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Abstract: In this paper, first we show that every fuzzy automaton has at least one strongly connected
subautomaton and if M is a cyclic fuzzy automaton, then M has a unique maximal layer. After that we show
that it is possible to construct a fuzzy automaton having singleton as a unique minimal layer from a given
fuzzy automaton with a unique minimal layer and so, we get a reduced fuzzy automaton.
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1. INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh [8, 9]. In [2], Ito Masami has defined the concept of
layers of an automaton and also, characterized the subautomaton of an automaton in terms of layers. In [2],
Ito Masami has shown that for any finite poset P, there exists an automaton, whose poset of layers is
isomorphic to P. Subsequently, Wee [7] has introduced the idea of fuzzy automata and the algebraic study
of fuzzy automata has been initiated by Malik [3] (cf., [4] for details). In [5], S.P. Tiwari, Vijay K. Yadav,
Anupam K. Singh have defined the concept of layers of a fuzzy automaton. characterized the subautomaton
of a fuzzy automaton in terms of layers. In [5], S.P. Tiwari, Vijay K. Yadav, Anupam K. Singh have shown
that the maximal layer of a cyclic fuzzy automaton and minimal layer of a directable fuzzy automaton are

unique. In this paper, we show that every fuzzy automaton has at least one strongly connected subautomaton

and if M is a cyclic fuzzy automaton, then M has a unique maximal layer. We have also shown that any
fuzzy automaton can be reduced.

2. PRELIMINARIES
All fuzzy-theoretic and lattice-theoretic notions and results used here, but not defined or explained,
are fairly standard by now (and can be found in [1],[6]). However, for convenience, we recall some of the
notions used in the sequel.

Definition 2.1([1]): A fuzzy set is a class of objects with a continuum of grades of membership. Such a
set is characterized by a membership function, which assigns to each object a grade of membership lies
between zero to one. i.e., A fuzzy set is a pair (X, n), where X is a non - empty set and u: X -=[0, 1], a
membership function, then a fuzzy set A = (X, p) is defined as

A={(x nx): x €X}
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Also, denoted as
- (r®),
A= { P X € X}
Let x € X. Then x is called

(i) Notincluded in the fuzzy set A = (X, p), if w(xX) = 0 (no member) (i)
Fully included in the fuzzy set A = (X, ), if w(x) = 1 (Full Member) (i)
Partially included in the fuzzy set A = (X, p), if 0 < pu(x) < 1 (fuzzy member)

Other definitions —

(i) Afuzzy set A= (X, p)is empty (A = @) if and only if pa(x) =0, V X € X

(ii) Two fuzzy sets A and B are equal (A = B) if and only if pa(x) = ps(x), V x € X:

(ili)  Afuzzy set Aisincluded in a fuzzy set B (A € B) if and only if pa(x) < ps(x), V X € X:
Fuzzy set Operations —

(i)  Fora given fuzzy set A, its complement A° (or cA) is defined by the following membership
function:
ea(X) =1 —pa(X), v x e X

(i) For given a pair of fuzzy sets A, B, their intersection A N B is defined by
rane(X) = min{pa(X), pa(X)}, v x € X

(iii)  For given a pair of fuzzy sets A, B, their union A U B is defined by

pau B (X) = max{pa(x), us(x)}, v x € X

Definition 2.2([5]): A relation R defined on a set ‘S’ is called a partial ordering or partial order if it
reflexive, anti-symmetric and transitive. A set ‘S’ together with a partial ordering R is called a partially
ordered set or poset and is denoted by (S, R).

Definition 2.3([6]): Let (P, <) be a poset. Then an element a € P is called minimal if a<b, vb € P.
Similarly, b € P is called maximal ifa < b, va € P.

Also, a, b € P and a # b, then a is called predecessor of b and b is called successor of a, ifa<c < band
cePimplythatc=aorc=h.

We denote this relation by < a, b >. An element b € P is called atomic if there exists a minimal element a
€ Pwith<a,b>. Leta € P. Then o(a) element | {b € A: <b, a>} |. Moreover, by o(P), we denote max{o(a)

| a € PX([5)).

Definition 2.4: Let A = (Q, X, 3), where Q and X are non-empty finite sets, called a state set and an
alphabet, respectively and & is a function called a state transition function such that ¢ (g, a) € Q, for some
g € Qandany a € X. Then A'is called a finite automaton.

