JETIR.ORG ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

Jβ-REGULAR AND Jβ-NORMAL SPACES IN TOPOLOGICAL SPACES

ANUJ KUMAR and B. S. SHARMA

Department of Mathematics NREC College Khurja-Bulandshahr CCSU MEERUT

Abstract:- The aim of this paper is to introduce and study of some new class of spaces namely J β -regular and J β -normal spaces in topological spaces by using J β -open sets. Moreover, we investigated the relationship among J β -T₀, J β -T₁, J β -T₂, J β -T₃, J β -T₄ separation axioms and J β -regular, α -regular, β -regular, α -normal, β -normal and J β -normal spaces, also some example & counter example are given to verify these relationships and its converse. Also we defined some function related to J β -regular and J β -normal spaces namely J β -open, J β -closed, gJ β -closed, J β -gJ β closed, quasi J β -closed, and J β -gJ β -continuous function. Besides it, we obtain some basic characterizations, properties and preservation theorems of J β -regular and J β -normal spaces.

Keyword:- J β -open set, J β -closed set, J β -regular spaces, J β -normal spaces, J β -T₃, J β -T₄ axioms, J β -irresolute, J β -neighborhood, gJ β -closed, J β g-closed, J β -gJ β -closed, quasi J β -closed, and J β -gJ β -continuous function etc.

2020 AMS Subject classification: 54A05, 54C08, 54C10, 54D15.

1. INTRODU<mark>CTI</mark>ON

In 1937, M. Stone [14] introduced the notation of regular open sets. In 1965, O. Njasted [12] introduced and defined α -open sets. In 1970, N. Levine [7] generalized the concept of closed sets to generalized closed set. In 1983, Abd-El-Monsef et al. [2] initiated the concept of β -open sets. Abd-El-Monsef et al. [3] defined the concept of β -regular space in 1985. In 1990, R. A. Mohmoud and M. E. Abd-El-Monsef [10] defined β normal space. R. Devi et al. [4] defined α -regular spaces in 1998. In 2000, G. B. Navalagi [11] defined α -normal spaces.In 2016, S. P. Missier and M. Annalakshmi [13] introduced the notation of regular star open sets. In 2019, P. L. Meenakshi [8] initiated the notation of η^* -open sets. In 2019, Amir A. Mohammed and S. Beyda Abdullah [1] introduced the notation of ii-open sets. In 2019, P. L. Meenakshi and K. Sivakamasundari [9] intoduced the concept of J-open sets. In 2022, Hamant Kumar [6] initiated the concept of J β -open sets. Recently in 2022, Anuj kumar and B. S. Sharma [5] introduced a new class of separation axioms namely J β -T₀, J β -T₁ and J β -T₂ separation axioms.

2. PRELIMINARIES

Throughout this paper, spaces (X, \mathfrak{I}), (Y, σ), and (Z, γ) (or simply X, Y and Z) always mean topological spaces. Let f: X \rightarrow Y (or simply f) always denote map. Let G be a subset of a space X. The closure of G, interior of G and complement of G are denoted by cl(G), int(G) and G^C (or X-G) respectively.

Definition 2.1 A subset G of a topological space (X, \mathfrak{I}) is said to be

- (i) regular open [14] if G = int(cl(G)).
- (ii) **\alpha-open [12]** if $G \subset int(cl(int(G)))$.
- (iii) β -open [2] if $G \subset cl(int(cl(G)))$.
- (iv) ii-open [1] if there exist an open set A such that

- a). $A \neq \emptyset, X$ b). $G \subset cl(G \cap A)$ c). intG = A.
- (v) **generalized closed** (briefly **g-closed**) **[7]** if $cl(G) \subset A$ whenever $G \subset A$ and $A \in \mathfrak{I}$.

The complement of a regular open (resp. α -open, β -open, ii-open and g-closed) set is called **regular-closed** (resp. α -closed, **ii-closed** and **g-open**). The intersection of all regular closed (resp. α -closed, β -closed, ii-closed and g-closed) sets containing G, is called **regular-closure** (resp. α -closure, β -closure, **ii-closure** and **generalized-closure**) of G, and is denoted by **r-cl**(G) (resp. α -cl(B), β -clG), **ii-cl**(G) and **cl**^{*}(G)). The set of all regular open (resp. α -open, β -open, ii-open and g-open) in X is denoted by **r-o(X)** (resp. α -o(X), β -o(X), **ii-o(X)**, and **g-o(X)**). The set of all regular closed (resp. α -closed, β -closed, ii-closed and g-closed) in X is denoted by **r-cl(X)** (resp. α -closed) in X is denoted by **r-cl(X)**. (resp. α -closed) in X is denoted by **r-cl(X)**, ii-o(X), and **g-o(X)**. A subset G of a topological space (X, \Im) is said to be **clopen** if it is both open and closed in (X, \Im).

Definition 2.2 A subset G of a topological space (X, \mathfrak{I}) is said to be

- (i) **regular*-open** (or **r*-open**) [13] if $G = int(cl^*(G))$.
- (ii) **η*-open [8]** if it is a union of regular*-open sets (r*-open sets).
- (iii)**J-closed [9]** if $cl(G) \subset A$ whenever $G \subset A$ and A is η^* -open in (X, \mathfrak{I}) .
- (iv) **J** β -closed [6] if β -cl(G) \subset A whenever G \subset A and A is η^* -open in (X, \mathfrak{I}).

The complement of a regular*-open (resp. η^* -open, J-closed and J β -closed) set is called **regular*-closed** (resp. η^* -closed, J-open and J β -open). The union of all regular*-open (resp. η^* -open, J-open and J β -open) sets of X contained in G is called **regular*-interior** (resp. η^* - **interior**, J- **interior** and J β - **interior**) of G and is denoted by **r*-int**(G) (resp. η^* -**int**(G), J- **int**(G) and J β - **int**(G)). The intersection of all regular*-closed (resp. η^* -closed, J-closed and J β -closed) sets of X containing G is called **regular*-closure** (resp. η^* - **closure**, J-closed and J β - closed) sets of X containing G is called **regular*-closure** (resp. η^* - **closure**, J-closed (resp. η^* -cl(G) (resp. η^* -cl(G), J- cl(G) and J β - cl(G)). The set of all r*-closed (resp. r*-open, η^* -closed, J-closed, J β -closed, J β -closed, η^* -open, J-open and J β -open) set in X is denoted by r*c(X) (resp. r*o(X), η^* - c(X), J β - c(X), η^* -o(X), J- o(X) and J β - o(X)).

- **2.3 Lemma**. Let G be a subset of a space X and $g \in X$. The following properties hold for $J\beta$ -cl(G) :
 - (i) $g \in J\beta$ -c1(G) if and only if $G \cap M = \emptyset$ for every $M \in J\beta$ -o(X) containing g.
 - (ii) G is J β -closed if and only if G = J β -cl(G). (iii)J β -cl(G) \subset J β -cl(H) if G \subset H.
 - $(in)J\beta$ -c1(G) \subset J\beta-c1(H) II G \subset H. $(iv)J\beta$ -c1(J\beta-c1(G)) = j\beta-c1(G).
 - (1V) Jp-c1(Jp-c1(G)) = Jp-c1(G)
 - (v) $J\beta$ -c1(G) is $J\beta$ -closed.

Proposition 2.4 Every regular open set is r*-open set.

Proof. Let G be a regular open set then G=int(cl(G)). Since every regular open set is clopen so G is closed, also every closed set is generalized closed set. Hence G is g-closed. So we get $cl(G)=cl^*(G)$. By the property of regularity we get, $G=int(cl^*(G))$. Hence G is r*-open set.

Proposition 2.5 Every r*-open set is η *-open set.

Proof. By definition, since every η^* -open set is union of r*-open sets, it is obvious that every r*-open set is η^* -open set.

Proposition 2.6 Every η^* -open set is open set.

Proof. Let G be η^* -open set. Let $p \in G$ then $p \in \cup C_i$ where C_i are r^* -open set. Now every r^* -open set viz. C is open as $(C=int(cl^*(C)) \Rightarrow intC = int(int(cl^*(C))) = int(cl^*(C))=C)$. Hence $p \in D$ where D is open set. Hence every η^* -open set is open set.

