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Abstract:-  The aim of this paper is to introduce and study of some new class of spaces namely Jβ-regular and Jβ-

normal spaces in topological spaces by using Jβ-open sets. Moreover, we investigated the relationship among Jβ-

T0, Jβ-T1, Jβ-T2, Jβ-T3, Jβ-T4 separation axioms and Jβ-regular, α-regular, β-regular, α-normal, β-normal and Jβ-

normal spaces, also some example & counter example are given to verify these relationships and its converse. 

Also we defined some function related to  Jβ-regular and Jβ-normal spaces namely Jβ-open, Jβ-closed, gJβ-

closed, Jβg-closed, Jβ-gJβ closed, quasi Jβ-closed, and Jβ-gJβ-continuous function. Besides it, we obtain some 

basic characterizations, properties and preservation theorems of Jβ-regular and Jβ-normal spaces. 
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                                                            1. INTRODUCTION 

In 1937, M. Stone [14] introduced the notation of regular open sets. In 1965, O. Njasted [12] introduced and 

defined α-open sets. In 1970, N. Levine [7] generalized the concept of closed sets to generalized closed set. In 

1983, Abd-El-Monsef et al. [2] initiated the concept of β-open sets. Abd-El-Monsef et al. [3] defined the concept 

of β-regular space in 1985. In 1990, R. A. Mohmoud and M. E. Abd-El-Monsef [10] defined β normal space. R. 

Devi et al. [4] defined α-regular spaces in 1998. In 2000, G. B. Navalagi [11] defined α-normal spaces.In 2016, S. 

P. Missier and M. Annalakshmi [13] introduced the notation of regular star open sets. In 2019, P. L. Meenakshi 

[8] initiated the notation of η*-open sets. In 2019, Amir A. Mohammed and S. Beyda Abdullah [1] introduced the 

notation of ii-open sets. In 2019, P. L. Meenakshi and K. Sivakamasundari [9] intoduced the concept of J-open 

sets. In 2022, Hamant Kumar [6] initiated the concept of Jβ-open sets. Recently in 2022, Anuj kumar and B. S. 

Sharma [5] introduced a new class of separation axioms namely Jβ-T0, Jβ-T1 and Jβ-T2 separation axioms. 

                                                       2. PRELIMINARIES 

Throughout this paper, spaces (X,), (Y, σ), and (Z, γ) (or simply X, Y and Z) always mean topological spaces. 
Let f: X→Y (or simply f) always denote map. Let G be a subset of a space X. The closure of G, interior of G and 

complement of G are denoted by cl(G), int(G) and GC (or    X-G) respectively. 

Definition 2.1 A subset G of a topological space (X, ) is said to be 

(i) regular open [14]  if G int(cl(G)). 

(ii) -open [12] if G int(cl(int(G))). 

(iii) -open [2] if G cl(int(cl(G))). 
(iv) ii-open [1] if there exist an open set A such that 
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a). A≠ ∅, X 

b). G clG∩ A
c). intG= A. 

(v)     generalized closed (briefly g-closed) [7] if cl(G) A whenever G A and A 



The complement of a regular open (resp. -open, -open, ii-open and g-closed) set is called regular-closed 

(resp.- closed -closed, ii-closed and g-open). The intersection of all regular closed (resp.-closed, -closed, 

ii-closed and g-closed) sets containing G, is called regular-closure (resp. -closure-closure, ii-closure and 

generalized-closure) of G, and is denoted by r-cl(G) (resp. α-cl(B), -clG), ii-cl(G) and  cl*(G)). The set of all 

regular open (resp. -open, -open, ii-open and g-open) in X is denoted by r-o(X) (resp. α-o(X), β-o(X),  ii-o(X), 

and g-o(X)). The set of all regular closed (resp. -closed, -closed, ii-closed and g-closed) in X is denoted by r-

c(X) (resp. α-c(X), β-c(X), ii-c(X), and g-c(X)). A subset G of a topological space (X, ) is said to be clopen if it 

is both open and closed in (X, ). 



Definition 2.2 A subset G of a topological space (X, ) is said to be 
(i) regular*-open (or r*-open) [13] if G = int(cl*(G)). 

(ii) η*-open [8] if it is a union of regular*-open sets (r*-open sets). 

(iii)J-closed [9] if cl(G) A whenever GA and A is *-open in (X, ). 

(iv) J-closed [6] if -cl(G)  whenever GA and A is *-open in (X, ). 

 

The complement of a regular*-open (resp. η*-open, J-closed and Jβ-closed) set is called regular*-closed (resp. 

η*-closed, J-open and Jβ-open). The union of all regular*-open (resp. η*-open, J-open and Jβ-open) sets of X 

contained in G is called regular*-interior (resp.         η*- interior, J- interior and Jβ- interior) of G and is 

denoted by r*-int(G) (resp. η*-int(G),   J- int(G) and Jβ- int(G)). The intersection of all regular*-closed (resp. 

η*-closed, J-closed and Jβ-closed) sets of X containing G is called regular*-closure (resp. η*- closure, J- 

closure and Jβ- closure) of G is denoted by r*-cl(G) (resp. η*-cl(G), J- cl(G) and Jβ- cl(G)). The set of all r*-

closed (resp. r*-open, η*-closed, J-closed, Jβ-closed, η*-open, J-open and Jβ-open) set in X is denoted by r*c(X) 

(resp. r*o(X), η*- c(X), J- c(X), Jβ- c(X), η*-o(X), J- o(X) and Jβ- o(X)). 

 

2.3 Lemma. Let G be a subset of a space X and g ∈ X. The following properties hold for          Jβ-cl(G) :  

(i) g∈  Jβ-c1(G) if and only if  G ∩ M = ∅ for every M ∈ Jβ-o(X) containing g.  

(ii) G is Jβ-closed if and only if G = Jβ-cl(G) .  

(iii)Jβ-c1(G)  Jβ-c1(H) if G  H.  
(iv) Jβ-c1(Jβ-c1(G)) = jβ-c1(G).  

(v) Jβ-c1(G) is Jβ-closed. 

 

Proposition 2.4 Every regular open set is r*-open set. 

Proof.  Let G be a regular open set then G=int(cl(G)). Since every regular open set is clopen so G is closed, also 

every closed set is generalized closed set. Hence G is g-closed. So we get cl(G)=cl*(G). By the property of 

regularity we get, G=int(cl*(G)). Hence G is r*-open set. 

 

Proposition 2.5 Every r*-open set is η*-open set. 

Proof.  By definition, since every η*-open set is union of r*-open sets, it is obvious that every r*-open set is η*-

open set. 

 

Proposition 2.6 Every η*-open set is open set. 
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Proof.  Let G be η*-open set. Let p ∈ 𝐺 then p ∈ ∪Ci where Ci are r*-open set. Now every       r*-open set viz. C 

is open as (C=int(cl*(C)) ⇒ intC = int(int(cl*(C))) = int(cl*(C))=C). Hence      p ∈ D where D is open set. Hence 
every η*-open set is open set. 

