M has a unique maximal layer. After that we show 

that it is possible to construct a fuzzy automaton having singleton as a unique minimal layer from a given 

fuzzy automaton with a unique minimal layer and so, we get a reduced fuzzy automaton. 
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1. INTRODUCTION  

      The theory of fuzzy sets was introduced by Zadeh [8, 9]. In [2], Ito Masami has defined the concept of 

layers of an automaton and also, characterized the subautomaton of           an automaton in terms of layers. In [2], 

Ito Masami has shown that for any finite poset P, there exists an automaton, whose poset of layers is 

isomorphic to P. Subsequently, Wee [7] has introduced the idea of fuzzy automata and the algebraic study 

of fuzzy automata has been initiated by Malik [3] (cf., [4] for details). In [5], S.P. Tiwari, Vijay K. Yadav, 

Anupam K. Singh have defined the concept of layers of a fuzzy automaton. characterized the subautomaton 

of a fuzzy automaton in terms of layers.       In [5], S.P. Tiwari, Vijay K. Yadav, Anupam K. Singh have shown 

that the maximal layer of a cyclic fuzzy automaton and minimal layer of a directable fuzzy automaton are 

unique. In this paper, we show that every fuzzy automaton has at least one strongly connected subautomaton 

and if M is a cyclic fuzzy automaton, then M has a unique maximal layer.  We have also shown that any 

fuzzy automaton can be reduced. 

 

2. PRELIMINARIES 

        All fuzzy-theoretic and lattice-theoretic notions and results used here, but not defined or explained, 

are fairly standard by now (and can be found in [1],[6]). However, for convenience, we recall some of the 

notions used in the sequel.    

Definition 2.1([1]): A fuzzy set is a class of objects with a continuum of grades of membership. Such a 

set is characterized by a membership function, which assigns to each object a grade of membership lies 

between zero to one. i.e., A fuzzy set is a pair (X, μ), where X is a non - empty set and μ: X →[0, 1], a 
membership function, then a fuzzy set A = (X, μ) is defined as  

   A = {(x, μ(x)):  x ∈ X} 
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Also, denoted as  

   A = {
μ(x)

𝑥
:  𝑥 ∈  X} 

Let x ∈ X. Then x is called 

 (i)    Not included in the fuzzy set A = (X, μ), if μ(x) = 0 (no member)                                          (ii)   

Fully included in the fuzzy set A = (X, μ), if μ(x) = 1 (Full Member)                                           (iii)  

Partially included in the fuzzy set A = (X, μ), if 0 < μ(x) < 1 (fuzzy member) 

 Other definitions – 

 (i)    A fuzzy set A = (X, μ) is empty (A = ∅) if and only if μA(x) = 0, ∀ x ∈ X  

 (ii)   Two fuzzy sets A and B are equal (A = B) if and only if   μA(x) = μB(x), ∀ x ∈ X: 

 (iii)  A fuzzy set A is included in a fuzzy set B (A ⊆ B) if and only if μA(x) ≤ μB(x), ∀ x ∈ X: 

Fuzzy set Operations – 

(i) For a given fuzzy set A, its complement Ac (or cA) is defined by the following membership 

function:  

                              μcA(x) = 1 – μA(x), ∀ x ∈ X 

 (ii) For given a pair of fuzzy sets A, B, their intersection A ∩ B is defined by  

   μA ⋂ B (x) = min{μA(x), μB(x)}, ∀ x ∈ X 

           (iii)    For given a pair of fuzzy sets A, B, their union A ꓴ B is defined by 

   μA ꓴ B (x) = max{μA(x), μB(x)}, ∀ x ∈ X 

Definition 2.2([5]): A relation R defined on a set ‘S’ is called a partial ordering or partial order if it     

reflexive, anti-symmetric and transitive. A set ‘S’ together with a partial ordering R is called a partially 

ordered set or poset and is denoted by (S, R). 

Definition 2.3([6]): Let (P, ≤) be a poset. Then an element a ∈ P is called minimal if a ≤ b, ∀b ∈ P. 