Proposition 2.7 Every open set is α -open set.

Proof. Let G is open set then G = int(G). Also $G \subset cl(G) \Rightarrow int(G) \subset int(cl(G)) \Rightarrow$ $int(cl(int(G))) \Rightarrow G \subset int(cl(int(G)))$. Hence G is α -open set. $G \subset int(cl(G)) \Rightarrow$

Proposition 2.8 Every α -open set is ii-open set.

Proof. Let G is α -open set, then if $G \subset int(cl(int(G))) \subset cl(int(G))$. So, there exist an open set, say, $A \neq \emptyset, X$ satisfying $int(G) \subset A$, it follows that $int(G) \subset A \cap G$. Therefore $G \subset cl(G \cap A)$. Now we shall prove that int(G) = A. Note that if $int(G) \neq A$, for all $A \in o(X)$, then $cl(int(G)) \neq cl(A)$. From above inclusions we conclude that $G \subset cl(int(G) \cap G \cap A)$. This implies that $G \not\subset cl(A)$. That is a contradiction. Therefore, G is *ii* – open set.

Proposition 2.9 Every ii-open set is β -open set.

Proof. Let G is ii-open set, then there exist $A \in o(X)$ such that $A \neq \emptyset, X$ and $G \subset cl(G \cap A)$ and int(G) = A. Since $G \subset cl(G \cap A) \subset cl(A)$, also $G \subset cl(G) \Rightarrow int(G) \subset int(cl(G)) \Rightarrow A \subset int(cl(G)) \Rightarrow cl(A) \subset cl(int(cl(G)))$. But above we find $G \subset cl(A)$, so $G \subset cl(int(cl(G)))$. Hence G is β -open set.

Proposition 2.10 Every β -open set is J β -open set.

Proof. Let A is β -open set then X-A=G (say is) β -closed set $\Rightarrow \beta$ -cl(G)=G. Now by definition G is J β -closed set. Hence A is J β -open set.

Proposition 2.11 Every open set is g-open set.

Proof. Let A is open set then X-A=G(say) is closed set \Rightarrow Cl(G)=G. Hence by the definition of g-closed set G is G-closed set. Hence A is g-open set.

Proposition 2.12 Every g-open set is J-open set.

Proof. Let A is g-open set then X-A=G(say) is g-closed set then $cl(G) \subset H$ whenever $G \subset H$ and H be any open set in X. Since every η^* -open set is open, then $cl(G) \subset H$ whenever $G \subset H$ and H be η^* -open set in X, which implies that G is J-closed. Hence A is J-open set.

Proposition 2.13 Every J-open set is $J\beta$ -open set.

Proof. Let A is J-open set then X-A=G(say) is J-closed set then $cl(G) \subset H$ whenever $G \subset H$ and H be any η^* -open set in X. since β -cl(G) \subset cl(G) then β -cl(G) \subset H whenever $G \subset H$ and H be η^* -open set in X, which implies that G is J β -closed. Hence A is J β -open set.

Remark 2.14 From the above definitions, theorems and results, the relationship among J β -open sets and some other existing weaker and stronger forms of open sets are given in the following diagram:

Where none of the implications is reversible as can be seen from the following counter examples: Here A \leftarrow B stand for neither A imply B nor B imply A.

Example 2.15 Let $X = \{g, h, i\}$ and $\mathfrak{I} = \{\phi, \{g\}, X\}$ then: r-o(X) = $\{\phi, X\}$ r*-o(X) = η *-o(X) = $\{\phi, \{g\}, X\}$ α -o(X) = ii-o(X) = β -o(X) = $\{\phi, \{g\}, \{g, h\}, \{g, i\}, X\}$ g-o(X) = J-o(X) = J β -o(X) = { ϕ , {g}, {h}, {i},{g, h}, {g, i}, X} it is clear that {g} is r*-open set but not regular open set, {g, h} is α -open set but not open set and {h} is g-open set but not α -open, ii-open, β -open and open set. {i} is J β -open set but not β -open set.

Example 2.16 Let $X = \{g, h, i\}$ and $\mathfrak{I} = \{\phi, \{g, h\}, X\}$ then: $r \cdot o(X) = r^* \cdot o(X) = \eta^* \cdot o(X) = \{\phi, X\}$ $\alpha \cdot o(X) = ii \cdot o(X) = \{\phi, \{g, h\}, X\}$ $\beta \cdot o(X) = \{\phi, \{g\}, \{h\}, \{g, h\}, \{g, i\}, \{h, i\}, X\}$ $g \cdot o(X) = \{\phi, \{g\}, \{h\}, \{g, h\}, \{g, i\}, \{h, i\}, X\}$ $g \cdot o(X) = J\beta \cdot o(X) = \{\phi, \{g\}, \{h\}, \{i\}, \{g, h\}, \{g, i\}, \{h, i\}, X\}$ $J \cdot o(X) = J\beta \cdot o(X) = \{\phi, \{g\}, \{h\}, \{i\}, \{g, h\}, \{g, i\}, \{h, i\}, X\}$ $\{h\}$ is β -open set but not α -open and ii-open set, also $\{g, i\}$ is β -open set but not g-open set and $\{i\}$ is J β -open and J-open set.

Example 2.17 Let $X = \{g, h, i\}$ and $\Im = \{\phi, \{g\}, \{g, h\}, X\}$ then:

 $\begin{aligned} r \text{-o}(X) &= \{\phi, X\} \\ r^*\text{-o}(X) &= \eta^*\text{-o}(X) = \{\phi, \{g\}, X\} \\ \alpha \text{-o}(X) &= \text{ii-o}(X) = \beta \text{-o}(X) = \{\phi, \{g\}, \{g, h\}, \{g, i\}, X\} \\ g \text{-o}(X) &= \{\phi, \{g\}, \{h\}, \{g, h\}, X\} \end{aligned}$

 $J-o(X) = J\beta-o(X) = \{\phi, \{g\}, \{h\}, \{i\}, \{g, h\}, \{g, i\}, X\}$

Here $\{g, h\}$ is open set but not η^* -open set. $\{g, i\}$ is α -open, β -open and ii-open set but not g-open, and $\{h\}$ is g-open set but not α -open, β -open and ii-open set. Also $\{i\}$ is J-open and J β -open set but not g-open and β -open set.

Example 2.18 Let $X = \{g, h, i, j\}$ and $\Im = \{\phi, \{g\}, \{h, i\}, \{g, h, i\}, X\}$ then:

 $r-o(X) = r^*-o(X) = \{\phi, \{g\}, \{h, i\}, X\}$

 $\eta^{*} - o(X) = \alpha - o(X) = \{\phi, \{g\}, \{h, i\}, \{g, h, i\}, X\}$

 $ii-o(X) = \{\phi, \{g\}, \{g, j\}, \{h, i\}, \{g, h, i\}, \{h, i, j\}, X\}$

 β -o(X) = J β -o(X) = { ϕ , {g}, {h}, {i}, {g, h}, {g, i}, {g, j}, {h, i}, {h, j}, {i, j}, {g, h, i}, {g, h, j}, {g, i, j}, {h, i, j}, X}

 $g-o(X) = J-o(X) = \{\phi, \{g\}, \{h\}, \{i\}, \{g, h\}, \{g, i\}, \{h, i\}, \{g, h, i\}, X\}$

Here {g, h, i} is η^* -open set but not r*-open set. {g, j} is ii-open set but not α -open set. {i, j} is β -open and J β -open set but not ii-open set. {g, j} is β -open and J β -open set but not g-open, and J-open set. {i} is g-open set but not open set.

3. Jβ-REGULAR SPACE

Definition 3.1 A topological space X is said to be $J\beta$ -regular space (resp. α -regular [4], β -regular [3]) if for every closed set G and a point $h \notin G$, there exist disjoint $J\beta$ -open (resp. α -open, β -open) sets J and K of X such that $G \subset J$ and $h \in K$.

Theorem 3.2 Every regular space is $J\beta$ -regular space. **Proof.** Since every open set is $j\beta$ -open set, so proof is obvious.

