JETIR.ORG ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

On Reduced Fuzzy Automaton

Mo Suphiyan khan

Department of Mathematics

M.L.K.(P.G.) College, Balrampur

Dr. Veena Singh

Department of Mathematics

M.L.K.(P.G.) College, Balrampur

Abstract: In this paper, first we show that every fuzzy automaton has at least one strongly connected subautomaton and if M is a cyclic fuzzy automaton, then M has a unique maximal layer. After that we show that it is possible to construct a fuzzy automaton having singleton as a unique minimal layer from a given fuzzy automaton with a unique minimal layer and so, we get a reduced fuzzy automaton.

Keywords: Fuzzy automaton, Subautomaton, Layer, Reducible fuzzy automaton.

1. INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh [8, 9]. In [2], Ito Masami has defined the concept of layers of an automaton and also, characterized the subautomaton of an automaton in terms of layers. In [2], Ito Masami has shown that for any finite poset P, there exists an automaton, whose poset of layers is isomorphic to P. Subsequently, Wee [7] has introduced the idea of fuzzy automata and the algebraic study of fuzzy automata has been initiated by Malik [3] (cf., [4] for details). In [5], S.P. Tiwari, Vijay K. Yadav, Anupam K. Singh have defined the concept of layers of a fuzzy automaton. characterized the subautomaton of a fuzzy automaton in terms of layers. In [5], S.P. Tiwari, Vijay K. Yadav, Anupam K. Singh have defined the concept of layers of a fuzzy automaton. characterized the subautomaton of a fuzzy automaton in terms of layers. In [5], S.P. Tiwari, Vijay K. Yadav, Anupam K. Singh have shown that the maximal layer of a cyclic fuzzy automaton and minimal layer of a directable fuzzy automaton are unique. In this paper, we show that every fuzzy automaton has at least one strongly connected subautomaton and if M is a cyclic fuzzy automaton, then M has a unique maximal layer. We have also shown that any fuzzy automaton can be reduced.

2.

PRELIMINARIES

All fuzzy-theoretic and lattice-theoretic notions and results used here, but not defined or explained, are fairly standard by now (and can be found in [1],[6]). However, for convenience, we recall some of the notions used in the sequel.

Definition 2.1([1]): A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership function, which assigns to each object a grade of membership lies between zero to one. i.e., A fuzzy set is a pair (X, μ) , where X is a non - empty set and $\mu: X \rightarrow [0, 1]$, a membership function, then a fuzzy set $A = (X, \mu)$ is defined as

 $A = \{(x, \mu(x)): x \in X\}$

Also, denoted as

$$\mathbf{A} = \left\{ \frac{\mu(\mathbf{x})}{\mathbf{x}} \colon \mathbf{x} \in \mathbf{X} \right\}$$

Let $x \in X$. Then x is called

(i) Not included in the fuzzy set $A = (X, \mu)$, if $\mu(x) = 0$ (no member) (ii) Fully included in the fuzzy set $A = (X, \mu)$, if $\mu(x) = 1$ (Full Member) (iii) Partially included in the fuzzy set $A = (X, \mu)$, if $0 < \mu(x) < 1$ (fuzzy member)

Other definitions -

- (i) A fuzzy set $A = (X, \mu)$ is empty $(A = \emptyset)$ if and only if $\mu_A(x) = 0, \forall x \in X$
- (ii) Two fuzzy sets A and B are equal (A = B) if and only if $\mu_A(x) = \mu_B(x), \forall x \in X$:
- (iii) A fuzzy set A is included in a fuzzy set B (A \subseteq B) if and only if $\mu_A(x) \le \mu_B(x)$, $\forall x \in X$:

Fuzzy set Operations -

(i) For a given fuzzy set A, its **complement** A^c (or cA) is defined by the following membership function:

 $\mu_{cA}(x) = 1 - \mu_A(x), \forall x \in X$

(ii) For given a pair of fuzzy sets A, B, their intersection $A \cap B$ is defined by

 $\mu_{A \cap B}(x) = \min\{\mu_{A}(x), \mu_{B}(x)\}, \forall x \in X$

(iii) For given a pair of fuzzy sets A, B, their union A U B is defined by

 $\mu_{A \cup B}(x) = \max{\{\mu_{A}(x), \mu_{B}(x)\}, \forall x \in X}$

Definition 2.2([5]): A relation R defined on a set 'S' is called a partial ordering or partial order if it reflexive, anti-symmetric and transitive. A set 'S' together with a partial ordering R is called a partially ordered set or poset and is denoted by (S, R).