Similarly, b ∈ P is called maximal if a ≤ b, ∀a ∈ P. 

Also, a, b ∈ P and a ≠ b, then a is called predecessor of b and b is called successor of a, if a ≤ c ≤ b and 

c ∈ P imply that c = a or c = b. 

We denote this relation by < a, b >. An element b ∈ P is called atomic if there exists a minimal element a 

∈ P with < a, b >. Let a ∈ P. Then o(a) element | {b ∈ A: < b, a >} |. Moreover, by o(P), we denote max{o(a) 

| a ∈ P}([5]). 

Definition 2.4: Let A = (Q, X, δ), where Q and X are non-empty finite sets, called a state set and an 

alphabet, respectively and δ is a function called a state transition function such that δ (q, a) ∈ Q, for some 

q ∈ Q and any a ∈ X. Then A is called a finite automaton. 

      Note that the above δ can be extended to the following function in a natural way i.e., δ (q, e) = q and δ 

(q, au) = δ (δ (q, a), u) for some q ∈ Q, u ∈ X* and a ∈ X, where X* is the set of all strings on X, obtained 
by concatenation.       

      Let A = (Q, X, δ) be an automaton. We define an equivalence relation ~ on Q as follows:  

      for q, p ∈ Q, q~ p if and only if there exist u, u ∈ X such that δ (p, u) = q hold. 

  Definition 2.5: Let A = (Q, X,𝛿) be an automaton. For p ∈ Q, we define a subset Tp of Q by {q ∈ Q | p 

~ q}. This subset Tp is called a layer of A. 
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                For two layers Tp and Tq, we define a partial order ≼A as follows: 

                        Tp ≼A Tq if and only if there exists a word u ∈ X such that δ (q, u) = p. 

  We denote the poset ({Tp | p ∈ Q}, ≼A) by P(A). 

Definition 2.6: Let A = (Q, X, δ) and B = (T, X, 𝜃) be two automata, then B is called a sub automaton of 
A if the following conditions are satisfied: 

 (i)  T ⊆ Q            

 (ii) 𝜃 = δ |T x X , i.e., 𝜃 is the restriction of 𝛿 to T × X. 

3.  REDUCIBLE FUZZY AUTOMATA 

 Recall that X* denotes the set of all finite words over a non-empty set X. We shall denote the identity 

of X by e. Also, |P| denotes the cardinality of a finite set P. 

Definition 3.1: A fuzzy automaton is a tuple M = (Q, X, δ), where Q is non empty finite set, called the set 

of states and X is non-empty finite set, called the set of inputs and δ is a fuzzy subset of             Q x X x Q, 

i.e., a map δ: Q x X x Q → [0, 1] such that  ∀ p, q ∈ Q, ∀ u ∈ X and x ∈ X, 

                                                    δ (p, e, q) = {
1 , if 𝑝 = 𝑞
0 , if 𝑝 ≠ 𝑞

 

                         and                   δ (p, ux, q) = ⋁ {δ (p, u, r) ⋀ δ (r, x, q): r ∈Q} 

Also, it has been observed that δ (p, uv, q) = ⋁{δ (p, u, r) ⋀ δ (r, v, q): r ∈𝑄} ∀ p, q ∈Q, u, v ∈ X 

Definition3.2: Let M= (Q, X, δ ) be a fuzzy automaton and A⊆Q. The source and the successor of  A are 
respectively the sets 

                        𝜎Q(A) = {q ∈ Q: δ (q, u, p)>0, for some (u, p) ∈ X* × A} 

 and                sQ(A)= {p ∈ Q: δ (q, u, p)>0, for some (u, q) ∈ X* × A}. 

We shall frequently write 𝜎Q(A) and sQ(A) as just 𝜎(A) and 𝜎({q}) and s({q}) as just 𝜎(q) and s(q). 

Definition 3.3: A fuzzy automaton N = (R, X, λ) is called a subautomaton of a fuzzy automaton        M = 

(Q, X, δ), if R⊆Q and s(Q) = R and δ |R x X x R = λ.   