Remark 3.3 By the definition stated above, we conclude some implication

regular space $\rightarrow \alpha$ -regular space $\rightarrow \beta$ -regular space $\rightarrow J\beta$ -regular space Where none of the implications is reversible as can be seen from the following counter examples:

Example 3.4 Let $X = \{g, h, i\}$ and $\mathfrak{I} = \{\phi, \{g\}, \{g, h\}, X\}$ then X is J β -regular but neither β -regular nor α -regular. As closed set $\{i\}$ and $h \in X$, there not exist disjoint β -open, α -open sets J and K such that $\{i\} \subset J$ and $h \in K$. For J β -regular, there exist disjoint J β -open sets $\{i\}$ and $\{h\}$ such that $\{i\} \subset \{i\}$ and $h \in \{h\}$.

Example 3.5 Let $X = \{g, h, i, j\}$ and $\mathfrak{I} = \{\phi, \{g\}, \{h, i\}, \{g, h, i\}, X\}$ then X is β -regular as well as J β -regular but neither regular nor α -regular. As closed set $\{j\}$ and $h \in X$, there not exist disjoint open, α -open sets J and K such

that $\{j\} \subset J$ and $h \in K$. For J β -regular and β -regular, there exist disjoint J β -open and β -open sets $\{g, j\}$ and $\{h\}$ such that $\{j\} \subset \{g, j\}$ and $h \in \{h\}$.

Example 3.6 Let $X = \{g, h, i\}$ and $\mathfrak{I} = \{\phi, \{g\}, \{h, i\}, X\}$ then X is regular space as well as α -regular space, β -regular space and J β -regular space

Theorem.3.7 The following properties are equivalent for a space X:

- 1. X is $J\beta$ -regular.
- 2. For each $h \in X$ and each open set J of X containing h, there exists $K \in J\beta$ -o(X) such that $h \in K \subset J\beta$ cl(K) $\subset J$.
- 3. For each closed set G of X, $\cap \{J\beta \text{-cl}(K) : G \subset K \in J\beta \text{-o}(X)\} = G.$
- 4. For each subset D of X and each open set J of X such that $D \cap J \neq \emptyset$, there exists $K \in J\beta$ -o(X) such that $D \cap K \neq \emptyset$ and $J\beta$ -cl(K) $\subset J$.
- 5. For each non empty subset D of X and each closed subset G of X such that $D \cap G = \emptyset$, there exist K, $L \in J\beta$ -o(X) such that $D \cap K \neq \emptyset$, $G \subset L$ and $K \cap L \neq \emptyset$.

Proof. (1) \Rightarrow (2). Let J be an open set containing h, then X – J is closed in X and h \in X – J. By (a), there exist L, K \in J β -o(X) such that h \in K, X – J \subset K and K \cap L = ϕ .By Lemma 2.3, we get J β -cl(K) \cap L = ϕ and hence h \in K \subset J β -cl(K) \subset J.

 $(2) \Rightarrow (3)$. Let G be a closed set of X. If $G \subset K$, then from **Lemma 2.3** (iii), $J\beta$ -cl(G) $\subset J\beta$ -cl(K) which gives $G \subset J\beta$ -cl(K) as $G \subset J\beta$ -cl(G). Therefore, $\cap \{J\beta$ -cl(K) : $G \subset K \in J\beta$ -o(X) $\} \supset G$. Conversely, let $h \in G$. Then X - G is an open set containing h. By (b), there exists $J \in J\beta$ -o(X) such that $h \in J \subset J\beta$ -cl(J) $\subset X - G$. Put $K = X - J\beta$ -cl(J). By **Lemma 2.3**, $G \subset K \subset J\beta$ -o(X) and $h \in J\beta$ -cl(K). This state that $\cap \{J\beta$ -cl(K) : $G \subset K \in J\beta$ -o(X) $\} \subset G$.

Hence $\cap \{J\beta - cl(K) : G \subset K \in J\beta - o(X)\} = G.$

(3) ⇒ (4). Let D be a subset of X and let J be open in X such that $D \cap J \neq \emptyset$. Let $h \in D \cap J$, then X – J is a closed set not containing h. By (c), there exists $L \in J\beta$ -o(X) such that $X - J \subset W$ and $h \notin J\beta$ -cl(L). Put $K = X - J\beta$ -cl(L). Then $K \subset X - L$. Also $h \in K \cap D$. From **Lemma 2.3**, we have $K \in J\beta$ -o(X), and $J\beta$ -cl(K) $\subset J\beta$ -cl(X – L) = $X - L \subset J$.

(4) \Rightarrow (5). Let D be a subset of X and let G be a closed set in X such that $D \cap G = \emptyset$, where D is non empty. Since X - G is open in X and D is non empty, by (d), there exists $K \in J\beta$ -o(X) such that $D \cap K \neq \emptyset$ and $J\beta$ -c1(K) $\subset X - G$. Put $L = X - J\beta$ -c1(K), then $G \subset L$. Also, $K \cap L \neq \emptyset$. By **Lemma 2.3**, $L \in J\beta$ -o(X).

 $(5) \Longrightarrow (1)$. Proof is obvious.

Theorem. 3.8 A topological space X is J β -regular if and only if for each closed set G of X and each $h \in X - G$, there exist J β -open sets J and K of X such that $h \in J$ and $G \subset K$ and $J\beta$ -cl(J) $\cap J\beta$ -cl(K) = ϕ .

Proof: Let G be a closed set in J β -regular space X and $h \notin G$. Then there exist J β -open sets J_h and K such that $h \in J_h$, $G \subset K$ and $J_h \cap K = \phi$. This Implies that $J_h \cap J\beta$ -cl(K) = ϕ , as J β -cl(K) is J β closed and $h \notin J\beta$ -cl(K). Since X is J β -regular, there exist J β -open sets A and B of X such that $h \in A$, $J\beta$ -cl(K) $\subset B$ and $A \cap B = \phi$. This implies J β -cl(A) $\cap B = \phi$. Take $J = J_h \cap A$. Then J and K are open sets of X such that $h \in J$ and $B \subset K$ and $J\beta$ -cl(J) $\cap J\beta$ -cl(K) $\subset J\beta$ -cl(A) $\cap B = \phi$.

Conversely, let for each closed set G of X and each $h \in X - G$, there exist J β -open sets J and K of X such that $h \in J$, $G \subset K$ and $J\beta$ -cl(J) $\cap J\beta$ -cl(K) = ϕ . Now $U \cap V \subset J\beta$ -cl(J) $\cap J\beta$ -cl(K) = ϕ . Thus X is J β -regular.

Definition. 3.9 A space X is said to be $J\beta$ -T₃ space if it is $J\beta$ -regular as well as $J\beta$ -T₁[5] space.

Theorem. **3.10** Every $J\beta$ -T₃ space is a $J\beta$ -T₂ space.

 $(Y \cap J) \cap (Y \cap K) = \phi$. Hence Y is J β -regular space.

Proof. Since X be $J\beta$ -T₃, X is both $J\beta$ -T₁ and $J\beta$ -regular. Since X is $J\beta$ -T₁ every singleton subset {h} of X is a $J\beta$ -closed. Let {h} be a $J\beta$ -closed subset of X and $g \in X - \{h\}$. Then we have $h \neq g$ since X is $J\beta$ -regular, there exist two $J\beta$ -open sets J and K such that $\{h\}\subset J, g \in K$, and such that $J \cap K = \phi$ i.e. J and K are disjoint $J\beta$ -open sets containing g and h respectively. Since g and h are arbitrary, for every pair of distinct points, there exist disjoint $J\beta$ -open sets. Hence X is $J\beta$ -T₂ space.

Theorem.3.11 Every subspace of a J β -regular space is J β -regular, i.e. J β -regularity is a hereditary property. **Proof.** Let X be a J β -regular space. Let Y be a subspace of X. Let $h \in Y$ and G be a closed set in Y such that $h \notin G$. Then there is a closed set C of X with $G = Y \cap C$ and $h \notin C$. Since X is J β -regular, there exist two disjoint J β -open sets J and K such that $h \in J$ and $C \subset K$. Note that $Y \cap J$ and $Y \cap K$ are J β -open sets in Y. Also $h \in J$ and $h \in Y$, which implies $h \in Y \cap J$ and since $C \subset K$ and $G = Y \cap C \Rightarrow Y \cap C \subset Y \cap K$ i.e. $G \subset Y \cap K$. Also,

Theorem.3.12 Every J β -compact Hausdorff space is a J β -T₃ space and hence a J β -regular.

