ISSN: 2349-5162 | ESTD Year: 2014 | Monthly Issue

 JDURNAL DF EMEREING TECHNDLDGIES AND INNDVATIVE RESEARCH (JETIR)An International Schalarly Dpen Access, Peer-reviewed, Refereed Jaurnal

Rainbow detour connectionsofgraphs and Hamilton-Connected Properties

Sherlin Nisha. Y,Rajeswari. V
Sri Sairam Institute of Technology, West Tambaram, Chennai-600044, Tamil
Nadu, India

Abstract

Let G be a nontrivial connected graph on which is defined a coloring $c: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{k}\}, \mathrm{k}$ $\in \mathrm{N}$, of the edges of G , where adjacent edges may be colored the same. A path P in G is a rainbow path if no two edges of P are colored the same. If the graph G contains a rainbow $\mathrm{u} v$ detour path for each of its two vertices u and v, it is rainbow detour-connected. The rainbow detour connection number $r d c(G)$ of G is the minimum k for which such a k-edge coloring exists. If G contains a Rainbow detour for every pair u, v of distinct vertices, then G is strongly Rainbow detour -connected. The strong rainbow detour connection number $\operatorname{srdc}(G)$ of G is the smallest k for which a k-edge colouring of G results in a strongly rainbow detour-connected graph. Thus, for every nontrivial connected graph $G, r d c(G) \leq \operatorname{srdc}(G)$. In this paper, we calculate the rainbow detour and strong rainbow detour connection number on various types of graphs.
Keywords:edge coloring, rainbow detour coloring, strong rainbow detour coloring
AMSSubjectClassification2000:05C15.

Introduction

Let G be a nontrivial connected graph with a coloring $c: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{k}\}, \mathrm{k} \in \mathrm{N}$ of its edges, where adjacent edges can be colored the same. A rainbow path is an $u-v$ path P in G in which no two edges of P are the same color. The graph G is rainbow detour-connected (with respect to c) if it contains a rainbow $u-v$ detour path for each of its two vertices u and v.In this case, the coloring c is referred to as a rainbow detour coloring of G . If k colors are used, c is a rainbow k -coloring. The rainbow detour connection number $r d c(G)$ of G is the minimum k for which a rainbow k-coloring of G's edges exists.If every $x, y \in V(G)$ is connected by a Hamilton path (path containing all vertices of G), then the graph G is a HamiltonConnected graph. All HC graphs are Hamiltonian, but the converse need not be true. For $n \geq 3$, the complete graph K_{n} is both HC and Hamiltonian, whereas all bipartite graphs are not. A rainbow path is one with distinct colors on all of its edges.
Let G be a nontrivial connected graph. If any two vertices of G are connected by a rainbow path, then an edge coloring of G is rainbow connected. We introduce the detour rainbow
connected path in this paper if any two vertices of G are connected by a rainbow detour path.Let c be a rainbow detour coloring of a connected graph G . A rainbow $\mathrm{u}-\mathrm{v}$ detour in G is a rainbow $\mathrm{u}-\mathrm{v}$ detour path of length $D(u, v)$, where $D(u, v)$ is the longest distance between u and v (the length of the longest $\mathrm{u}-\mathrm{v}$ path in G). The graph G is strongly detour-connected if it contains a rainbow $u-v$ detour for each of its two vertices u and v. In this case, the coloring c is known as a strong rainbow detour coloring of.The strong rainbow detour connection number $\operatorname{srdc}(G)$ of G is the minimum k for which there exists a coloring $c: \mathrm{E}(\mathrm{G}) \rightarrow\{1,2, \ldots, \mathrm{k}\}$ of the edges of G such that G is strongly rainbow detour-connected. A minimum strong detour rainbow coloring of G is a strong rainbow detour coloring of G using $\operatorname{srdc}(G)$ colors. Thus, for each connected graph $G \operatorname{rdc}(G) \leq \operatorname{srdc}(G)$. Since every coloring that assigns distinct colors to the edges of a connected graph is both a rainbow detour coloring and a strong rainbow detour coloring, every connected graph is rainbow detour -connected and strongly rainbow detour-connected with respect to some coloring of G's edges. Furthermore, if G is a nontrivial connected graph of size m whose diameter (the largest distance between two vertices of G) is $\operatorname{diam}(\mathrm{G})$, then (1) $\operatorname{diam}(G) \leq r d c(G) \leq \operatorname{srdc}(G) \leq m$.