Definition 2.3([6]): Let (P, \leq) be a poset. Then an element $a \in P$ is called minimal if $a \leq b, \forall b \in P$. Similarly, $b \in P$ is called maximal if $a \leq b, \forall a \in P$.

Also, a, $b \in P$ and $a \neq b$, then a is called predecessor of b and b is called successor of a, if $a \le c \le b$ and $c \in P$ imply that c = a or c = b.

We denote this relation by $\langle a, b \rangle$. An element $b \in P$ is called atomic if there exists a minimal element $a \in P$ with $\langle a, b \rangle$. Let $a \in P$. Then o(a) element $| \{b \in A : \langle b, a \rangle \} |$. Moreover, by o(P), we denote max $\{o(a) | a \in P\}([5])$.

Definition 2.4: Let $A = (Q, X, \delta)$, where Q and X are non-empty finite sets, called a state set and an alphabet, respectively and δ is a function called a state transition function such that δ (q, a) \in Q, for some $q \in Q$ and any $a \in X$. Then A is called a finite automaton.

Note that the above δ can be extended to the following function in a natural way i.e., δ (q, e) = q and δ (q, au) = δ (δ (q, a), u) for some q \in Q, u \in X^{*} and a \in X, where X^{*} is the set of all strings on X, obtained by concatenation.

Let $A = (Q, X, \delta)$ be an automaton. We define an equivalence relation ~ on Q as follows:

for q, $p \in Q$, $q \sim p$ if and only if there exist u, $u \in X$ such that $\delta(p, u) = q$ hold.

Definition 2.5: Let $A = (Q, X, \delta)$ be an automaton. For $p \in Q$, we define a subset T_p of Q by $\{q \in Q \mid p \sim q\}$. This subset T_p is called a layer of A.

For two layers T_p and T_q , we define a partial order \leq_A as follows:

 $T_p \leq_A T_q$ if and only if there exists a word $u \in X$ such that $\delta(q, u) = p$.

We denote the poset $({T_p | p \in Q}, \leq_A)$ by P(A).

Definition 2.6: Let $A = (Q, X, \delta)$ and $B = (T, X, \theta)$ be two automata, then B is called a sub automaton of A if the following conditions are satisfied:

(i) $T \subseteq Q$ (ii) $\theta = \delta |_{T \times X}$, i.e., θ is the restriction of δ to $T \times X$.

3. REDUCIBLE FUZZY AUTOMATA

Recall that X^* denotes the set of all finite words over a non-empty set X. We shall denote the identity of X by e. Also, |P| denotes the cardinality of a finite set P.

Definition 3.1: A fuzzy automaton is a tuple $M = (Q, X, \delta)$, where Q is non empty finite set, called the set of states and X is non-empty finite set, called the set of inputs and δ is a fuzzy subset of $Q \times X \times Q$, i.e., a map δ : $Q \times X \times Q \rightarrow [0, 1]$ such that $\forall p, q \in Q, \forall u \in X$ and $x \in X$,

$$\delta(\mathbf{p}, \mathbf{e}, \mathbf{q}) = \begin{cases} 1, & \text{if } p = q \\ 0, & \text{if } p \neq q \end{cases}$$
$$\delta(\mathbf{p}, ux, \mathbf{q}) = \bigvee \{\delta(\mathbf{p}, u, \mathbf{r}) \land \delta(\mathbf{r}, x, \mathbf{q}) : \mathbf{r} \in \mathbf{Q} \}$$

and

Also, it has been observed that $\delta(p, uv, q) = V{\delta(p, u, r) \land \delta(r, v, q): r \in Q} \forall p, q \in Q, u, v \in X$