 

Proposition 2.7 Every open set is α-open set. 

Proof.  Let G is open set then G = int(G). Also G ⊂ cl(G)  ⇒  int(G) ⊂ int(cl(G))  ⇒                  G ⊂ int(cl(G)) = 

int(cl(int(G)))  ⇒  G⊂ int(cl(int(G))). Hence G is α-open set. 
 

Proposition 2.8 Every 𝛼-open set is ii-open set. 

Proof. Let G is 𝛼-open set, then if G int(cl(int(G))) cl(int(G)). So, there exist an open set, say, A≠ ∅, X 

satisfying int(G) A, it follows that int(G) A∩ G. Therefore G cl(G∩ 𝐴). Now we shall prove that int(G) = 

A. Note that if int(G) ≠ A, for all A ∈ 𝑜(𝑋), then cl(int(G)) ≠ cl(A). From above inclusions we conclude that G  

cl(int(G) ∩ G ∩ A). This implies that G ⊄ cl(A). That is a contradiction. Therefore, G is 𝑖𝑖 − open set. 

 

Proposition 2.9 Every ii-open set is β-open set. 

Proof. Let G is ii-open set, then there exist A∈ 𝑜(𝑋) such that A ≠  ∅, 𝑋 and G cl(G∩ 𝐴) and int(G)= 𝐴. Since 

G cl(G∩ 𝐴) cl(A), also G clG⇒ int(G) int(cl(G)) ⇒ A int(cl(G)) ⇒ cl(A) cl(int(cl(G))). But above 

we find G cl(𝐴), so G cl(int(cl(G))). Hence G is β-open set. 

  
Proposition 2.10 Every β-open set is Jβ-open set. 

Proof.  Let A is β-open set then X-A=G (say is ) β-closed set ⇒ β-cl(G)=G. Now by definition G is Jβ-closed set. 
Hence A is Jβ-open set. 

 

Proposition 2.11 Every open set is g-open set. 

Proof. Let A is open set then X-A=G(say) is closed set ⇒ Cl(G)=G. Hence by the definition of g-closed set G is 

G-closed set. Hence A is g-open set. 

 

Proposition 2.12 Every g-open set is J-open set. 

Proof. . Let A is g-open set then X-A=G(say) is g-closed set then cl(G)  whenever G  H and H be any open 

set in X. Since every η*-open set is open, then cl(G)  whenever G  H and H be η*-open set in X, which 

implies that G is J-closed. Hence A is J-open set. 

 

Proposition 2.13 Every J-open set is Jβ-open set. 

Proof. Let A is J-open set then X-A=G(say) is J-closed set then cl(G)  whenever G  H and H be any η*-

open set in X. since β-cl(G)cl(G) then β-cl(G)  whenever G  H and H be η*-open set in X, which implies 

that G is Jβ-closed. Hence A is Jβ-open set. 

 

 Remark 2.14 From the above definitions, theorems and results, the relationship among Jβ-open sets and some 

other existing weaker and stronger forms of open sets are given in the following diagram: 

 

 regular open    →     r*-open   →   η*-open   →    open    →    g-open   →    J-open  →   Jβ-open 
 

                                                                                                      

                                                                            α-open   →    ii-open   →    β-open  →   Jβ-open 

 

Where none of the implications is reversible as can be seen from the following counter examples: 

Here A             B stand for neither A imply B nor B imply A. 

 

Example 2.15 Let X= {g, h, i} and ℑ = {ϕ, {g}, X} then: 
r-o(X) = {ϕ, X} 

r*-o(X) = η*-o(X) = {ϕ, {g}, X} 

α-o(X)  = ii-o(X) = β-o(X) = {ϕ, {g},{g, h}, {g, i}, X} 
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g-o(X)  = J-o(X)  = Jβ-o(X) = {ϕ, {g}, {h}, {i},{g, h}, {g, i}, X} 

it is clear that {g} is r*-open set but not regular open set, {g, h} is α-open set but not open set and {h} is g-open 

set but not α-open, ii-open, β-open and open set. {i} is Jβ-open set but not β-open set.  

 

Example 2.16 Let X= {g, h, i} and ℑ = {ϕ, {g, h}, X} then: 
r-o(X) = r*-o(X) = η*-o(X) = {ϕ, X}  

α-o(X) = ii-o(X) = {ϕ, {g, h}, X} 

β-o(X) = {ϕ, {g}, {h}, {g, h}, {g, i}, {h, i}, X} 

g-o(X)  = {ϕ, {g}, {h}, {g, h}, X} 

J-o(X) = Jβ-o(X) = {ϕ, {g}, {h}, {i}, {g, h}, {g, i}, {h, i}, X} 

{h} is β-open set but not α-open and  ii-open set, also{g, i} is β-open set but not g-open set and {i} is Jβ-open and 

J-open set but not β-open and g-open set. 

 

Example 2.17 Let X= {g, h, i} and ℑ = {ϕ, {g}, {g, h}, X} then: 
r-o(X) = {ϕ, X} 

r*-o(X) = η*-o(X) = {ϕ, {g}, X} 

α-o(X) = ii-o(X) = β-o(X) = {ϕ, {g},{g, h}, {g, i}, X} 

g-o(X) = {ϕ, {g}, {h}, {g, h}, X} 

J-o(X) = Jβ-o(X) = {ϕ, {g}, {h}, {i}, {g, h}, {g, i}, X} 

Here {g, h} is open set but not η*-open set. {g, i} is α-open, β-open and ii-open set but not           g-open, and {h} 

is g-open set but not α-open, β-open and ii-open set. Also {i} is J-open and      Jβ-open set but not g-open and β-

open set. 

 

Example 2.18 Let X= {g, h, i, j} and ℑ = {ϕ, {g}, {h, i}, {g, h, i}, X} then: 

r-o(X) =  r*-o(X) =  {ϕ, {g}, {h, i},  X} 

η*-o(X) = α-o(X) = {ϕ, {g}, {h, i}, {g, h, i },  X} 

ii-o(X) = {ϕ, {g}, {g, j}, {h, i}, {g, h, i}, {h, i, j}, X} 

β-o(X) = Jβ-o(X) =  {ϕ, {g}, {h}, {i}, {g, h}, {g, i}, {g, j}, {h, i}, {h, j}, {i, j}, {g, h, i}, {g, h, j}, {g ,i ,j}, {h, i, 
j}, X} 

g-o(X) = J-o(X) = {ϕ, {g}, {h}, {i},{g ,h}, {g ,i}, {h, i}, {g, h, i}, X} 

Here {g, h, i} is η*-open set but not r*-open set. {g, j} is ii-open set but not  α-open set. {i, j} is    β-open and Jβ-

open set but not  ii-open set. {g, j} is β-open and Jβ-open set but not g-open, and  J-open set. {i} is g-open set but 

not open set.  