Definition 3.4: Let M = (Q, X,𝛿) be a fuzzy automaton and N = (R, X, λ) be a fuzzy subautomaton of 

automaton M, i.e., N⊆M. Then, N is called separated, if sQ(Q−R) ⋂R = ∅ , where R⊆Q 

Definition 3.5: A fuzzy automaton M = (Q, X, δ) is called strongly connected if 

                                         p ∈ s(q),  ∀ p, q ∈ Q, 

Definition 3.6: A fuzzy automaton M= (Q, X, 𝛿) is called cyclic, if for all p ∈ Q, there exists                q0 

∈ Q and 𝑢 ∈ X* such that δ (q0, 𝑢, p) >0. 

Definition 3.7: A fuzzy automaton M = (Q, X, 𝛿) is called directable if for all p, q ∈ Q, there exist  r ∈ Q 

and u ∈ X* such that  δ(p, u, r)>0 and δ (q, u, r)>0. 

Definition 3.8: A homomorphism from a fuzzy automaton M = (Q, X, δ) to a fuzzy automaton       N = 

(R, Y, λ) is a pair (f, g) of maps, where f: Q→R and g: X→Y are functions such that                          λ (f(q), 

g(x), f(p) ≥ δ (q, u, p) ∀ (q, u, p) ∈ Q × X ×Q. 

Remark 3.1: In the above definition if X = Y and g is the identity map on X, then we say that f is 

homomorphism from M to N.  
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Definition 3.9: Let M = (Q, X, δ) be fuzzy automata. We define a relation R on Q as follows: 

(p, q) ∈ R if and only if 𝛿(p, u, q) > 0 and 𝛿(q, v, p) > 0 for some u, v, ∈ X*. 

Theorem 3.1: The relation R, defined on Q in definition 3.9, is an equivalence relation on Q. 

Proof: (i) Reflexivity: As 𝛿(q, e, q) = 1 > 0, ∀ q ∈ Q, so, qRq or (q, q) ∈ R, i.e., R is reflexive. 

          (ii) Symmetry: Let qRp i.e., 𝛿(q, 𝑥, p) > 0 and 𝛿(p, 𝑦, q) > 0 for some 𝑥, 𝑦 ∈ X* 

                ⇒ 𝛿(p, 𝑦, q) > 0 and 𝛿(q, 𝑥, p) > 0, for some 𝑥, 𝑦 ∈ X* 

                ⇒ pRq i.e., (p, q) ∈ R 

                Thus, R is symmetric on Q. 

                    (iii)  Transitivity: Let qRp, pRr. Then we have  𝛿(q, x, p) > 0, 𝛿(p, y, q) > 0, 𝛿(p, z, r) > 0  and  

                               𝛿(r, w, p) > 0, for some x, y, z, w ∈ X* and q, r, p ∈ Q. 

              We can easily see that 𝛿(q, xz, r) > 0 and 𝛿(r, wy, q) > 0, for some xz, wy ∈ X*   

                                  ⇒               qRr,     i.e., (q, r) ∈ R     

             Thus, R is transitive on Q.            

 Hence R is equivalence relation on Q. 

Definition 3.10: Let M = (Q, X, 𝛿) be a fuzzy automaton and R be the relation on Q. Then for               p 

∈ Q, the set   Lp = {q ∈ Q: (p, q) ∈ R} a layer of M. 

For two layers Lp and Lq of Q, we define Lp≼M Lq, if and only if  𝛿(q, u, p) >0, for u ∈ X*.  

We shall denote the set {Lp: p ∈ Q} by Em. 

Theorem 3.2:   The set (Em, ≼M) is a poset or ({Lp: p ∈ Q}, ≼M) is a poset. 

Proof: We show ≼M is a partial order relation on the set {Lp: p ∈ Q}. 

(i) Reflexivity: As 𝛿(q, e, q) = 1 > 0 ⇒ Lp≼M Lq 

    Thus ≼M is Reflexive on ≼M. 

(ii) Anti-symmetry: Let Lp≼M Lq and Lq≼M Lp, ∀ p, q, r ∈ Q. 