Note that the above 6 can be extended to the following function in a natural way i.e.,  (q, €) =qand
(0, au) = & (5 (g, a), u) for some g € Q, u € X" and a € X, where X" is the set of all strings on X, obtained
by concatenation.

Let A =(Q, X, 3) be an automaton. We define an equivalence relation ~ on Q as follows:
for g, p € Q, g~ p if and only if there exist u, u € X such that 6 (p, u) = q hold.

Definition 2.5: Let A = (Q, X,8) be an automaton. For p € Q, we define a subset T,of Q by {q € Q| p
~ q}. This subset Ty, is called a layer of A.
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For two layers Ty and Tq, we define a partial order <a as follows:
Tp<a Tqifand only if there exists a word u € X such that 6 (g, u) = p.
We denote the poset ({Tp | p € Q}, <a) by P(A).

Definition 2.6: Let A= (Q, X, d) and B = (T, X, ) be two automata, then B is called a sub automaton of
A if the following conditions are satisfied:

() T€Q
(if) @ =3 |rxx, i.e., O is the restriction of § to T x X.

3. REDUCIBLE FUZZY AUTOMATA

Recall that X" denotes the set of all finite words over a non-empty set X. We shall denote the identity
of X by e. Also, |P| denotes the cardinality of a finite set P.

Definition 3.1: A fuzzy automaton is a tuple M = (Q, X, 8), where Q is non empty finite set, called the set
of states and X is non-empty finite set, called the set of inputs and & is a fuzzy subset of QxXxQ,
i.e,amapo: QxXxQ— [0, 1]suchthat Vp,g€eQ,Vue Xandx € X,

_{1,ifp=gq
5(p.e, q)_{O,ifp¢q
and d(p,ux,q)=V{(p,u,r)Ad(rx q)reQ}

Also, it has been observed that 6 (p, uv, g) = V{5 (p, u, ) Ad(r,v,q):reQ}vp,geQ,u ve X

Definition3.2: Let M= (Q, X, & ) be a fuzzy automaton and A<Q. The source and the successor of A are
respectively the sets

ao(A) = {q € Q: & (g, u, p)>0, for some (u, p) € X" x A}
and so(A)={p € Q: § (g, u, p)>0, for some (u, g) € X" x A}.
We shall frequently write ag(A) and sq(A) as just a(A) and a({q}) and s({q}) as just a(q) and s(q).

Definition 3.3: A fuzzy automaton N = (R, X, A) is called a subautomaton of a fuzzy automaton M =
(Q, X, 8), if REQ and s(Q) = R and & |r xx xRk = A.

Definition 3.4: Let M = (Q, X,5) be a fuzzy automaton and N = (R, X, A) be a fuzzy subautomaton of
automaton M, i.e., NEM. Then, N is called separated, if so(Q—R) NR = @ , where REQ

Definition 3.5: A fuzzy automaton M = (Q, X, 9) is called strongly connected if

pes() Vp,qeq,

Definition 3.6: A fuzzy automaton M= (Q, X, ) is called cyclic, if for all p € Q, there exists Jo
€ Q and u € X* such that & (qo, u, p) >0.

Definition 3.7: A fuzzy automaton M = (Q, X, §) is called directable if for all p, g € Q, there exist r € Q
and u € X* such that 3(p, u, r)>0 and & (g, u, r)>0.

Definition 3.8: A homomorphism from a fuzzy automaton M = (Q, X, d) to a fuzzy automaton N =
(R, Y, &) is a pair (f, g) of maps, where f: Q—R and g: X—Y are functions such that A (f(0),

9(x), f(p) =2 6 (a, u, p) v (0, u, p) € Q X X xQ.