 

                                                       3. Jβ-REGULAR SPACE 

 

Definition 3.1  A  topological space X is said to be Jβ-regular space (resp. α-regular [4],        β-regular [3]) if  

for   every  closed  set  G  and  a  point h  G, there  exist disjoint  Jβ-open (resp. α-open, β-open) sets J and K  of  

X such  that  G   J and  h  K. 

 

Theorem 3.2 Every regular space is Jβ–regular space. 

Proof. Since every open set is jβ-open set, so proof is obvious. 

 

Remark 3.3 By the definition stated above, we conclude some implication 

              regular space   →    α-regular space    →     β-regular space    →     Jβ-regular space 

Where none of the implications is reversible as can be seen from the following counter examples: 

 

Example 3.4 Let X= {g, h, i} and ℑ = {ϕ, {g}, {g ,h}, X} then X is Jβ-regular but neither             β-regular nor α-

regular. As closed set {i} and h ∈ X, there not exist disjoint β-open, α-open sets J and K such that {i} J and h ∈ 

K. For Jβ-regular, there exist disjoint Jβ-open sets {i} and {h} such that {i} i and h ∈ {h}. 
 

Example 3.5 Let X= {g, h, i, j} and ℑ = {ϕ, {g}, {h, i}, {g, h, i}, X} then X is β-regular as well as Jβ-regular but 

neither regular nor α-regular. As closed set {j} and h ∈ X, there not exist disjoint open, α-open sets J and K such 
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that {j} J and h ∈ K. For Jβ-regular and β-regular, there exist disjoint Jβ-open and β-open sets {g, j} and {h} 

such that {j} g, j and h ∈ {h}. 

 

Example 3.6 Let X = {g, h, i} and ℑ = {ϕ, {g}, {h, i}, X} then X is regular space as well as         α-regular space, 
β-regular space and Jβ-regular space 

 

Theorem.3.7 The following properties are equivalent for a space X:  

1. X is Jβ-regular.  

2. For each h ∈ X and each open set J of X containing h, there exists K ∈ Jβ-o(X) such that       h ∈  K  Jβ-

cl(K)  J.  

3. For each closed set G of X,  ∩{Jβ-cl(K) : G  K ∈ Jβ-o(X)} = G.  

4. For each subset D of X and each open set J of X such that D ∩ J ≠ ∅, there exists K∈ Jβ-o(X) such that 

D ∩ K ≠ ∅ and Jβ-cl(K)  J.  

5. For each non empty subset D of X and each closed subset G of X such that D ∩ G = ∅, there exist K, L ∈ 

Jβ-o(X) such that D ∩ K ≠ ∅, G  L and K ∩  L ≠ ∅. 

Proof. (1) ⟹ (2). Let J be an open set containing h, then X − J is closed in X and h ∈ X − J. By (a), there exist L, 

K ∈ Jβ-o(X) such that h ∈ K, X − J ⊂  K and K ∩ L = 𝜙 .By Lemma 2.3, we get Jβ-cl(K) ∩ L = 𝜙 and hence h ∈ 

K ⊂ Jβ-cl(K) ⊂ J.  
 

(2) ⟹ (3). Let G be a closed set of X. If G ⊂ K, then from Lemma 2.3 (iii), Jβ-cl(G) ⊂ Jβ-cl(K) which gives G ⊂ 

Jβ-cl(K) as G ⊂ Jβ-cl(G). Therefore, ∩{Jβ-cl(K) : G  K ∈ Jβ-o(X)} ⊃ G.  

Conversely, let h ∈G. Then X − G is an open set containing h. By (b), there exists J ∈ Jβ-o(X) such that h ∈ J ⊂ 

Jβ-cl(J) ⊂ X − G. Put K = X − Jβ-cl(J). By Lemma 2.3, G ⊂ K ⊂ Jβ-o(X) and h ∈ Jβ-cl(K). This state that ∩{Jβ-

cl(K) : G  K ∈ Jβ-o(X)}⊂ G.  

Hence ∩{Jβ-cl(K) : G  K ∈ Jβ-o(X)} = G. 

 

(3) ⟹ (4). Let D be a subset of X and let J be open in X such that D ∩ J ≠ ∅. Let h ∈ D ∩ J, then X − J is a 

closed set not containing h. By (c), there exists L ∈ Jβ-o(X) such that X – J ⊂  W and   h ∉ Jβ-cl(L). Put K = X − 

Jβ-cl(L). Then K  X − L. Also h ∈ K ∩ D. From Lemma 2.3, we have K ∈ Jβ-o(X), and Jβ-cl(K)  Jβ-cl(X − 

L) = X − L J.  

 

(4) ⟹ (5). Let D be a subset of X and let G be a closed set in X such that D ∩ G =∅, where D is non empty. Since 

X − G is open in X and D is non empty, by (d), there exists K ∈ Jβ-o(X) such that D ∩ K ≠ ∅ and Jβ-c1(K) X − 

G. Put L = X − Jβ-c1(K), then G  L. Also, K ∩  L ≠ ∅. By Lemma 2.3, L ∈ Jβ-o(X). 

 

(5) ⟹ (1). Proof is obvious. 
 

Theorem. 3.8 A topological space X is Jβ-regular if and only if for each closed set G of X and each h ∈ X – G, 

there exist Jβ-open sets J and K of X such that h ∈ J and G ⊂ K and                  Jβ-cl(J) ∩ Jβ-cl(K) = 𝜙. 

Proof: Let G be a closed set in Jβ-regular space X and h  G. Then there exist Jβ-open sets Jh and K such that h 

 Jh, G  K and Jh  K = . This Implies that Jh  Jβ-cl(K) = , as Jβ-cl(K) is Jβ closed and h  Jβ -cl(K). Since 

X is Jβ -regular, there exist Jβ -open sets A and B of X such that h  A, Jβ -cl(K)  B and A  B = . This 

implies Jβ -cl(A)  B = . Take J = Jh  A. Then J and K are open sets of X such that h  J and B  K and Jβ -

cl(J)  Jβ -cl(K) = , as               Jβ-cl(J)  Jβ-cl(K)  Jβ-cl(A)  B = .  

Conversely, let for each closed set G of X and each h  X – G, there exist Jβ-open sets J and K of X such that h  

J, G  K and  Jβ-cl(J)  Jβ-cl(K) = . Now U  V  Jβ-cl(J)  Jβ-cl(K) = . Therefore J  K = . Thus X is Jβ-
regular. 

 

Definition. 3.9 A space X is said to be Jβ-T3 space if it is Jβ-regular as well as Jβ-T1 [5] space. 

 

Theorem. 3.10 Every Jβ-T3 space is a Jβ-T2 space. 
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Proof. Since X be Jβ-T3, X is both Jβ-T1 and Jβ-regular. Since X is Jβ-T1 every singleton subset {h} of X is a Jβ-

closed. Let {h} be a Jβ-closed subset of X and g  X – {h}. Then we have h  g since X is Jβ-regular, there exist 

two Jβ-open sets J and K such that {h} J, g  K, and such that J  K =  i.e. J and K are disjoint Jβ-open sets 

containing g and h respectively. Since g and h are arbitrary, for every pair of distinct points, there exist disjoint 

Jβ-open sets. Hence X is Jβ-T2 space. 