Proof. Suppose X be a J β -compact Hausdorff space, i.e. X is a J β -T₂ space. But every J β -T₂ space is J β -T₁. To prove that it is J β -T₃ space it is sufficient to prove that it is J β -regular. Let G be a closed subset of X, and h \notin G, that is $h \in X - G$, so that any point $g \in G$ is a point of X, that is g and h are distinct. Now X is a J β -T₂ space and g, h be two distinct element of X. there exists two J β -open sets J_h and K_g such that J_h \cap K_g = ϕ where g \in K_g and $h \in J_h$. Now let relative topology of topology \mathfrak{T} , is denoted by \mathfrak{T}^* so that the collection $A^* = \{G \cap K_g : g \in G\}$ is a $J\beta$ - \mathfrak{I}^* open cover of G. But G is closed and also X is $J\beta$ -compact (G, \mathfrak{I}^*) is also $J\beta$ -compact. Hence G has finite subcover, there exists points g_1, g_2, \dots, g_n in G such that $A_i^* = \{G \cap K_{gi} : i = 1, 2, \dots, n\}$ are finite subcover for G. Now $G = \bigcup \{G \cap K_{gi} : i = 1, 2, ..., n\}$ or $G = G \cap \{\bigcup \{K_{gi} : i = 1, 2, ..., n\}\}$, this implies that $G \subset \cup \{ K_{gi} : i = 1, 2, ..., n \}$, hence $\bigcap G \subset K$ where $K = \cup \{ K_{gi} : i = 1, 2, ..., n \}$ is J β -open set J β -open sets. Again {J_{hi} : i = 1, 2, 3,...,n} is collection of J β -open sets containing G, as K is the union of containing h and hence $J = \bigcap \{J_{hi} : i = 1, 2, ..., n\}$ is also a J β -open set containing h. Also $J \cap K = \phi$, otherwise $J_{hi} \cap K_{gi} \neq \phi$ for some i. Hence for each closed set G and an element h in X – G we obtain two disjoint J β -open sets J and K such that $h \in j$, $G \subset K$. Hence (X, \mathfrak{I}) is $J\beta$ -regular. Also X is $J\beta$ -T₂ so it is $J\beta$ -T₁ and hence X is $J\beta$ -T3.

4. Jβ-NORMAL SPACE

Definition 4.1. A space X is termed as **J** β **-normal** (resp. α **-normal [11]**, β **-normal [10]**) if for any pair of disjoint closed sets G and H, there exist disjoint J β -open (resp. α -open, β -open) sets J and K such that G \subset J and H \subset K.

Theorem 4.2 Every normal space is $J\beta$ -normal space. **Proof.** Since every open set is $j\beta$ -open set, so proof is obvious.

Remark 4.3 By the definition stated above, the following implications holds for X

normal space $\rightarrow \alpha$ -normal space $\rightarrow \beta$ -normal space $\rightarrow J\beta$ -normal space

Where the converse of either of these implications is not be true, as can be seen from the following counter examples:

Example.4.4 Let $X = \{g, h, i, j\}$ and $\mathfrak{I} = \{\phi, \{g\}, \{h\}, \{g, h\}, \{g, h, i\}, \{g, h, j\}, X\}$. Then the space (X, \mathfrak{I}) is β -normal, but it is neither α -normal nor normal space as:

 $C(X) = \{\phi, \{i\}, \{j\}, \{i, j\}, \{g, i, j\}, \{h, i, j\}, X\}$

 α -o(X) = \Im = { ϕ , {g}, {h}, {g, h}, {g, h, i}, {g, h, j}, X}

 β -o(X) = { ϕ , {g}, {h}, {g, i}, {g, h}, {g, j}, {h, i}, {h, j}, {g, h, i}, {g, h, j}, {h, i, j}, X}

Let $G = \{i\}$ and $H = \{j\}$ be disjoint closed sets in X, there do not exist disjoint open and α -open sets J and K such that $G \subset J$ and $H \subset K$, but for β - normal, take $J = \{g, i\}$ and $K = \{h, j\}$ as J and K are $J\beta$ -open set.

Example.4.5 Let $X = \{g, h, i\}$ and $\mathfrak{I} = \{\phi, \{g\}, \{g, h\}, \{g, i\}, X\}$. Then the space (X, \mathfrak{I}) is J β -normal, but it is neither β -normal nor α -normal as: $C(X) = \{\phi, \{h\}, \{i\}, \{h, i\}, X\}$ α -o $(X) = \beta$ -o $(X) = \mathfrak{I} = \{\phi, \{g\}, \{g, h\}, \{g, i\}, X\}$. $J\beta$ -o $(X) = \{\phi, \{g\}, \{h\}, \{i\}, \{g, h\}, \{g, i\}, \{h, i\}, X\}$

For disjoint closed set {h} and {i} there do not exist disjoint open, α -open and β -open sets J and K such that {h} \subset J and {i} \subset K, but for J β - normal, take J ={h} and K = {i} as J and K are J β -open set.

Example 4.6. Let $X = \{g, h, i\}$ and $\Im = \{\phi, \{g\}, \{h\}, \{g, h\}, \{h, i\}, X\}$. Then the space (X, \Im) is normal as well as J β -normal, since:

 $C(X) = \{\phi, \{g\}, \{i\}, \{g, i\}, \{h, i\}, X\}$ For disjoint closed set $G = \{g\}$ and $H = \{i\}$ (or $\{h, i\}$) there exist disjoint open sets $J = \{g\}$ and $K = \{h, i\}$ such that $G \subset J$ and $H \subset K$.

Theorem. 4.7 For a space X the following are equivalent:

- (1) X is J β -normal.
- (2) For every pair of open sets J and K as $J \cup K = X$, there exist J β -closed sets G and H such that $G \subset J$, $H \subset K$ and $G \cup H = X$,
- (3) For every closed set F and every open set L containing F, there exists a J β -open set J such that $F \subset J \subset J\beta$ cl(J) \subset L.

Proof: (1) \Rightarrow (2) Let J and K be a pair of open sets in a J β -normal space X such that X = J \cup K. Then X – J and X – K are disjoint closed sets. Since X is J β -normal, there exist disjoint J β -open sets J₁ and K₁ such that X – J \subset J₁ and X – K \subset K₁. Let G = X – J₁, H = X – K₁. Then G and H are J β -closed sets such that G \subset J, H \subset K and G \cup H = X.

(2) \Rightarrow (3) Let F be a closed set and L be an open set containing F. Then X – F and L are open sets whose union is X. Then by (2), there exist J β -closed sets A₁ and A₂ such that A₁ \subset X – F and A₂ \subset L and A₁ \cup A₂ = X. Then F \subset X – A₁, X – L \subset X – A₂ and (X – A₁) \cap (X – A₂) = ϕ . Let J = X – A₁ and K = X – A₂. Then J and K are disjoint J β -open sets such that F \subset J \subset X – K \subset L. As X – K is J β -closed set, we have J β -cl(J) \subset X – K and F \subset J \subset J β -cl(J) \subset L.

(3) \Rightarrow (1) Let F_1 and F_2 be any two disjoint closed sets of X. Put $L = X - F_2$, then $F_2 \cap L = \phi$. $F_1 \subset L$, where L is an open set. Then by (3), there exists a J β -open set J of X such that $F_1 \subset J \subset J\beta$ -cl(J) $\subset L$. It follows that $F_2 \subset X - J\beta$ -cl(J) = K, say, then K is J β -open and J $\cap K = \phi$. Hence F_1 and F_2 are separated by J β -open sets J and K. Therefore X is J β -normal.

Definition 4.8 A space X is said to be $J\beta$ -T₄ space if it is $J\beta$ -normal as well as $J\beta$ -T₁[5] space.

Theorem 4.9 Every $J\beta$ -T₄ space is a $J\beta$ -T₃ space.