Definition 3.2: Let $M = (Q, X, \delta)$ be a fuzzy automaton and $A \subseteq Q$. The source and the successor of A are respectively the sets

$$\sigma_{Q}(A) = \{q \in Q: \delta(q, u, p) > 0, \text{ for some } (u, p) \in X^* \times A\}$$

and $s_Q(A) = \{ p \in Q : \delta(q, u, p) > 0, \text{ for some } (u, q) \in X^* \times A \}.$

We shall frequently write $\sigma_Q(A)$ and $s_Q(A)$ as just $\sigma(A)$ and $\sigma(\{q\})$ and $s(\{q\})$ as just $\sigma(q)$ and s(q).

Definition 3.3: A fuzzy automaton $N = (R, X, \lambda)$ is called a subautomaton of a fuzzy automaton $M = (Q, X, \delta)$, if $R \subseteq Q$ and s(Q) = R and $\delta |_{R \times X \times R} = \lambda$.

Definition 3.4: Let $M = (Q, X, \delta)$ be a fuzzy automaton and $N = (R, X, \lambda)$ be a fuzzy subautomaton of automaton M, i.e., N \subseteq M. Then, N is called separated, if $s_Q(Q-R) \cap R = \emptyset$, where $R \subseteq Q$

Definition 3.5: A fuzzy automaton $M = (Q, X, \delta)$ is called strongly connected if

$$p \in s(q), \forall p, q \in Q,$$

Definition 3.6: A fuzzy automaton $M = (Q, X, \delta)$ is called cyclic, if for all $p \in Q$, there exists $q_0 \in Q$ and $u \in X^*$ such that $\delta(q_0, u, p) > 0$.

Definition 3.7: A fuzzy automaton $M = (Q, X, \delta)$ is called directable if for all $p, q \in Q$, there exist $r \in Q$ and $u \in X^*$ such that $\delta(p, u, r) > 0$ and $\delta(q, u, r) > 0$.

Definition 3.8: A homomorphism from a fuzzy automaton $M = (Q, X, \delta)$ to a fuzzy automaton $N = (R, Y, \lambda)$ is a pair (f, g) of maps, where f: Q \rightarrow R and g: X \rightarrow Y are functions such that λ (f(q), g(x), f(p) $\geq \delta$ (q, u, p) \forall (q, u, p) $\in Q \times X \times Q$.

Remark 3.1: In the above definition if X = Y and g is the identity map on X, then we say that f is homomorphism from M to N.

р

Definition 3.9: Let $M = (Q, X, \delta)$ be fuzzy automata. We define a relation R on Q as follows:

 $(p, q) \in R$ if and only if $\delta(p, u, q) > 0$ and $\delta(q, v, p) > 0$ for some $u, v, \in X^*$.

Theorem 3.1: The relation R, defined on Q in definition 3.9, is an equivalence relation on Q.

Proof: (i) Reflexivity: As $\delta(q, e, q) = 1 > 0$, $\forall q \in Q$, so, ${}_{q}R_{q}$ or $(q, q) \in R$, i.e., R is reflexive.

(ii) Symmetry: Let $_{q}R_{p}$ i.e., $\delta(q, x, p) > 0$ and $\delta(p, y, q) > 0$ for some $x, y \in X^{*}$

- $\Rightarrow \delta(p, y, q) > 0 \text{ and } \delta(q, x, p) > 0, \text{ for some } x, y \in X^*$
- $\Rightarrow pR_q i.e., (p, q) \in R$

Thus, R is symmetric on Q.

(iii) Transitivity: Let $_{q}R_{p}$, $_{p}R_{r}$. Then we have $\delta(q, x, p) > 0$, $\delta(p, y, q) > 0$, $\delta(p, z, r) > 0$ and

 $\delta(\mathbf{r}, \mathbf{w}, \mathbf{p}) > 0$, for some x, y, z, $\mathbf{w} \in \mathbf{X}^*$ and q, r, $\mathbf{p} \in \mathbf{Q}$.