 

Theorem.3.11 Every subspace of a Jβ-regular space is Jβ-regular, i.e. Jβ-regularity is a hereditary property.  

Proof. Let X be a Jβ-regular space. Let Y be a subspace of X. Let h  Y and G be a closed set in Y such that h  

G. Then there is a closed set C of X with G = Y  C and h  C. Since X is       Jβ-regular, there exist two disjoint 

Jβ -open sets J and K such that h  J and C  K. Note that    Y  J and Y  K are Jβ-open sets in Y. Also h J 

and h  Y, which implies h  Y  J and since C  K and G = Y C ⇒ Y  C  Y  K i.e. G  Y  K. Also, 

(Y  J)  (Y  K) = . Hence Y is Jβ-regular space. 
 

Theorem.3.12 Every Jβ-compact Hausdorff space is a Jβ-T3 space and hence a Jβ-regular. 

Proof. Suppose X be a Jβ-compact Hausdorff space, i.e. X is a Jβ-T2 space. But every Jβ-T2 space is Jβ-T1. To 

prove that it is Jβ-T3 space it is sufficient to prove that it is Jβ-regular. Let G be a closed subset of X, and h  G, 

that is h  X – G ,so that any point g  G is a point of X, that is g and h are distinct. Now X is a Jβ -T2 space and 

g, h be two distinct element of X. there exists two Jβ-open sets Jh and Kg such that Jh  Kg =  where g  Kg and 

h  Jh. Now let relative topology of topology , is denoted by  * so that the collection A* = {G  Kg : g  G} 

is a    Jβ-* open cover of G. But G is closed and also X is Jβ-compact (G, *) is also Jβ-compact. Hence G has 

finite subcover, there exists points g1, g2,….gn in G such that                                 Ai* = {G  Kgi : i = 1, 2, …..n} 

are finite subcover for G. Now G =  {G Kgi : i = 1, 2, …..n} or G = G  { { Kgi : i = 1, 2, …..n}}, this 

implies that G    { Kgi : i = 1, 2, …..n}, hence      G  K where K =  {Kgi : i = 1, 2, …..n} is Jβ-open set 

containing G, as K is the union of       Jβ-open sets. Again {Jhi :  i = 1, 2, 3,…..n} is collection of  Jβ-open sets 

containing h and hence   J =  {Jhi : i = 1, 2, …..n} is also a Jβ-open set containing h. Also J  K = , otherwise             

Jhi  Kgi   for some i. Hence for each closed set G and an element h in X – G we obtain two disjoimt Jβ-open 

sets J and K such that h j, G  K. Hence (X, ) is Jβ-regular. Also X  is Jβ-T2 so it is Jβ-T1 and hence X is  Jβ-

T3. 

 

                                                       4. Jβ-NORMAL SPACE 

 

 

Definition 4.1. A space X is termed as Jβ-normal (resp. α-normal [11], β-normal [10]) if for any pair of disjoint 

closed sets G and H, there exist disjoint Jβ-open (resp. α-open, β-open) sets J and K such that G  J and H  K. 
 

Theorem 4.2 Every normal space is Jβ–normal space. 

Proof. Since every open set is jβ-open set, so proof is obvious. 

 

Remark 4.3 By the definition stated above, the following implications holds for X  

              normal space   →    α-normal space    →     β-normal space    →     Jβ-normal space 
Where the converse of either of these implications is not be true, as can be seen from the following counter 

examples: 

 

Example.4.4 Let X = {g, h, i, j} and  = {, {g}, {h}, {g, h}, {g, h, i}, {g, h, j}, X}. Then the space (X, ) is β-

normal, but it is neither α-normal nor normal space as: 

C(X) = {, {i}, {j}, {i, j}, {g, i, j}, {h, i, j}, X} 

α-o(X) =  = {, {g}, {h}, {g, h}, {g, h, i}, {g, h, j}, X} 

β-o(X) = {, {g}, {h}, {g, i}, {g, h}, {g, j}, {h, i}, {h, j}, {g, h, i}, {g, h, j}, {h, i, j}, X} 
 Let G = {i} and H = {j} be disjoint closed sets in X, there do not exist disjoint open and α-open sets J and K such 

that G  J and H   K, but for β- normal, take J ={g, i} and K = {h, j} as J and K are Jβ-open set.  
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Example.4.5 Let X = {g, h, i} and  = {, {g}, {g, h}, {g, i}, X}. Then the space (X, ) is Jβ-normal, but it is 
neither β-normal nor α-normal as: 

C(X) = {, {h}, {i}, {h, i}, X} 

α-o(X) = β-o(X) =  = {, {g}, {g, h}, {g, i}, X}. 

Jβ-o(X) = {, {g}, {h}, {i}, {g, h}, {g, i},{h, i}, X} 

For disjoint closed set {h} and {i} there do not exist disjoint open, α-open and β-open sets J and K such that {h} 

J and {i}   K, but for Jβ- normal, take J ={h} and K = {i} as J and K are Jβ-open set.  

 

Example 4.6. Let X = {g, h, i} and  = {, {g}, {h}, {g, h}, {h, i}, X}. Then the space (X, ) is normal as well 
as Jβ-normal, since: 

C(X) = {, {g}, {i}, {g, i}, {h, i}, X} 

For disjoint closed set G = {g} and H = {i} (or {h, i}) there exist disjoint open sets J = {g} and K = {h, i} such 

that G  J and H   K. 

 

Theorem. 4.7 For a space X the following are equivalent:  

(1) X is Jβ-normal.  

(2) For every pair of open sets J and K as J ∪ K = X, there exist Jβ-closed sets G and H such that G  J, H  

K and G ∪ H = X,  

(3) For every closed set F and every open set L containing F, there exists a Jβ-open set J such that F  J  Jβ-

cl(J)  L.  

Proof: (1)  (2) Let J and K be a pair of open sets in a Jβ-normal space X such that X = J ∪ K. Then X – J and X 

− K are disjoint closed sets. Since X is Jβ-normal, there exist disjoint Jβ-open sets J1 and K1 such that X − J  J1 

and X − K  K1. Let G = X − J1, H = X − K1. Then G and H are Jβ-closed sets such that G  J, H  K and G ∪ H 

= X. 

 

(2)  (3) Let F be a closed set and L be an open set containing F. Then X − F and L are open sets whose union is 

X. Then by (2), there exist Jβ-closed sets A1 and A2 such that A1  X − F and A2  L and A1 ∪ A2 = X. Then F  

X − A1, X − L  X − A2 and (X − A1) ∩ (X – A2) = . Let J = X − A1 and K = X − A2. Then J and K are disjoint 

Jβ-open sets such that F  J  X − K  L. As X − K is Jβ-closed set, we have Jβ-cl(J)  X − K and F  J  Jβ-

cl(J)  L. 
  