Proof. Since X be $J\beta$ -T₄, X is both $J\beta$ -T₁ and $J\beta$ -normal. So for X is $J\beta$ -T₃ it is sufficient to prove that X is $J\beta$ -regular. Let G be a closed subset of X and h is an element of X-G. Since X is $J\beta$ -T₁ so every singleton subset of X is a $J\beta$ -closed, so {h} be a $J\beta$ -closed subset of X. since X is $J\beta$ -normal, then there exist two disjoint open sets J and K such that $G \subset J$ and {h} \subset K i. e. $h \in K$. hence X is $J\beta$ -regular and X is T₁ also. Hence X is $J\beta$ -T₃ space.

Remark 4.10 by the definitions and theorems, we conclude that:

 $J\beta$ - $T_4 \Rightarrow J\beta$ - $T_3 \Rightarrow J\beta$ - $T_2 \Rightarrow J\beta$ - $T_1 \Rightarrow J\beta$ - T_0

Remark 4.11 Neither J β -regular implies J β -normal space, nor J β -normal space implies J β -regular spaces:

Example 4.12 Let $X = \{g, h, i\}$ and $\mathfrak{I} = \{\phi, \{g\}, \{g, h\}, X\}$ then the space (X, \mathfrak{I}) is J β -normal from **ex. 2.27**, but not J β - regular as, for closed set $\{h, i\}$ and $j \notin \{h, i\}$ there do not exist disjoint J β -open sets J and K such that $\{h, i\} \subset J$ ad $j \in K$.

5. Some functions related with $J\beta$ - regular and normal spaces

Definition 5.1 A subset G of a space (X, \mathfrak{I}) is said to be

(i) generalized J β -closed (briefly gJ β -closed) set if J β -cl(G) \subset A whenever G \subset A and A is open.

(ii) **Jβ-generalized closed** (briefly **Jβg-closed**) set if $J\beta$ -cl(G) \subset A whenever G \subset A and A is J β -open.

Definition 5.2 A function $f: X \rightarrow Y$ is said to be

- (i) **J** β -open [5] if the image of each open set of X is J β -open set in Y.
- (ii) $J\beta$ closed [5] if the image of each closed set of X is $J\beta$ -closed set in Y.
- (iii) generalized J β -closed (briefly gJ β -closed) if the image of each closed set of X is gJ β -closed in Y.
- (iv) Jβ generalized closed (briefly Jβg-closed) if for image of each closed set of X is Jβg-closed in Y.
- (v) quasi J β -closed if the image of each J β -closed set of X is closed in Y.
- (vi) $J\beta$ -gJ β -closed if the image of each J β -closed set of X is gJ β -closed in Y.
- (vii) $J\beta$ -J β g closed if the image of each J β -closed set of X is J β g-closed in Y.

Definition 5.3 Let X be a topological space. A subset $N \subset X$ is called a **J\beta-neighbourhood [5]** (briefly **J\beta-nhd**) of a point $h \in X$ if there exist a J β -open set J such that $h \in J \subset N$.

Definition 5.4 A function $f: X \to Y$ is said to be $J\beta$ -gJ β -continuous if the inverse image of a J β -closed set of Y is gJ β -closed set in X.

Definition 5.5 A function $f: X \to Y$ is said to be **J** β -irresolute [5] if the inverse image of a J β -open set of Y is J β -open set in X.

Definition 5.6 A function $f : X \rightarrow Y$ is called

- (i) **pre Jβ-open** if $f(J) \in J\beta$ -o(Y) for each $J \in J\beta$ -o(X),
- (ii) **pre Jβ-closed** if $f(J) \in J\beta$ -cY) for each $J \in J\beta$ -c(X),
- (iii) **almost J\beta-irresolute** if for each h in X and each J β -neighbourhood K of f(h), J β -cl(f⁻¹(K)) is a J β -neighbourhood of h.

Remark 5.7 Every closed function is J β -closed but not conversely. Also, every J β -closed function is gJ β -closed because every J β -closed set is gJ β -closed. Also it is obvious that J β -closed function and J β -gJ β -closed function imply gJ β -closed function.

Theorem 5.8 A surjective function $f: X \to Y$ is $gJ\beta$ -closed (resp. $J\beta$ - $gJ\beta$ -closed) if and only if for each subset F of Y and each open (resp. $J\beta$ -open) set J of X containing $f^{-1}(F)$, there exists a $gJ\beta$ -open set K of Y such that $F \subset K$ and $f^{-1}(K) \subset J$.

Proof. let f is gJ β -closed (resp. J β -gJ β -closed). Let F be any subset of Y and J be open (resp J β -open) set of X containing f⁻¹(F). Put K = Y - f(X - J). Then the complement K^c of K is given as K^c = Y - K = f(X - J). Since X - J is closed (resp. J β -closed) in X and f is gJ β -closed (resp. J β -closed), f(X - J) = K^c is gJ β -closed. Therefore, K is gJ β -open in Y. It is easy to see that F \subset K and f⁻¹(K) \subset J.

Conversely, let G be a closed (resp. $gJ\beta$ -closed) set of X. Put F = Y - f(G), then we have $f^{-1}(F) \subset X - G$ and X -G is open (resp. $J\beta$ -open) in X. Then by assumption, there exists a $gJ\beta$ -open set K of Y such that $F = Y - f(G) \subset K$ and $f^{-1}(K) \subset X - G$. Now $f^{-1}(K) \subset X - G$ implies $K \subset Y - f(G) = F$. Also $F \subset K$ and so F = K. Therefore, we obtain f(G) = Y - K and hence f(G) is $gJ\beta$ -closed in Y. This shows that f is $gJ\beta$ -closed (resp $J\beta$ -g $J\beta$ -closed) function.

Remark 5.9 We can prove the necessity part of the above theorem by replacing each set to closed set in the form of the proposition given below:

Proposition 5.10 If a surjective function $f: X \to Y$ is $gJ\beta$ -closed (resp. $J\beta$ - $gJ\beta$ -closed) then for a closed set G of Y and for any open (resp. $J\beta$ -open) set J of X containing $f^{-1}(G)$, there exists a $J\beta$ -open set K of Y such that $G \subset K$ and $f^{-1}(K) \subset J$.

Proof. By previous theorem, there exists a gJ β -open set L of Y such that $G \subset L$ and $f^{-1}(L) \subset G$. Since G is closed, then we have $G \subset J\beta$ -int (L). Put $K = J\beta$ -int(L). Then $K \in J\beta$ -o(Y), $G \subset K$ and $f^{-1}(K) \subset J$.

Proposition 5.11 If $f: X \to Y$ is continuous and J β -gJ β -closed function and G is gJ β -closed set in X, then f(G) is gJ β -closed in Y.

Proof. Let K be an open set of Y containing f(G), then $G \subset f^{-1}(K)$. As f is continuous $f^{-1}(K)$ is open in X. Since G is gJ β -closed in X, by a definition, we get J β -c1(G) \subset f⁻¹(K) and hence $f(J\beta$ -c1(G)) \subset K. Since f is J β -gJ β -closed function and J β -c1(G) is J β -closed set in X, $f(J\beta$ -c1(G)) is gJ β -closed in Y and hence we get J β -c1(f(J β -c1(G))) \subset K. By definition of the J β -closure of a set, $G \subset J\beta$ -c1(G) which implies $f(G) \subset f(J\beta$ -c1(G)) and we know that, J β -c1(f(G)) \subset J β -c1(f(J β -c1(G))) \subset J. Hence J β -c1(f(G)) \subset J. That is f (G) is gJ β -closed in Y.

Proposition 5.12 If $f: X \to Y$ is an open J β -irresolute bijection and G is $gJ\beta$ -closed set in Y, then $f^{-1}(G)$ is $gJ\beta$ -closed in X.

Proof. Let J be an open set of X containing $f^{-1}(G)$. Then $G \subset f(J)$ and f(J) is open in Y. Since G is $gJ\beta$ -closed in Y, $J\beta$ -c1(G) $\subset f(J)$ and hence we have $f^{-1}(J\beta$ -c1(G)) $\subset J$. Since f is $J\beta$ -irresolute, $f^{-1}(J\beta$ -c1(G)) is $J\beta$ -closed in X, we have $J\beta$ -c1($f^{-1}(G)$) $\subset f^{-1}(J\beta$ -c1(G)) $\subset J$. hence prove that $f^{-1}(G)$ is $gJ\beta$ -closed in X.