We can easily see that $\delta(q, xz, r) > 0$ and $\delta(r, wy, q) > 0$, for some $xz, wy \in X^*$

 $_{q}R_{r,}$ i.e., $(q, r) \in R$

Thus, R is transitive on Q. Hence R is equivalence relation on Q.

 \Rightarrow

Definition 3.10: Let $M = (Q, X, \delta)$ be a fuzzy automaton and R be the relation on Q. Then for $\in Q$, the set $L_p = \{q \in Q: (p, q) \in R\}$ a layer of M.

For two layers L_p and L_q of Q, we define $L_p \leq_M L_q$, if and only if $\delta(q, u, p) > 0$, for $u \in X^*$.

We shall denote the set $\{L_p: p \in Q\}$ by E_m .

Theorem 3.2: The set (E_m, \leq_M) is a poset or $(\{L_p: p \in Q\}, \leq_M)$ is a poset.

Proof: We show \leq_M is a partial order relation on the set $\{L_p: p \in Q\}$.

(i) Reflexivity: As $\delta(q, e, q) = 1 > 0 \Rightarrow L_p \leq_M L_q$

Thus \leq_M is Reflexive on \leq_M .

(ii) Anti-symmetry: Let $L_p \leq_M L_q$ and $L_q \leq_M L_p$, $\forall p, q, r \in Q$.

$$\Rightarrow \quad \delta(q, x, p) > 0, \, \delta(p, y, q) > 0 \text{ for some } x, y \in X^*$$

i.e., $_{p}R_{q}$ or $p \sim q$

i.e., p and q are of some equivalence class, thus $L_p=L_q$.

Hence \leq_M is anti-symmetric on E_M.

(iii) Transitivity: Let $L_p \leq_M L_q$, $L_q \leq_M L_r$, $\forall p, q, r \in Q$

$$L_p \leq L_q \Rightarrow \delta(q, x, p) > 0$$
, for some $x \in X^*$

$$L_q \leq L_r \Rightarrow \delta(r, y, q) > 0$$
, for some $y \in X^*$

As
$$\delta(\mathbf{r}, \mathbf{y}, \mathbf{q}) > 0$$
 and $\delta(\mathbf{q}, \mathbf{x}, \mathbf{p}) > 0$ imply that $\delta(\mathbf{r}, \mathbf{y}, \mathbf{p}) > 0$
 $\Rightarrow \quad L_{\mathbf{p}} \leq_{\mathbf{M}} L_{\mathbf{r}}$

Thus \leq_M is transitive on E_M.

Therefore, \leq_M is partial ordering on E_M then, the set ({ $L_p: p \in Q$ }, \leq_M) is a poset.

Theorem 3.3: Every fuzzy automaton has at least one strongly connected sub automaton.

Proof: Let $M = (Q, X, \delta)$ be a fuzzy automaton and E_M be the collection of all layers of M of different classes. Then (E_M, \preccurlyeq_M) is a poset. Let $q \in Q$, and $Lq \in E_M$ be a minimal layer. We know that –

$$Lq \subseteq s(Lq) ---- (1)$$

By definition, $s(Lq) = \{p \in Q: \delta(q, u, p) > 0, \text{ for some } (u, q) \in X^* \times Lq\}$

Then, for $p \in s(Lq)$, there exist $u \in X^*$ and $t \in Lq$ such that $\delta(t, u, p) > 0$, Now $t \in Lq$ implies there exists $v \in X^*$ such that $\delta(q, v, t) > 0$, thus,

 $\delta(q, vu, p) \ge \delta(q, v, t) \wedge \delta(t, u, p) > 0$, i.e., $\delta(q, vu, p) > 0$.