                            ⇒     𝛿(q, x, p) > 0, 𝛿(p, y, q) > 0 for some x, y ∈ X* 

     i.e., pRq or p ~ q 

   i.e., p and q are of some equivalence class, thus Lp=Lq. 

Hence ≼M is anti-symmetric on EM. 

(iii) Transitivity: Let Lp≼M Lq, Lq≼M Lr, ∀ p, q, r ∈ Q 

                          Lp≼ Lq⇒ 𝛿(q, x, p) > 0, for some x ∈ X* 

                            Lq≼ Lr⇒ 𝛿(r, y, q) > 0, for some y ∈ X* 

                        As 𝛿(r, y, q) > 0 and 𝛿(q, x, p) > 0   imply that 𝛿(r, yx, p) > 0    

     ⇒ Lp≼M Lr      

 Thus ≼M is transitive on EM.        

 Therefore,≼M is partial ordering on EM then, the set ({Lp: p ∈ Q}, ≼M) is a poset. 
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Theorem 3.3: Every fuzzy automaton has at least one strongly connected sub automaton. 

Proof: Let M = (Q, X, δ ) be a fuzzy automaton and EM be the collection of all layers of M of different 

classes. Then (EM, ≼M) is a poset. Let q ∈ Q, and Lq ∈ EM be a minimal layer. We know that –  

                               Lq ⊆ s(Lq) ----- (1) 

By definition, s(Lq) = {p ∈ Q: δ (q, u, p) > 0, for some (u, q) ∈ X* x Lq} 

Then, for p ∈ s(Lq), there exist u ∈ X* and t ∈ Lq such that 𝛿(t, u, p) > 0, Now t ∈ Lq implies there exists 

v∈ X* such that 𝛿(q, v, t) > 0, thus, 

𝛿(q, vu, p) ≥ 𝛿(q, v, t) ⋀𝛿(t, u, p) > 0, i.e., δ (q, vu, p) > 0. 

 Also, by minimality of Lq, Lq≼M Lp, which shows that δ (p, w, q) > 0  

as δ (q, vu, p) > 0, δ (p, w, q) > 0 implies that (q, p) ∈ R i.e., p ∈ Lq. Thus, for all p ∈ s(Lq), p ∈ Lq implies  

                             s(Lq) ⊆ Lq ----- (2) 

 from (1) and (2),   s(Lq) = Lq 

So, (Lq, X, 𝛿’) is a sub automaton of M, where 𝛿’ = 𝛿|Lq x X x Lq 

Further, let p, r ∈ Lq i.e., (q, p), (q, r) ∈ R. 

     Then there exists u, v ∈ X* such that 𝛿(q, u, p) > 0 and 𝛿(r, v, q) > 0, or that 𝛿(r, vu, q) > 0, i.e., p ∈ s(r) 

where by the subautomaton (Lq, X, 𝛿’) is strongly connected. 

Hence, every fuzzy automaton has at least one strongly connected sub automaton. 

Theorem 3.4: Let M be a cyclic fuzzy automaton. Then M has a unique maximal layer which is    

maximum is EM. 

Proof: Let M = (Q, X, 𝛿) be a cyclic fuzzy automaton and Lq be a maximal layer in EM. As q ∈ Lq, Lq ⊆ 

Q ⇒ q ∈ Q and M is cyclic, then ∃ qo ∈ R such that 𝛿(qo, u, q) > 0, for some u ∈ X*, and therefore Lq ≼M 

Lqo. As Lq is maximal layer in EM, then, Lqo≼ Lq, then Lq = Lqo. Hence Lqo ∈ EM is a unique maximal 
layer. 

4.  CONSTRUCTION OF REDUCED FUZZY AUTOMATON  

  The following is toward the construction of fuzzy automaton having singleton as a unique 

minimal layer from a given fuzzy automaton with a unique minimal layer. 