(3)  (1) Let F1 and F2 be any two disjoint closed sets of X. Put L = X − F2, then F2 ∩ L = . F1  L, where L is 

an open set. Then by (3), there exists a Jβ-open set J of X such that F1  J  Jβ-cl(J)  L. It follows that F2  X − 

Jβ-cl(J) = K , say, then K is Jβ-open and J ∩ K = . Hence F1 and F2 are separated by Jβ-open sets J and K. 

Therefore X is Jβ-normal.  

 

Definition 4.8 A space X is said to be Jβ-T4 space if it is Jβ-normal as well as Jβ-T1 [5] space. 

 

Theorem 4.9 Every Jβ-T4 space is a Jβ-T3 space. 

Proof. Since X be Jβ-T4, X is both Jβ-T1 and Jβ-normal. So for X is Jβ-T3 it is sufficient to prove that X is Jβ-

regular. Let G be a closed subset of X and h is an element of X-G. Since X is Jβ-T1 so every singleton subset of X 

is a Jβ-closed, so {h} be a Jβ-closed subset of X. since X is Jβ-normal, then there exist two disjoint open sets J 

and K such that G  J and {h}  K i. e. h  K. hence X is Jβ-regular and X is T1 also. Hence X is Jβ-T3 space. 
 

Remark 4.10 by the definitions and theorems, we conclude that: 

     

Jβ-T4       ⇒      Jβ-T3          ⇒         Jβ-T2         ⇒         Jβ-T1       ⇒        Jβ-T0 

 

Remark 4.11 Neither Jβ-regular implies Jβ-normal space, nor Jβ-normal space implies Jβ-regular spaces: 
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Example 4.12 Let X= {g, h, i} and ℑ = {ϕ, {g}, {g, h}, X} then the space (X, ) is Jβ-normal from ex. 2.27, but 

not Jβ- regular as, for closed set {h, i}  and j ∉ {h, i} there do not exist disjoint Jβ-open sets J and K such that {h, 

i} ⊂ J ad j ∈ K. 
 

5. Some functions related with Jβ- regular and normal spaces 

Definition 5.1 A subset G of a space (X, ) is said to be  

(i) generalized Jβ-closed (briefly gJβ-closed) set if Jβ-cl(G)  A whenever G  A and A is open. 

(ii) Jβ-generalized closed (briefly Jβg-closed)  set if Jβ-cl(G)  A whenever G  A and A is Jβ-open. 

 

Definition 5.2 A function f : X   Y is said to be  

(i) Jβ-open [5] if the image of each open set of X is Jβ-open set in Y. 

(ii) Jβ closed [5] if the image of each closed set of X is Jβ-closed set in Y. 

(iii) generalized Jβ-closed (briefly gJβ-closed) if the image of  each closed set of  X is gJβ-closed in Y.   

(iv) Jβ generalized closed (briefly Jβg-closed) if for image of each closed set of X is Jβg-closed in Y. 

(v) quasi Jβ-closed if  the image of each Jβ-closed set of X is closed in Y.   

(vi) Jβ-gJβ-closed if the image of each Jβ-closed set of X is gJβ-closed in Y. 

(vii) Jβ-Jβg closed if the image of each Jβ-closed set of X is Jβg-closed in Y. 

 

Definition 5.3 Let X be a topological space. A subset N  X is called a Jβ-neighbourhood [5] (briefly Jβ-nhd) 

of a point h  X if there exist a Jβ-open set J such that h  J  N. 

 

Definition 5.4 A function f : X  Y is said to be Jβ-gJβ-continuous if the inverse image of a Jβ-closed set of Y 
is gJβ-closed set in X.  

.  

Definition 5.5 A function f : X  Y is said to be Jβ-irresolute [5]  if the inverse image of a Jβ-open set of Y is 

Jβ-open set in X.  

 

Definition 5.6 A function f : X  Y is called  
(i) pre Jβ-open if f(J)  Jβ-o(Y) for each J  Jβ-o(X),  

(ii) pre Jβ-closed if f(J)  Jβ-cY) for each J  Jβ-c(X),  

(iii) almost Jβ-irresolute if for each h in X and each Jβ-neighbourhood K of f(h), Jβ-cl(f −1(K)) is a Jβ-

neighbourhood of h.  

  

Remark 5.7 Every closed function is Jβ-closed but not conversely. Also, every Jβ-closed function is gJβ-closed 

because every Jβ-cosed set is gJβ-closed. Also it is obvious that Jβ-closed function and Jβ-gJβ-closed function 

imply gJβ –closed function. 

 

Theorem 5.8 A surjective function f : X  Y is gJβ-closed (resp. Jβ-gJβ-closed ) if and only if for each subset F 

of Y and each open (resp. Jβ-open ) set J of  X containing f 
–1(F) , there exists a  gJβ-open set K of Y such that F 

 K and  f 
–1(K)  J. 

Proof. let f is gJβ-closed (resp. Jβ-gJβ-closed). Let F be any subset of Y and J be open (resp Jβ-open) set of X 

containing f 
–1(F). Put K = Y  f(X  J). Then the complement Kc of K is given as  Kc = Y  K = f(X  J). Since X 

 J is closed (resp. Jβ-closed) in X and f is gJβ-closed (resp. Jβ- gJβ-closed), f(X  J) = Kc is gJβ-closed. 

Therefore, K is gJβ-open in Y. It is easy to see that F  K and f 
–1(K)  J. 

Conversely, let G be a closed (resp. gJβ-closed) set of X. Put F = Y  f(G),  then we have f 
–1(F)  X G and X 

G is open (resp. Jβ-open) in X. Then by assumption, there exists a gJβ -open set K of Y such that F = Y  f(G)  

K and f 
–1(K)  X   G. Now f 

–1(K)  X  G implies K  Y  f (G) =F. Also F  K and so F =K. Therefore, we 

obtain f(G) = Y  K and hence f (G) is gJβ-closed in Y. This shows that f is gJβ-closed (resp Jβ-gJβ-closed) 

function.     
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Remark 5.9 We can prove the necessity part of the above theorem by replacing each set to closed set in the form 

of the proposition given below: 

 

Proposition 5.10 If a surjective function f : X  Y  is gJβ-closed (resp. Jβ-gJβ-closed) then for a closed set G of 
Y and for any open (resp. Jβ-open)  set  J of X containing f 

–1(G), there exists a       Jβ-open set K of Y such that G 

 K and f 
–1(K)  J. 

Proof. By previous theorem, there exists a gJβ-open set L of Y such that G  L and f 
–1(L)  G. Since G is 

closed, then we have G  Jβ-int (L). Put K = Jβ-int(L). Then K  Jβ-o(Y), G  K and f 
–1(K)  J.  