Also, by minimality of Lq, Lq \leq_M Lp, which shows that δ (p, w, q) > 0

 $as \ \delta \ (q, vu, p) > 0, \ \delta \ (p, w, q) > 0 \ implies \ that \ (q, p) \in R \ i.e., p \in Lq. \ Thus, \ for \ all \ p \in s(Lq), p \in Lq \ implies$

 $s(Lq) \subseteq Lq ---- (2)$

from (1) and (2), s(Lq) = Lq

So, (Lq, X, δ ') is a sub automaton of M, where $\delta' = \delta|_{Lq \times X \times Lq}$

Further, let p, $r \in Lq$ i.e., (q, p), $(q, r) \in R$.

Then there exists $u, v \in X^*$ such that $\delta(q, u, p) > 0$ and $\delta(r, v, q) > 0$, or that $\delta(r, vu, q) > 0$, i.e., $p \in s(r)$ where by the subautomaton (Lq, X, δ ') is strongly connected.

Hence, every fuzzy automaton has at least one strongly connected sub automaton.

Theorem 3.4: Let M be a cyclic fuzzy automaton. Then M has a unique maximal layer which is maximum is E_M .

Proof: Let $M = (Q, X, \delta)$ be a cyclic fuzzy automaton and Lq be a maximal layer in E_M . As $q \in Lq$, $Lq \subseteq Q \Rightarrow q \in Q$ and M is cyclic, then $\exists q_0 \in R$ such that $\delta(q_0, u, q) > 0$, for some $u \in X^*$, and therefore $Lq \leq_M Lq_0$. As Lq is maximal layer in E_M , then, $Lq_0 \leq Lq$, then $Lq = Lq_0$. Hence $Lq_0 \in E_M$ is a unique maximal layer.

4. CONSTRUCTION OF REDUCED FUZZY AUTOMATON

The following is toward the construction of fuzzy automaton having singleton as a unique minimal layer from a given fuzzy automaton with a unique minimal layer.

Let $M = (Q, X, \delta)$ be a fuzzy automaton having unique minimal layer Lq. Construction a fuzzy automaton $M' = (((Q - L_q) \cup \{r\}), X, \lambda)$, where r is a new state and $\lambda: (Q - L_q) \cup \{r\} \times X \times ((Q - L_q) \cup \{r\}) \rightarrow [0, 1]$ is a map

i.e. $\lambda: ((Q - L_q) \cup \{r\}) \times X \times ((Q - L_q) \cup \{r\}) \rightarrow [0, 1]$

$$\lambda (q, u, t) = \begin{cases} \delta (q, u, t), & \text{if } t, q \in (Q - L_q) \\ 1, & \text{if } t \in \{r\} \text{i. e.}, t = r, q \in \{Q - L_q\} \cup \{r\} \\ 0, & \text{if } t \in (Q - L_q), q \in \{r\} \text{i. e.}, q = r \end{cases}$$

The from the definition of M', it is clear that $\{r\}$ is a unique minimal layer of M'.

Theorem 3.5: Let $M = (Q, X, \delta)$ be a fuzzy automaton having unique minimal layer L_0 , and $M' = (((Q - L_0) \cup \{q_0\}) X, \lambda)$ be a construction fuzzy automaton from M, having unique minimal layer $\{q_0\}$, where λ is defined as follows:

 $\forall \ (q, u, p) \in (Q - L_0) \cup \{q_0\} \ x \ X \ x \ (Q - L_0) \cup \{q_0\}$

$$\lambda (\mathbf{q}, \mathbf{u}, \mathbf{p}) = \begin{cases} \delta (\mathbf{q}, \mathbf{u}, \mathbf{p}), & \mathbf{p}, \mathbf{q} \in (\mathbf{Q} - L_0) \\ 1, & \mathbf{p} \in \{q_0\}, \text{ i. e. }, \mathbf{p} = q_0, \mathbf{q} \in (\mathbf{Q} - L_0) \cup \{q_0\} \\ 0, & \mathbf{q} \in \{q_0\} \text{ i. e. }, \mathbf{q} = q_0, \mathbf{p} \in (\mathbf{Q} - L_0) \end{cases}$$

then, M' is homomorphic image of M.