Theorem 5.13 Let $f: X \to Y$ and $g: Y \to Z$ be the two functions, then

- (i) If gof : $X \to Z$ is $gJ\beta$ -closed and if $f : X \to Y$ is a continuous surjection, then $g : Y \to Z$ is $gJ\beta$ -closed.
- (ii) If $f: X \to Y$ is $gJ\beta$ -closed with $g: Y \to Z$ is continuous and $J\beta$ - $gJ\beta$ -closed, then $gof: X \to Z$ is $gJ\beta$ closed.
- (iii) If $f: X \to Y$ is closed and $g: Y \to Z$ is $gJ\beta$ -closed, then $gof: X \to Z$ is $gJ\beta$ -closed.

Proof. (i) Let G be a closed set of Y. Then $f^{-1}(G)$ is closed in X since f is continuous. By hypothesis gof($f^{-1}(G)$) is gJ β -closed in Z. Hence G is gJ β -closed.

(ii) Proof comes from Proposition 5.11

(iii)The proof is obvious from definitions.

Theorem 5.14 The following properties are equivalent for a space X :

(a) X is J β -regular.

- (b) For each closed set G and each point h from complement of G, there exists a J β -open set J and a gJ β -open set K such that $h \in J$ and $G \subset K$ and $J \cap K = \phi$.
- (c) For each $B \subset X$ and each closed set G such that $B \cap G = \phi$, there exist a J β -open set J and a gJ β -open set K such that $B \cap J \neq \phi$, $G \subset K$ and $J \cap K = \phi$.

(d) For each closed set H of X, $H = \cap \{J\beta \text{-}c1(K) : H \subset K \text{ and } K \text{ is } gJ\beta \text{-}open.$

Proof. (a) \Rightarrow (b). The proof is obvious since every J β -open set is gJ β -open.

(b) \Rightarrow (c). Let $B \subset X$ and let G be a closed set in X such that $B \cap G = \phi$. For a point $h \in B$ then h is contained in X - G and hence there exists $J \in J\beta$ -o(X) and a $gJ\beta$ -open set K such that $h \in J$ and $G \subset K$ and $J \cap K = \phi$. Also $h \in B$ and $h \in J$ implies $h \in B \cap J$. So $B \cap J \neq \phi$.

(c) \Rightarrow (a). Let G be a closed set in X and let $h \in X - G$. Then, $\{h\} \cap G = \phi$ and there exist $J \in J\beta$ -o(X) and a $gJ\beta$ -open set L such that $h \in J$, $G \subset L$ and $J \cap L = \phi$. Put $K = J\beta$ -int(L), then by the definition of $gJ\beta$ -open set, we have $G \subset K$, K is $J\beta$ -open set and $J \cap K = \phi$. Therefore X is $J\beta$ -regular.

(a) \Rightarrow (d). For a closed set F of X, by **Theorem 3.7**, we obtain

 $G \subset \cap \{J\beta - c1(K) : G \subset K \text{ and } K \text{ is } gJ\beta - open\} \subset \cap \{J\beta - c1(K) : G \subset K \text{ and } K \text{ is } J\beta - open\} = G \text{ Therefore, } G = \cap \{J\beta - c1(K) : G \subset K \text{ and } K \text{ is } gJ\beta - open\}.$

(d) \Rightarrow (a). Let G be a closed set of X and $h \in X - G$. by (d), there exists a gJ β -open set L of X such that $G \subset L$ and $h \in X - J\beta$ -c1(L). Since G is closed, $G \subset J\beta$ -int(L) by the definition of gJ β -open set. Put $K = J\beta$ -int(L), then $G \subset K$ and $K \in J\beta$ -o(X). Since $h \in X - J\beta$ -c1(L), $h \in X - J\beta$ -c1(K). Put $J = X - J\beta$ -c1(K) then, $h \in J$ and J is J β -open and $J \cap K = \phi$. This shows that X is J β -regular.

Theorem 5.15 If $f: X \to Y$ is a continuous J β -open gJ β -closed surjection and X is regular, then Y is J β -regular. **Proof.** Let $k \in Y$ and let K be an open set of Y and $k \in K$. Let h be a point of X such that k = f(h). By the regularity of X, there exists an open set J of X such that $h \in J \subset c1(J) \subset f^{-1}(K)$. We have $k \in f(J) \subset f(cl(J)) \subset K$. Since f is J β -open and gJ β -closed, f(J) is J β -open and f(c1(J)) is gJ β -closed in Y. So, we obtain, $k \in f(J) \subset J\beta$ -c1(f(J)) $\subset J\beta$ -c1(f(c1(J))) $\subset K$. Now by the **Theorem 5.14**, Y is J β -regular.

Theorem 5.16 If $f : X \to Y$ is a continuous pre J β -open, J β -gJ β -closed surjection and X is J β -regular, then Y is J β -regular.

Proof. Let $G \in c(Y)$ and $h \in Y - G$. Then $f^{-1}(h) \cap f^{-1}(G) = \phi$ and $f^{-1}(G)$ is closed in X. Since X is J β -regular, for a point $g \in f^{-1}(h)$, there exist J, K be two open set in X such that $g \in J$, $f^{-1}(G) \subset K$ and $J \cap K = \phi$. Since G is closed in Y, by **Proposition 5.10**, there exist a J β -open set L such that $G \subset L$ and $f^{-1}(L) \subset K$. Since f pre J β -open, we have $h = f(g) \in f(J)$ and $f(J) \in J\beta$ -o(Y). Since $J \cap K = \phi$, $f^{-1}(L) \cap J = \phi$ and hence $L \cap f(J) = \phi$. Hence Y is J β -regular.

Theorem 5.17 A function $f : X \to Y$ is pre J β -closed if and only if for each subset F in Y and for each J β -open set J in X containing $f^{-1}(F)$, there exists a J β -open set K containing F such that $f^{-1}(K) \subset J$.

Proof. Assume that f is pre J β -closed. Let F be a subset of Y and J \in J β -o(X) containing f⁻¹(F). Now take K = Y – f(X – J), then K is a J β -open set of Y such that F \subset K and f⁻¹(K) \subset J.

Converse: suppose that G be any J β -closed set of X. Then $f^{-1}(Y - f(G)) \subset X - G$ and X - G is J β -open set in X. There exists a J β -open set K of Y such that $Y - f(G) \subset K$ and $f^{-1}(K) \subset X - G$. Therefore, we have $f(G) \supset Y - K$ and $G \subset f^{-1}(Y - K)$. Hence, we get f(G) = Y - K and f(G) is J β -closed in Y. This proves that f is pre J β -closed.

Lemma 5.18 Let $f : X \to Y$ define a function from X to Y, then following are equivalent:

(1) f is almost J β -irresolute,

(2) $f^{-1}(K) \subset J\beta$ -int $(J\beta$ -cl $(f^{-1}(K)))$ for every $K \in J\beta$ -o(Y).

Theorem5.19 A function $f : X \to Y$ is almost J β -irresolute if and only if $f(J\beta$ -cl(J)) $\subset J\beta$ -cl(f(J)) for every J β -open set J in X.

Proof. Assume that J be a J β open set in X. Suppose $k \notin J\beta$ -cl(f(J)). Then there exists a J β -open set K in Y such that $K \cap f(J) = \phi$. Hence, $f^{-1}(K) \cap J = \phi$. Since J be J β -o(X), we have $J\beta$ -int($J\beta$ -cl($f^{-1}(K)$)) $\cap J\beta$ -cl(J) = ϕ . Then by **Lemma 5.18**, $f^{-1}(K) \cap J\beta$ -cl(J) = ϕ and hence $K \cap f(J\beta$ -cl(J)) = ϕ . This implies that $k \notin f(J\beta$ -cl(J)).