 

Proposition 5.11 If f : X  Y is continuous and Jβ-gJβ-closed function and G is gJβ-closed set in X, then f(G) is 
gJβ-closed in Y. 

Proof. Let K be an open set of Y containing f(G), then G  f 
–1(K). As f is continuous f 

–1(K) is open in X. Since 

G is gJβ-closed in X, by a definition, we get Jβ-c1(G)  f 
–1(K) and hence f(Jβ-c1(G))  K. Since f is Jβ-gJβ-

closed function and Jβ-c1(G) is Jβ-closed set in X,  f(Jβ-c1(G)) is gJβ-closed in Y and hence we get Jβ-c1(f(Jβ-

c1(G)))  K. By definition of  the  Jβ-closure of a set, G  Jβ-c1(G) which implies f(G)  f(Jβ-c1(G)) and we 

know that, Jβ-c1(f(G))  Jβ-c1(f(Jβ-c1(G)))  J. Hence Jβ-c1(f(G))  J. That is f (G) is gJβ-closed in Y . 

Proposition 5.12 If f : X  Y is an open Jβ-irresolute bijection and G is gJβ-closed set in Y, then f 
–1(G) is gJβ-

closed in X . 

Proof. Let J be an open set of  X containing f 
–1(G). Then G  f(J) and f(J) is open in Y. Since G is gJβ-closed in 

Y, Jβ-c1(G)  f(J) and hence we have f 
–1(Jβ-c1(G))  J. Since f is Jβ-irresolute, f 

–1(Jβ-c1(G)) is Jβ-closed in X, 

we have Jβ-c1(f 
–1(G))  f 

–1(Jβ-c1(G)  J. hence prove that        f 
–1(G) is gJβ-closed in X. 

 

Theorem 5.13 Let f : X   Y and g : Y   Z be the two functions, then 

(i) If gof : X  Z is gJβ-closed and if f : X  Y is a continuous surjection, then g : Y  Z is gJβ-closed. 

(ii) If  f : X  Y is gJβ-closed with  g : Y   Z is continuous and Jβ-gJβ-closed, then gof : X  Z is gJβ-

closed. 

(iii) If f : X  Y is closed and g :  Y  Z is gJβ-closed, then gof : X  Z is gJβ-closed.  

Proof. (i) Let G be a closed set of Y. Then f 
–1(G) is closed in X since f is continuous. By hypothesis gof(f 

–1(G)) 

is gJβ-closed in Z. Hence G is gJβ-closed. 

(ii) Proof comes from Proposition 5.11 

(iii)The proof is obvious from definitions.  

 

Theorem 5.14 The following properties are equivalent for a space X : 

(a) X is Jβ-regular. 

(b) For each closed set G and each point h from complement of G, there exists a Jβ-open set J and a gJβ-open 

set K such that h  J and G K and J  K = . 

(c) For each B  X and each closed set G such that B  G = , there exist a Jβ-open set J and a gJβ-open set 

K such that B  J  , G  K and J  K = . 

(d) For each closed set H of X, H =  {Jβ-c1(K) : H  K and K is gJβ-open. 

Proof.   (a)  (b). The proof is obvious since every Jβ-open set is gJβ-open. 

 

(b)  (c). Let B  X and let G be a closed set in X such that B  G = . For a point h  B then h is contained in 

X  G and hence there exists J  Jβ-o(X) and a gJβ-open set K such that h  J and G  K and J  K = . Also h 

 B and h  J implies h  B  J. So B  J  . 
 

(c)  (a). Let G be a closed set in X and let h  X  G. Then, {h}  G =  and there exist J  Jβ-o(X) and a gJβ-

open set L such that h  J, G  L and J  L = . Put K =  Jβ-int(L), then by the definition of gJβ-open set, we 

have G  K, K is Jβ-open set and J  K = . Therefore X is Jβ-regular.  

 

(a)  (d). For a closed set F of X, by Theorem 3.7, we obtain  

G    {Jβ-c1(K) : G  K and K is gJβ-open}    {Jβ-c1(K) : G  K and K is Jβ-open} =G Therefore,   G =   

{ Jβ-c1(K) : G  K and K is gJβ-open}. 
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(d)  (a). Let G be a closed set of X and h  X  G. by (d), there exists a gJβ-open set L of X such that G  L 

and h  X  Jβ-c1(L). Since G is closed, G  Jβ-int(L) by  the definition of gJβ-open set. Put K = Jβ-int(L), then 

G  K and K  Jβ-o(X). Since h  X  Jβ-c1(L),  h  X  Jβ-c1(K). Put J = X  Jβ-c1(K) then, h  J and J is Jβ-

open and J  K = . This shows that X is Jβ- 

regular. 

 

Theorem 5.15 If f : X  Y is a continuous Jβ-open gJβ-closed surjection and X is regular, then Y is Jβ-regular. 

Proof. Let k  Y and let K be an open set of Y and k ∈ K. Let h be a point of X such that k = f(h). By the 

regularity of X, there exists an open set J of X such that h  J  c1(J)  f 
–1(K). We have k  f(J)  f(cl(J))  K. 

Since f is Jβ-open and gJβ-closed, f(J) is Jβ-open and f(c1(J)) is gJβ-closed in Y. So, we obtain, k  f(J)  Jβ-

c1(f(J))  Jβ-cl(f(c1(J)))  K. Now by the Theorem 5.14, Y is Jβ-regular. 
 

Theorem 5.16 If f : X  Y is a continuous pre Jβ-open, Jβ-gJβ-closed surjection and X is Jβ-regular, then Y is 

Jβ-regular.  

Proof. Let G ∈ c(Y) and h  Y  G. Then f 
–1(h)  f 

–1(G) =  and f 
–1(G) is closed in X. Since X is Jβ-regular, for 

a point g  f 
–1(h), there exist J, K be two open set in X such that g  J, f 

–1(G)  K and J  K = . Since G is 

closed in Y, by Proposition 5.10, there exist a Jβ-open set L such that G  L and f 
–1(L)  K. Since f pre Jβ-open, 

we have h = f (g)  f(J) and f(J)  Jβ-o(Y). Since J  K = , f 
–1(L)  J =  and hence L  f(J)  = . Hence Y is 

Jβ-regular. 

 

Theorem 5.17 A function f : X  Y is pre Jβ-closed if and only if for each subset F in Y and for each Jβ-open set 

J in X containing f −1(F), there exists a Jβ-open set K containing F such that f −1(K)  J. 

Proof. Assume that f is pre Jβ-closed. Let F be a subset of Y and J  Jβ-o(X) containing f −1(F).  Now take K = Y 

− f(X − J), then K is a Jβ-open set of Y such that F  K and f −1(K)  J. 

Converse: suppose that G be any Jβ-closed set of X. Then f −1(Y − f(G)) ⊂ X − G and X – G is Jβ-open set in X. 