Remark 3.1: In the above definition if X =Y and g is the identity map on X, then we say that f is
homomorphism from M to N.
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Definition 3.9: Let M = (Q, X, d) be fuzzy automata. We define a relation R on Q as follows:
(p, q) € R if and only if §(p, u, ) > 0 and 5(q, v, p) > 0 for some u, v, € X"
Theorem 3.1: The relation R, defined on Q in definition 3.9, is an equivalence relation on Q.
Proof: (i) Reflexivity: Asé(q,e,q)=1>0,vqeQ,so, qRqor (g, q) €ER,i.e., Risreflexive.
(i) Symmetry: Let qRpi.e., (g, x, p) > 0 and 5(p, y, q) > 0 for some x,y € X”
= &(p,y,q)>0andés(q, x, p) >0, for some x,y € X
= pRqie,(p,q) ER
Thus, R is symmetric on Q.
(iii) Transitivity: Let 4Rp, pRr. Then we have §(q, x, p) >0, 5(p, Yy, q) >0, 6(p, z,r) >0 and
5(r,w, p)>0, forsomex,y, z,we X andq,r,p € Q.
We can easily see that §(q, xz, r) > 0 and &(r, wy, q) > 0, for some xz, wy € X"
> ¢Rr, ie,(g,r) ER

Thus, R is transitive on Q.
Hence R is equivalence relation on Q.

Definition 3.10: Let M = (Q, X, &) be a fuzzy automaton and R be the relation on Q. Then for p
€ Q,theset Lp={q€ Q: (p, q) € R} alayer of M.

For two layers Ly and Lq of Q, we define Ly<m Ly, if and only if §(q, u, p) >0, foru € X",
We shall denote the set {Lp: p € Q} by Enm.
Theorem 3.2: The set (Em, <wm) is a poset or ({Lp: p € Q}, <wm) is a poset.
Proof: We show <w is a partial order relation on the set {L,: p € Q}.
() Reflexivity: As 6(q,e,q)=1>0= Lp<m Lyq
Thus <wm is Reflexive on <m.
(i) Anti-symmetry: Let Lp<m Lgand Lg<m Lp, V p, ¢, r € Q.
= 6&(q,%,p)>0,8(p,Y,q)>0forsomex,yeX
i.e., pRqorp~gq
i.e., p and g are of some equivalence class, thus Lp=Lg.
Hence <wv is anti-symmetric on Ewm.
(iif) Transitivity: Let Lo<m Lg, Lg<m L, Vp, 0, T €Q
Lo< Lg=  8(q, X, p) >0, for some x € X*
Le< L= 4(r,y,q) >0, forsomey € X

As 6(r,y,q)>0and §(q, x, p) >0 imply that 6(r, yx, p) >0
= LpSM L,
Thus <wm is transitive on Ewm.
Therefore,<wm is partial ordering on Em then, the set ({Ly: p € Q}, <wm) is a poset.

JETIR2305F83 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 0647


http://www.jetir.org/

© 2023 JETIR May 2023, Volume 10, Issue 5 www.jetir.org (ISSN-2349-5162)

Theorem 3.3: Every fuzzy automaton has at least one strongly connected sub automaton.

Proof: Let M = (Q, X, &) be a fuzzy automaton and Ewm be the collection of all layers of M of different
classes. Then (Em, <wm) is a poset. Let g € Q, and Lg € Em be a minimal layer. We know that —

By definition, s(Lq) = {p € Q: 6 (q, u, p) > 0, for some (u, g) € X" x Lq}

Then, for p € s(Lq), there exist u € X" and t € Lq such that 5(t, u, p) > 0, Now t € Lq implies there exists
ve X" such that (g, v, t) > 0, thus,

6(q, vu, p) = 6(q, v, t) AS(t, u,p)>0,i.e., 5(q, vy, p)>0.
Also, by minimality of Lq, Lg<m Lp, which shows that 6 (p, w, g) >0
as 6 (q,vu,p)>0, 6 (p,w, q)>0implies that (q, p) € Ri.e., p € Lg. Thus, for all p € s(Lq), p € Lg implies
s(La) € Lg -----(2)
from (1) and (2), s(Lqg) = Lqg
So, (Lg, X, &) is a sub automaton of M, where §” = §|Lqxxx Lq
Further, letp,r € Lqi.e, (q,p), (0, 1) ER.

Then there exists u, v € X" such that §(g, u, p) > 0and &(r, v, g) > 0, or that §(r, vu, ) > 0, i.e., p € s(r)
where by the subautomaton (Lg, X, &) is strongly connected.

Hence, every fuzzy automaton has at least one strongly connected sub automaton.