 Let M = (Q, X, δ ) be a fuzzy automaton having unique minimal layer Lq. Construction a fuzzy 

automaton M’ = (((Q – Lq) ∪ {r}), X, λ), where r is a new state and λ: (Q – Lq) ∪  {r} x X x ((Q – Lq) ∪ {r}) 

⟶ [0, 1] is a map 

i.e.    λ: ((Q – Lq) ∪  {r}) x X x ((Q – Lq) ∪ {r}) ⟶ [0, 1] 

 λ (q, u, t) = {

δ (q, u, t),     if  t, q ∈ (𝑄 − 𝐿𝑞)                            

1,       if  t ∈ {r}i. e. , t = r, q ∈ {Q − 𝐿𝑞} ∪ {r}

0,        if  t ∈ (Q −  𝐿𝑞), q ∈ {r}i. e. , q = r         

 

The from the definition of M’, it is clear that {r} is a unique minimal layer of M’. 

Theorem 3.5: Let M = (Q, X, δ) be a fuzzy automaton having unique minimal layer L0, and M’ = 

(((Q – L0) ∪ {q0}) X, λ) be a construction fuzzy automaton from M, having unique minimal layer {q0}, 
where λ is defined as follows: 

 ∀ (q, u, p) ∈ (Q – L0) ∪ {q0} x X x (Q – L0) ∪ {q0} 
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λ (q, u, p)={

δ (q, u, p),      p, q ∈ (Q − 𝐿0)                               

1,       p ∈ {𝑞0}, i. e. , p = 𝑞0, q ∈ (Q − 𝐿0) ∪ {𝑞0}

0,       q ∈ {𝑞0}i. e. , q = 𝑞0, p ∈ (Q − 𝐿0)        

 

then, M’ is homomorphic image of M.       

Proof:  Let f: M → M’   be a map such that ∀ q ∈ Q, 

           F(q) = {
q,          if  q ∈ (Q − 𝐿0)

𝑞0,       if q ∈ 𝐿0              
 

We will discuss if in following four cases – 

 Case (i), when q, p ∈ (Q – L0), then  λ (f(q), q(u), f(p)) = λ (q, u, p) = δ (q, u, p) 

Case (ii), when p ∈ L0, q ∈ (q – L0), then    λ (f(q), g(u), f(p)) = λ (q, u, q0) = 1 ≥δ (q, u, p) 

Case (iii),  when, p ∈ L0, q ∈ L0, then λ (f(q), g(u), f(p)) = λ (q0, u, q0) = 1 ≥δ (q, u, p) 

Case (iv),  when q ∈ L0, p ∈ (Q – L0), then λ (f(q), g(u), f(p)) = λ (q0, u, p) = 0, And 

As,  p ∈ (Q – L0)  ⇒ p ∉ L0,  Let q ∈ L0. Then, (q, p) ∉ R 

So, either δ (q, u, p) > 0, δ (p, v, q1) = 0 or δ (q, u, p) = 0,  δ (p, v, q1) > 0 for some u, v ∈ X* 

If  δ (q1, u, p) > 0, δ (p, v, q1) = 0, i.e. δ (q1, u, p) >0,  this gives Lp ≼M Lq0 = L0 i.e.  Lp ≼M L0 

 which contradicts that L0 is a minimal layer  

So,  δ (p, v, q1) > 0 and δ (q, u, p) = 0 

Thus, λ (r(q), g(v), f(p)) = 0 = δ (q, x, p) 

Thus, ∀ (q, x, p) ∈ ((Q – L0) ∪ {q0}) x X x ((Q – L0) ∪ {q0}) 

  λ (f(g), g(x), f(p)) ≥δ (q, x, p). 

Also, from definition of ‘f’ it is clear that f is onto. Hence, M′ is a homorphic image of M. 

5. Conclusion 

In this paper, which is mainly inspired from [5], we find all subautomaton of a fuzzy 

automaton by using the concept of successor. As mentioned in [5], we have shown that the 

set of all layers EM of a fuzzy automaton M forms a poset. We have shown that every fuzzy 

automaton has at least one strongly connected sub automaton. We have ultimately shown 

that we can construct a fuzzy automaton M’ having singleton as a unique minimal layer from 

a given fuzzy automaton M with a unique minimal layer, i.e., any fuzzy automata can be 

reduced. 
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