There exists a Jβ-open set K of Y such that Y − f(G)  K and f −1(K)  X − G. Therefore, we have f(G)  Y − K 

and G  f −1(Y − K ). Hence, we get f(G) = Y − K and f(G) is Jβ-closed in Y . This proves that f is pre Jβ-closed.  

 

Lemma 5.18 Let f : X  Y define a function from X to Y , then following are equivalent:  

(1) f is almost Jβ-irresolute,  

(2) f −1(K)  Jβ-int(Jβ-cl(f −1 (K))) for every K  Jβ-o(Y).  

 

Theorem5.19 A function f : X  Y is almost Jβ-irresolute if and only if f(Jβ-cl(J))  Jβ-cl(f(J)) for every Jβ-
open set J in X.  

Proof. Assume that J be a Jβ open set in X. Suppose k  Jβ-cl(f(J)). Then there exists a Jβ-open set K in Y such 

that K ∩ f(J) = . Hence, f −1(K) ∩ J = . Since J be Jβ-o(X), we have Jβ-int(Jβ-cl(f −1(K))) ∩ Jβ-cl(J) = . Then 

by Lemma 5.18, f −1 (K) ∩ Jβ-cl(J) =  and hence K ∩ f(Jβ-cl(J)) = . This implies that k  f(Jβ-cl(J)).  

Converse: If K be a Jβ-open set in Y, then A = X − Jβ-cl(f −1(K))  Jβ-o(X). By hypothesis, f(Jβ-cl(A)) ⊂ Jβ-

cl(f(A)) and hence X − Jβ-int(Jβ-cl(f −1(A))) = Jβ-cl(A)  f −1(Jβ-cl(f(A)))  f −1(Jβ-cl(f(X − f −1(K))))  f −1(Jβ-

cl(Y − K)) = f −1 (Y − K) = X − f −1(K). Hence, f −1(K)  Jβ-int(Jβ-cl(f −1(K))). By Lemma 5.18, f is almost Jβ-
irresolute.  

 

Theorem5.20 If f : X  Y is a pre Jβ-open continuous almost Jβ-irresolute function from a Jβ-normal space X 

onto a space Y , then Y is Jβ-normal.  

Proof: Let G be a closed subset of Y and J be an open set containing G. Then by continuity of f, f −1(G) is closed 

and f −1(J) is an open set of X such that f −1(G)  f −1(J). As X is Jβ-normal, there exists a Jβ-open set K in X such 

that f −1(G)  K  Jβ-cl(K)  f −1(J) by using Theorem 4.7 Then, f(f −1(G))  f(K)  f(Jβ-cl(K))  f(f −1(J)). 

Since f is pre Jβ-open almost Jβ-irresolute surjection, we obtain G  f(K)  Jβ-cl(f(K))  J. Then again by 
Theorem 4.7 the space Y is Jβ-normal.  
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Theorem 5.21 If f : X  Y is a pre Jβ-closed continuous function from a Jβ-normal space X onto a space Y , 
then Y is Jβ-normal.  

Proof: Let G1 and G2 be disjoint closed sets in Y. Then f −1(G1) and f −1(G2) are closed sets in X. Since X is Jβ-

normal, then there exist two disjoint Jβ-open sets J and K such that f −1(G1)  J and f −1(G2)  K. By Theorem 

5.17, there exist Jβ-open sets L and M such that G1  L, G2  M, f −1(L)  J and f −1(M)  K. Also, L and M are 
disjoint. Hence, Y is Jβ-normal. 

 

Theorem 5.22 Let f : X  Y and g : Y  Z be functions. Then  

(i) if f is Jβ-gJβ-closed and g is continuous Jβ-gJβ-closed then the composition gof : X  Z is Jβ-gJβ-closed.  

(ii) if f is pre Jβ-closed and g is Jβ-gJβ-closed then the composition gof : X  Z is Jβ-gJβ-closed.  

(iii) if f is quasi Jβ-closed and g is gJβ-closed then the composition gof : X  Z is Jβ-gJβ-closed. 

 

Theorem 5.23 Let f : X  Y and g : Y  Z be functions and let the composition gof : X  Z be Jβ-gJβ-closed. 
If f is a Jβ-irresolute surjection, then g is Jβ-gJβ-closed.  

Proof: Let H  Jβ-c(Y). Since f is Jβ-irresolute and surjective, f −1(H)  Jβ-c(X) and (gof)(f −1(H)) = g(H). 

Hence, g(H) is gJβ-closed in Z and hence g is Jβ-gJβ-closed.  

 

Remark 5.24 Every Jβ-irresolute function is Jβ-gJβ-continuous but not conversely.  

 

Theorem 5.25 A function f : X  Y is Jβ-gJβ-continuous if and only if f −1(K) is gJβ-open in X for every K  
Jβ-o(Y).  

 

Theorem 5.26 If f : X  Y is closed Jβ-gJβ-continuous, then f −1(H) is gJβ-closed in X for each gJβ-closed set H 

of Y .  

Proof: Let H be a gJβ-closed set of Y and J be an open set of X containing f −1(H). Put K = Y − f(X−J), then K is 

open in Y , H  K , and f −1(K)  J. Therefore, we have Jβ-cl(H)  K and hence f −1(H)  f −1(Jβ-cl(H))  f −1(K ) 

 J. Also, f is Jβ-gJβ-continuous, f −1(Jβ-cl(H)) is gJβ-closed in X and hence Jβ-cl(f −1(H))  Jβ-cl(f −1(Jβ-cl(H))) 

 J. This proves that f −1(H) is gJβ-closed in X.  

 

Theorem 5.27 If f : X  Y is an open Jβ-gJβ-continuous bijection, then f −1(H) is gJβ-closed in X for every gJβ-

closed set H of Y .  

Proof: Let H be a gJβ-closed set of Y and J be an open set of X containing f −1(H). Since f is an open surjective, 

H = f(f −1 (H))  f(J) and f(J) is open. Therefore, Jβ-cl(H)  f(J). Since f is injective, f −1(H)  f −1(Jβ-cl(H))  f 
−1(f(J)) = J. Since f is Jβ-gJβ-continuous, f −1(Jβ-cl(H)) is gJβ-closed in X and hence Jβ-cl(f −1(H))  Jβ-cl(f −1(Jβ-

cl(H)))  J. Hence f −1(H) is gJβ-closed in X.  

 

Theorem 5.28 Let f : X  Y be a function from X to Y and g : Y  Z be an open Jβ-gJβ continuous bijection 

from Y to Z and let the composition gof : X  Z be Jβ-gJβ-closed then f is Jβ-gJβ-closed.  
Proof: Let H be a Jβ-closed set of X. Then (gof)(H) is gJβ-closed in Z and g −1((gof)(H)) = f(H). By Theorem 

5.27, f(H) is gJβ-closed in Y and hence f is Jβ-gJβ-closed.  