Theorem 3.4: Let M be a cyclic fuzzy automaton. Then M has a unique maximal layer which is
maximum is Em.

Proof: Let M = (Q, X, &) be a cyclic fuzzy automaton and Lq be a maximal layer in Em. Asq € Lg, Lg S
Q = g € Q and M is cyclic, then 3 go € R such that §(qo, U, g) > 0, for some u € X", and therefore Lq <m
Lgo. As Lg is maximal layer in Ewm, then, Lgo< Lq, then Lq = Lgo. Hence Lgo € Em is a unique maximal
layer.

4. CONSTRUCTION OF REDUCED FUZZY AUTOMATON

The following is toward the construction of fuzzy automaton having singleton as a unique
minimal layer from a given fuzzy automaton with a unique minimal layer.

Let M = (Q, X, &) be a fuzzy automaton having unique minimal layer Lg. Construction a fuzzy
automaton M’ = (((Q — Lg) U {r}), X, A), where risa new state and A: (Q — Lq) U {r} xX x((Q—Lg) U {r})
— [0, 1] isa map

ie. M((Q-Ly)u {rPxXx(Q-Ly) u{r}) — [0, 1]
8 (qut), iftq € (Q—Lg)
A ut)y=41 iftefrtie,t=rqe{Q-L,Ju{r
0, ift E(Q—Lq),q € {r}li.e.,q=r1

The from the definition of M’, it is clear that {r} is a unique minimal layer of M’.

Theorem 3.5: Let M = (Q, X, ) be a fuzzy automaton having unique minimal layer Lo, and M’ =
(((Q — Lo) U {qo}) X, A) be a construction fuzzy automaton from M, having unique minimal layer {qo},
where A is defined as follows:

v (9, u, p) € (Q—Lo) U {do} xX x (Q — Lo) U {do}
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1, pe€{qolie,p=q0q €(Q—Ly U{qo}

o (q' u, p)' p,q € (Q - LO)
A (g, u, p)=

0, qe€f{qgolie,q=4qo p €(Q—Ly
then, M’ is homomaorphic image of M.

Proof: Letf: M - M’ be amap suchthatV g € Q,

_f{q if g € (Q—Ly)
Fa) = {CIO’ ifq €Ly

We will discuss if in following four cases —
Case (i), when g, p € (Q — Lo), then A ((a), q(u), f(p)) = A (a, u, p) =& (9, u, p)
Case (ii), when p € Lo, g € (q — Lo), then X (f(q), g(u), f(p)) =2 (g, u, go) =1 =5 (q, u, p)
Case (iii), when, p € Lo, q € Lo, then A (f(q), g(u), f(p)) = A (Qo, u, qo) =1 =6 (q, u, p)
Case (iv), when q € Lo, p € (Q — Lo), then A (f(9), g(u), f(p)) = A (qo, U, p) = 0, And
As, pe(Q-Lo) =pe Ly, Letq € Lo. Then, (g, p) € R
So, either 5 (g, u, p) > 0,8 (p, v, q1) =0o0r &(q,u,p)=0, 5 (p, Vv, q1) >0 for some u, v e X"
If 3(qi, u,p)>0,0(p,Vv,q1)=0,i.e.6(qu,p)>0, thisgivesLp<mLgo=Lo i.e. Lp=<wmLlo
which contradicts that Lo is a minimal layer
So, o6(p,v,q1)>0andd(qg,u, p)=0
Thus, 2 (r(@), 9(v), f(p)) =0=35 (9, X, p)
Thus, V (a, X, p) € ((Q — Lo) U {qo}) xX x ((Q — Lo) U {qo})
A ((9), 9(x), f(p)) =5 (a, X, p).

Also, from definition of ‘f” it is clear that f is onto. Hence, M’ is a homorphic image of M.

5. Conclusion

In this paper, which is mainly inspired from [5], we find all subautomaton of a fuzzy
automaton by using the concept of successor. As mentioned in [5], we have shown that the
set of all layers Ey of a fuzzy automaton M forms a poset. We have shown that every fuzzy
automaton has at least one strongly connected sub automaton. We have ultimately shown
that we can construct a fuzzy automaton M’ having singleton as a unique minimal layer from
a given fuzzyautomaton M with a unique minimal layer, i.e., any fuzzy automata can be
reduced.
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