Proof: Let $f: M \to M'$ be a map such that $\forall q \in Q$,

$$F(q) = \begin{cases} q, & \text{if } q \in (Q - L_0) \\ q_0, & \text{if } q \in L_0 \end{cases}$$

We will discuss if in following four cases -

Case (i), when $q, p \in (Q - L_0)$, then $\lambda (f(q), q(u), f(p)) = \lambda (q, u, p) = \delta (q, u, p)$ Case (ii), when $p \in L_0$, $q \in (q - L_0)$, then $\lambda(f(q), g(u), f(p)) = \lambda(q, u, q_0) = 1 \ge \delta(q, u, p)$ when, $p \in L_0$, $q \in L_0$, then λ (f(q), g(u), f(p)) = λ (q₀, u, q₀) = 1 $\geq \delta$ (q, u, p) Case (iii), when $q \in L_0$, $p \in (Q - L_0)$, then λ (f(q), g(u), f(p)) = λ (q₀, u, p) = 0, And Case (iv), $p \in (Q - L_0) \Rightarrow p \notin L_0$, Let $q \in L_0$. Then, $(q, p) \notin R$ As. So, either $\delta(q, u, p) > 0$, $\delta(p, v, q_1) = 0$ or $\delta(q, u, p) = 0$, $\delta(p, v, q_1) > 0$ for some $u, v \in X^*$ If $\delta(q_1, u, p) > 0$, $\delta(p, v, q_1) = 0$, i.e. $\delta(q_1, u, p) > 0$, this gives $Lp \leq_M Lq_0 = L_0$ i.e. $Lp \leq_M L_0$ which contradicts that L₀ is a minimal layer So, δ (p, v, q₁) > 0 and δ (q, u, p) = 0 Thus, λ (r(q), g(v), f(p)) = 0 = δ (q, x, p)

Thus, $\forall (q, x, p) \in ((Q - L_0) \cup \{q_0\}) \times X \times ((Q - L_0) \cup \{q_0\})$

 λ (f(g), g(x), f(p)) $\geq \delta$ (q, x, p).

Also, from definition of 'f' it is clear that f is onto. Hence, M' is a homorphic image of M.

5. Conclusion

In this paper, which is mainly inspired from [5], we find all subautomaton of a fuzzy automaton by using the concept of successor. As mentioned in [5], we have shown that the set of all layers E_M of a fuzzy automaton M forms a poset. We have shown that every fuzzy automaton has at least one strongly connected sub automaton. We have ultimately shown that we can construct a fuzzy automaton M' having singleton as a unique minimal layer from a given fuzzyautomaton M with a unique minimal layer, i.e., any fuzzy automata can be reduced.

References

[1] Klir, George J. and Yuan Bo, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Vol. 4. New Jersey: Prentice Hall, (1995).

[2] Lto, Masami, "Algebraic structures of automata", Theoretical computer science429 (2012) 164-168.

JETIR2305F83 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> 0649

[3] Malik, D.S., Mordeson, J.N., Sen, M.K. "Submachines of fuzzy finite state machine", J Fuzzy Math 2:781–792 (1994).

[4] Mordeson, J.N., Malik, D.S., "Fuzzy automata and languages: theory and applications", Chapman and Hall/CRC, London/Boca Raton, (2002).

[5] Tiwari, S.P, Yadav, Vijay K., Singh, Anupam K., "On algebraic study of fuzzy automata", Springer-Verlag Berlin Heidelberg 2014.

[6] Tremblay, J.P. and Manohar, R., "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill (1975).

[7] Wee, W.G., "On generalizations of adaptive algorithm and application of thefuzzy sets concept to pattern classification", Ph.D. Thesis, Purdue University (1967).

[8] Zadeh, L. A., "Fuzzy Sets", Information and Control, 8 (1965) 338-353.

[9] Zadeh, L.A., Fuzzy sets and systems, Proc. Symp. System Theory, Polytechnique Institute of Brooklyn (1965) 29-35.