 

Theorem 5.29. Let f : X  Y be a function from X to Y and g : Y  Z is a closed Jβ-gJβ-continuous injection 

from Y to Z and let the composition gof : X  Z be Jβ-gJβ-closed then f is Jβ-gJβ-closed.  
Proof: Let H be a closed set in X. Then (gof)(H) is gJβ-closed in Z and g −1((gof)(H)) = f(H). By Theorem 5.26, 

f(H) is gJβ-closed in Y and hence f is Jβ-gJβ-closed.  

 

6. Preservation theorems and other characterizations of Jβ-normal spaces 
 

Theorem 6.1 For a topological space X, the following are equivalent:  

(a) X is Jβ-normal,  

(b) for any pair of disjoint closed sets G and H of X, there exist disjoint gJβ-open sets J and K of X such that 

G  J and H  K ,  
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(c) for each closed set G and each open set K containing G, there exists a gJβ-open set J such that cl(G)  J  

Jβ-cl(J)  K,  

(d) for each closed set G and each g-open set L containing G, there exists a Jβ-open set M such that G  M  

Jβ-cl(M)  int(L),  

(e) for each closed set G and each g-open set L containing G, there exists a gJβ-open set J such that G  J  

Jβ-cl(J)  int(L),  

(f) for each g-closed set H and each open set N containing H, there exists a Jβ-open set M such that cl(H)  

M  Jβ-cl(M)  N,  

(g) for each g-closed set H and each open set N containing H, there exists a gJβ-open set J such that cl(H)  J 

 Jβ-cl(J)  N.  

Proof: (a)  (b)  (c) : Since every Jβ-open set is gJβ-open, then proof is obvious.  
 

(d)  (e)  (c) and (f)  (g)  (c) : Since every closed (resp. open) set is g-closed (resp. g-open), then proof is 

obvious.  

 

(c)  (e) : Let G be a closed subset of  X and L be a g-open set such that G  L. Since L is g-open and G is 

closed, G  int(L). Then, there exists a gJβ-open set J such that G  J  jβ-cl(J)  int(L).  

 

(e)  (d) : Let G be any closed subset of X and L be a g-open set containing G. Then there exists a gJβ-open set J 

such that G ⊂ J ⊂ Jβ-cl(J) ⊂ int(L). Since J is gJβ-open, G ⊂ Jβ-int(J). Put M = Jβ-int(J), then M is Jβ-open and 

G ⊂ M ⊂ Jβ-cl(M) ⊂ int(L).  

 

(c)  (g) : Let H be any g-closed subset of X and N be an open set such that H  N. Then cl(H)  N. Therefore, 

there exists a gJβ-open set J such that cl(H)  J  Jβ-cl(J)  N.  

 

(g)  (f) : Let H be any g-closed subset of X and N be an open set containing H. Then there exists a gJβ-open set 

J such that cl(H)  J  Jβ-cl(J)  N. Since J is gJβ-open and cl(H)  J, we have cl(H)  Jβ-int(J), take M = Jβ-

int(J), then M is Jβ-open and cl(H)  M  Jβ-cl(M)  N.  

 

Theorem 6.2 If f : X  Y is a continuous quasi Jβ-closed surjection and X is Jβ-normal, then Y is normal.  

Proof: Let G1 and G2 be any disjoint closed sets of Y. Since f is continuous surjection, f −1(G1) and f −1(G2) are 

disjoint closed sets of X. Since X is Jβ-normal, there exist disjoint Jβ-open sets J1, J2 such that f −1(G1)  J1 and f 
−1(G2)  J2. Put K1 = Y − f(X – G1) and K2 = Y − f(X – G2), then K1 and K2 are open in Y, Gi  Ki and f −1(Ki)  

Gi for i = 1, 2. Since J1 ∩ J2 =  and f  is surjective; we have K1 ∩ K2 = . This shows that Y is normal.  

 

Lemma 6.3 A subset J of a space X is gJβ-open if and only if G  Jβ-int(J) whenever G is closed and G  J.  

 

Theorem 6.4 Let f : X  Y be a closed Jβ-gJβ-continuous injection. If Y is Jβ-normal, then X is Jβ-normal.  
Proof: Let G1 and G2 be disjoint closed sets of X, Since f is a closed injection, f(G1) and f(G2) are disjoint closed 

sets of Y . By the Jβ-normality of Y , there exist two disjoint  Jβ-open sets K1and K2  in Y such that f(G1)  K1 

and f(G2)  K2. Since f is Jβ-gJβ-continuous, f −1(K1) and f −1(K2) are disjoint gJβ-open sets of X and Gi  f −1(Ki) 

for i = 1, 2. Now, put Ji = Jβ-int(f −1(Ki)) for i = 1, 2. Then, Ji  Jβ-o(X), Gi  Ji and J1 ∩ J2 = . This shows that 

X is Jβ-normal.  

 

Corollary 6.5 If f : X  Y is a closed Jβ-irresolute injection and Y is Jβ-normal, then X is Jβ-normal.  
Proof: Since every Jβ-irresolute function is Jβ-gJβ-continuous the proof is same as previous theorem.  

 

Lemma 6.6 A function f : X → Y is almost gJβ-closed if and only if for each subset A of Y and each regular 

open set J of X containing f −1(A), there exists a gJβ-open set K of Y such that A  K and f −1(K)  J.  

 

Lemma6.7 If f : X  Y is almost gJβ-closed, then for each closed set H of Y and each regular open set J in X 

containing f −1(H), there exists a open set K in Y such that H  K and f −1(K)  J.  
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Theorem 6.8 Let f : X  Y be a continuous almost gJβ-closed surjection. If X is normal, then Y is Jβ-normal.  
Proof: Let H1 and H2 be any disjoint closed sets of Y. Since f is continuous, f −1(H1) and f −1(H2) are disjoint 

closed sets of X. By the normality of X, there exist disjoint open sets J1 and J2 such that f −1(Hi)  Ji , where i = 1, 

2. Now, put Li = int(cl(Ji)) for i = 1, 2, then Li  are regular open sets in X, f −1(Hi)  Ji  Li and L1 ∩ L2 = . By 

Lemma 6.7, there exists  two Jβ-open sets K1 and K2 such that Hi  Ki and f −1(Ki)  Li , where i = 1, 2. Since L1 

∩ L2 =  and f is surjective, we have K1 ∩ K2 = . This shows that Y is Jβ-normal.  

 

Corollary 6.9 If f : X  Y is a continuous Jβ-closed surjection and X is normal, then Y is Jβ-normal.  

Conclusion 
This paper is devoted to introduce some new weaker version of normality and regularity namely Jβ-regular and 

Jβ-normal spaces in topological spaces by using Jβ-open sets. Moreover, we investigated the relationship between 

these new spaces and some other topological spaces, also some example & counter example are given to verify 

these relationships and its converse. Also we defined some function related to  Jβ-regular and Jβ-normal spaces. 

Besides it, we discussed some topological properties of Jβ-regular and Jβ-normal spaces. Of course, the entire 

content will be a successful tool for the researchers for finding the way to obtain the results in the context of such 

types of regular and normal spaces. 
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