Converse: If K be a J β -open set in Y, then A = X – J β -cl(f⁻¹(K)) \in J β -o(X). By hypothesis, f(J β -cl(A)) \subset J β -cl(f(A)) and hence X – J β -int(J β -cl(f⁻¹(A))) = J β -cl(A) \subset f⁻¹(J β -cl(f(A))) \subset f⁻¹(J β -cl(f(X – f⁻¹(K)))) \subset f⁻¹(J β -cl(Y – K)) = f⁻¹ (Y – K) = X – f⁻¹(K). Hence, f⁻¹(K) \subset J β -int(J β -cl(f⁻¹(K))). By **Lemma 5.18**, f is almost J β -irresolute.

Theorem5.20 If $f : X \to Y$ is a pre J β -open continuous almost J β -irresolute function from a J β -normal space X onto a space Y, then Y is J β -normal.

Proof: Let G be a closed subset of Y and J be an open set containing G. Then by continuity of f, $f^{-1}(G)$ is closed and $f^{-1}(J)$ is an open set of X such that $f^{-1}(G) \subset f^{-1}(J)$. As X is J β -normal, there exists a J β -open set K in X such that $f^{-1}(G) \subset K \subset J\beta$ -cl(K) $\subset f^{-1}(J)$ by using **Theorem 4.7** Then, $f(f^{-1}(G)) \subset f(K) \subset f(J\beta$ -cl(K)) $\subset f(f^{-1}(J))$. Since f is pre J β -open almost J β -irresolute surjection, we obtain $G \subset f(K) \subset J\beta$ -cl(f(K)) $\subset J$. Then again by **Theorem 4.7** the space Y is J β -normal. **Theorem 5.21** If $f: X \to Y$ is a pre J β -closed continuous function from a J β -normal space X onto a space Y, then Y is J β -normal.

Proof: Let G_1 and G_2 be disjoint closed sets in Y. Then $f^{-1}(G_1)$ and $f^{-1}(G_2)$ are closed sets in X. Since X is J β -normal, then there exist two disjoint J β -open sets J and K such that $f^{-1}(G_1) \subset J$ and $f^{-1}(G_2) \subset K$. By **Theorem 5.17**, there exist J β -open sets L and M such that $G_1 \subset L$, $G_2 \subset M$, $f^{-1}(L) \subset J$ and $f^{-1}(M) \subset K$. Also, L and M are disjoint. Hence, Y is J β -normal.

Theorem 5.22 Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then

- (i) if f is J β -gJ β -closed and g is continuous J β -gJ β -closed then the composition gof : X \rightarrow Z is J β -gJ β -closed.
- (ii) if f is pre J β -closed and g is J β -gJ β -closed then the composition gof : X \rightarrow Z is J β -gJ β -closed.
- (iii) if f is quasi J β -closed and g is gJ β -closed then the composition gof : X \rightarrow Z is J β -gJ β -closed.

Theorem 5.23 Let $f : X \to Y$ and $g : Y \to Z$ be functions and let the composition gof $: X \to Z$ be J β -gJ β -closed. If f is a J β -irresolute surjection, then g is J β -gJ β -closed.

Proof: Let $H \in J\beta$ -c(Y). Since f is $J\beta$ -irresolute and surjective, $f^{-1}(H) \in J\beta$ -c(X) and $(gof)(f^{-1}(H)) = g(H)$. Hence, g(H) is $gJ\beta$ -closed in Z and hence g is $J\beta$ -g $J\beta$ -closed.

Remark 5.24 Every J β -irresolute function is J β -gJ β -continuous but not conversely.

Theorem 5.25 A function $f: X \to Y$ is $J\beta$ -gJ β -continuous if and only if $f^{-1}(K)$ is gJ β -open in X for every $K \in J\beta$ -o(Y).

Theorem 5.26 If $f: X \to Y$ is closed $J\beta$ -gJ β -continuous, then $f^{-1}(H)$ is gJ β -closed in X for each gJ β -closed set H of Y.

Proof: Let H be a gJ β -closed set of Y and J be an open set of X containing f⁻¹(H). Put K = Y - f(X-J), then K is open in Y, H \subset K and f⁻¹(K) \subset J. Therefore, we have J β -cl(H) \subset K and hence f⁻¹(H) \subset f⁻¹(J β -cl(H)) \subset f⁻¹(K) \subset J. Also, f is J β -gJ β -continuous, f⁻¹(J β -cl(H)) is gJ β -closed in X and hence J β -cl(f⁻¹(H)) \subset J β -cl(f⁻¹(J β -cl(H))) \subset J. This proves that f⁻¹(H) is gJ β -closed in X.

Theorem 5.27 If $f: X \to Y$ is an open J β -gJ β -continuous bijection, then $f^{-1}(H)$ is gJ β -closed in X for every gJ β -closed set H of Y.

Proof: Let H be a gJ β -closed set of Y and J be an open set of X containing f⁻¹(H). Since f is an open surjective, H = f(f⁻¹ (H)) \subset f(J) and f(J) is open. Therefore, J β -cl(H) \subset f(J). Since f is injective, f⁻¹(H) \subset f⁻¹(J β -cl(H)) \subset f⁻¹(f(J)) = J. Since f is J β -gJ β -continuous, f⁻¹(J β -cl(H)) is gJ β -closed in X and hence J β -cl(f⁻¹(H)) \subset J β -cl(f⁻¹(J β -cl(H))) \subset J. Hence f⁻¹(H) is gJ β -closed in X.

Theorem 5.28 Let $f : X \to Y$ be a function from X to Y and $g : Y \to Z$ be an open J β -gJ β continuous bijection from Y to Z and let the composition gof : $X \to Z$ be J β -gJ β -closed then f is J β -gJ β -closed. **Proof**: Let H be a J β -closed set of X. Then (gof)(H) is gJ β -closed in Z and g ⁻¹((gof)(H)) = f(H). By **Theorem 5.27**, f(H) is gJ β -closed in Y and hence f is J β -gJ β -closed.

Theorem 5.29. Let $f : X \to Y$ be a function from X to Y and $g : Y \to Z$ is a closed J β -gJ β -continuous injection from Y to Z and let the composition gof : $X \to Z$ be J β -gJ β -closed then f is J β -gJ β -closed. **Proof:** Let H be a closed set in X. Then (gof)(H) is gJ β -closed in Z and g⁻¹((gof)(H)) = f(H). By **Theorem 5.26**, f(H) is gJ β -closed in Y and hence f is J β -gJ β -closed.

6. Preservation theorems and other characterizations of Jβ-normal spaces

Theorem 6.1 For a topological space X, the following are equivalent:

- (a) X is $J\beta$ -normal,
- (b) for any pair of disjoint closed sets G and H of X, there exist disjoint $gJ\beta$ -open sets J and K of X such that $G \subset J$ and $H \subset K$,

- (c) for each closed set G and each open set K containing G, there exists a $gJ\beta$ -open set J such that $cl(G) \subset J \subset J\beta$ - $cl(J) \subset K$,
- (d) for each closed set G and each g-open set L containing G, there exists a J β -open set M such that $G \subset M \subset J\beta$ -cl(M) $\subset int(L)$,
- (e) for each closed set G and each g-open set L containing G, there exists a $gJ\beta$ -open set J such that $G \subset J \subset J\beta$ -cl(J) $\subset int(L)$,
- (f) for each g-closed set H and each open set N containing H, there exists a J β -open set M such that $cl(H) \subset M \subset J\beta$ - $cl(M) \subset N$,
- (g) for each g-closed set H and each open set N containing H, there exists a gJ β -open set J such that $cl(H) \subset J \subset J\beta$ - $cl(J) \subset N$.

Proof: (a) \Leftrightarrow (b) \Leftrightarrow (c) : Since every J β -open set is gJ β -open, then proof is obvious.

 $(d) \Rightarrow (e) \Rightarrow (c)$ and $(f) \Rightarrow (g) \Rightarrow (c)$: Since every closed (resp. open) set is g-closed (resp. g-open), then proof is obvious.

(c) \Rightarrow (e) : Let G be a closed subset of X and L be a g-open set such that $G \subset L$. Since L is g-open and G is closed, $G \subset int(L)$. Then, there exists a gJ β -open set J such that $G \subset J \subset j\beta$ -cl(J) $\subset int(L)$.

(e) \Rightarrow (d) : Let G be any closed subset of X and L be a g-open set containing G. Then there exists a gJ β -open set J such that $G \subset J \subset J\beta$ -cl(J) \subset int(L). Since J is gJ β -open, $G \subset J\beta$ -int(J). Put $M = J\beta$ -int(J), then M is J β -open and $G \subset M \subset J\beta$ -cl(M) \subset int(L).

 $(c) \Rightarrow (g)$: Let H be any g-closed subset of X and N be an open set such that $H \subset N$. Then $cl(H) \subset N$. Therefore, there exists a $gJ\beta$ -open set J such that $cl(H) \subset J \subset J\beta$ - $cl(J) \subset N$.

 $(g) \Rightarrow (f)$: Let H be any g-closed subset of X and N be an open set containing H. Then there exists a gJ β -open set J such that $cl(H) \subset J \subset J\beta$ - $cl(J) \subset N$. Since J is gJ β -open and $cl(H) \subset J$, we have $cl(H) \subset J\beta$ -int(J), take M = J β -int(J), then M is J β -open and $cl(H) \subset M \subset J\beta$ - $cl(M) \subset N$.

Theorem 6.2 If $f: X \to Y$ is a continuous quasi $J\beta$ -closed surjection and X is $J\beta$ -normal, then Y is normal. **Proof**: Let G_1 and G_2 be any disjoint closed sets of Y. Since f is continuous surjection, $f^{-1}(G_1)$ and $f^{-1}(G_2)$ are disjoint closed sets of X. Since X is $J\beta$ -normal, there exist disjoint $J\beta$ -open sets J_1 , J_2 such that $f^{-1}(G_1) \subset J_1$ and $f^{-1}(G_2) \subset J_2$. Put $K_1 = Y - f(X - G_1)$ and $K_2 = Y - f(X - G_2)$, then K_1 and K_2 are open in Y, $G_i \subset K_i$ and $f^{-1}(K_i) \subset G_i$ for i = 1, 2. Since $J_1 \cap J_2 = \phi$ and f is surjective; we have $K_1 \cap K_2 = \phi$. This shows that Y is normal.

Lemma 6.3 A subset J of a space X is gJ β -open if and only if $G \subset J\beta$ -int(J) whenever G is closed and $G \subset J$.

Theorem 6.4 Let $f: X \to Y$ be a closed $J\beta$ - $gJ\beta$ -continuous injection. If Y is $J\beta$ -normal, then X is $J\beta$ -normal. **Proof**: Let G_1 and G_2 be disjoint closed sets of X. Since f is a closed injection, $f(G_1)$ and $f(G_2)$ are disjoint closed sets of Y. By the $J\beta$ -normality of Y, there exist two disjoint $J\beta$ -open sets K_1 and K_2 in Y such that $f(G_1) \subset K_1$ and $f(G_2) \subset K_2$. Since f is $J\beta$ - $gJ\beta$ -continuous, $f^{-1}(K_1)$ and $f^{-1}(K_2)$ are disjoint $gJ\beta$ -open sets of X and $G_i \subset f^{-1}(K_i)$ for i = 1, 2. Now, put $J_i = J\beta$ -int($f^{-1}(K_i)$) for i = 1, 2. Then, $J_i \in J\beta$ -o(X), $G_i \subset J_i$ and $J_1 \cap J_2 = \phi$. This shows that X is $J\beta$ -normal.

Corollary 6.5 If $f : X \to Y$ is a closed J β -irresolute injection and Y is J β -normal, then X is J β -normal. **Proof**: Since every J β -irresolute function is J β -gJ β -continuous the proof is same as previous theorem.

Lemma 6.6 A function $f : X \to Y$ is almost $gJ\beta$ -closed if and only if for each subset A of Y and each regular open set J of X containing $f^{-1}(A)$, there exists a $gJ\beta$ -open set K of Y such that $A \subset K$ and $f^{-1}(K) \subset J$.

Lemma6.7 If $f : X \to Y$ is almost $gJ\beta$ -closed, then for each closed set H of Y and each regular open set J in X containing $f^{-1}(H)$, there exists a open set K in Y such that $H \subset K$ and $f^{-1}(K) \subset J$.

JETIR2307002 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> a16

Theorem 6.8 Let $f : X \to Y$ be a continuous almost $gJ\beta$ -closed surjection. If X is normal, then Y is $J\beta$ -normal. **Proof**: Let H_1 and H_2 be any disjoint closed sets of Y. Since f is continuous, $f^{-1}(H_1)$ and $f^{-1}(H_2)$ are disjoint closed sets of X. By the normality of X, there exist disjoint open sets J_1 and J_2 such that $f^{-1}(H_i) \subset J_i$, where i = 1, 2. Now, put $L_i = int(cl(J_i))$ for i = 1, 2, then L_i are regular open sets in X, $f^{-1}(H_i) \subset J_i \subset L_i$ and $L_1 \cap L_2 = \phi$. By Lemma 6.7, there exists two $J\beta$ -open sets K_1 and K_2 such that $H_i \subset K_i$ and $f^{-1}(K_i) \subset L_i$, where i = 1, 2. Since $L_1 \cap L_2 = \phi$ and f is surjective, we have $K_1 \cap K_2 = \phi$. This shows that Y is $J\beta$ -normal.

Corollary 6.9 If $f: X \to Y$ is a continuous J β -closed surjection and X is normal, then Y is J β -normal.

Conclusion

This paper is devoted to introduce some new weaker version of normality and regularity namely J β -regular and J β -normal spaces in topological spaces by using J β -open sets. Moreover, we investigated the relationship between these new spaces and some other topological spaces, also some example & counter example are given to verify these relationships and its converse. Also we defined some function related to J β -regular and J β -normal spaces. Besides it, we discussed some topological properties of J β -regular and J β -normal spaces. Of course, the entire content will be a successful tool for the researchers for finding the way to obtain the results in the context of such types of regular and normal spaces.

Acknowledgment

The first author is grateful to the <u>COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH (CSIR)</u> for financial assistance.

References

- 1. Amir A. Mohammed and S. Beyda Abdullah, ii-open sets in topological spaces, *International Mathematical Forum*, Vol. 14, 1(2019), 41-48.
- 2. M. E. Abd EI-Monsef, S. N. EI-Deeb and R. A. Mahamoud, β-open and β-continuous mappings, *Bull. Fac. Assut Univ. Sci.*, **12**, 77 (1983).
- 3. M. E. Abd El-Monsef, A. N. Geaisa and R. A. Mahamoud , β-regular spaces, Proc. Math. Phys. Soc., Egypt, no.60(1985), 47-52.
- R. Devi, K. Balachandran and H. Maki, Generalized α-closed maps and α- generalized closed maps, *Indian J. Pure Appl. Math.*, 29 (1) (1998), 37-49.
- 5. Anuj Kumar and B. S. Sharma, Jβ Separation Axioms in Topological Spaces, *Journal of Emerging Technologies and Innovative Research (JETIR)*, vol-9, issue-3(2022), 612-620.
- 6. Hamant Kumar, Jβ-closed sets in topological spaces, *Journal of Emerging Technologies and Innovative Research (JETIR)*, Vol.-9, Issue-1(2022), 38-45.
- 7. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89-96.
- 8. P. L. Meenakshi, Unification of Regular Star Open Sets, *International journal of research and analytical reviews (IJRAR)*, Vol. 6, Special Issue., (2019), 20-23.
- 9. P. L. Meenakshi and K. Sivakamasundari, J-closed sets in topological spaces, *Journal of Emerging Technologies and Innovative Research (JETIR)*, 6(2019), 193–201.
- R. A. Mohmoud and M. E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27(1990), 285-296.
- 11. G. B. Navalagi, Definition Bank in General Topology, Topology Atlas Preprint # 420(2000).
- 12. O. Njastad, On some class of nearly open sets, Pacific. J. Math., 15(1965), 961-970.
- 13. S. Pious Missier and M. Annalakshmi, Between Regular Open Sets and Open Sets, IJMA- Vol.7., No.5, (2016), 128-133.
- 14. M. H. Stone, Application of the theory of boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 375-381.