Consider the Peterson graph G in Figure 1, which includes a rainbow detour 8 -coloring of P to demonstrate these concepts. As a result, $r d c(G) \leq 8 \mathrm{If}$, on the other hand, there are adjacent vertices, then the rainbow detour coloring of G is $r d c(G)=8$.As a result, any rainbow detour coloring of path P uses at least 8 - colors, $r d c(G) \geq 8$. If P has detour path from u_{1} to u_{5} is $D\left(u_{1}, u_{5}\right)=u_{1} v_{1} v_{5} u_{2} u_{3} v_{2} v_{3} v_{4} u_{5}=8$.

If there exists a non-adjacent vertex, then we have the rainbow detour coloring of G $\operatorname{is} r d c(G)=9$, and there is a detour path from u_{1} to u_{2} is $D\left(u_{1}, u_{2}\right)=$ $u_{1} u_{5} u_{3} v_{2} v_{1} v_{5} v_{4} v_{3} u_{4} u_{2}=9$.

Proposition 1.1

Let G be a nontrivial connected graph of size m. Then
(i) $\operatorname{srdc}(G)=m-1$ if and only if G is a complete graph.
(ii) $r d c(G) \leq m$ if and only if G is a Tree.

Proof
We first verify (i). If G is a complete graph, then all the vertices are adjacent to each other, then the coloring that assigns $m-1$ to every edge of G is a strong rainbow detour $(m-$ 1) - coloring of G and $\operatorname{sos} \operatorname{srdc}(G)=m-1$.

We now verify (ii). Suppose first that G is not a tree. Then G contains a cycle $C v_{1}, v_{2}, v_{3} \ldots . . v_{k} v_{1}$, where $k \geq 3$. Then the $(m-1)$-coloring of the edges of G that assigns 1 to the edges $v_{1} v_{2}$ and v_{2}, v_{3} and assigns the $(m-2)-$ distinct colors from $\{2,3, \ldots, \mathrm{~m}-1\}$ to the remaining $(m-2)$ edges of G is a rainbow coloring. Thusrdc $(G) \leq m-1$. Next, let G be a tree of size m. Assume, to the contrary, that $r d c(G) \leq m-1$.

Proposition 1.1 also implies that the only connected graphs G for which $r d c(G)=m-1$ are the complete graphs and that the only connected graphs G of size m for which $\operatorname{srdc}(G)=m$ are trees.

2. Some rainbow detour connection numbers of graphs

In this section, we determine the rainbow connection numbers of some well-known graphs. We refer to the book [1] for graph-theoretical notation and terminology not described in this paper. We begin with cycles of order n. Since $\operatorname{diam}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$, it follows by (1) that $\operatorname{srdc}\left(C_{n}\right) \geq$, $\operatorname{srdc}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$. This lower bound for $r c\left(C_{n}\right)$ and $\operatorname{src}\left(C_{n}\right)$ is nearly the exact value of these numbers.For a Hamiltonian-connected graph G, an edge coloring $c: E(G) \rightarrow[k]=\{1,2, \ldots$, $\mathrm{k}\}$ is called a Hamiltonian-connected rainbow k-coloring if every two vertices of G are connected by a rainbow Hamiltonian path in G. An edge coloring c is a Hamiltonianconnected rainbow coloring if c is a Hamiltonian-connected rainbow k-coloring for some positive integer k.The minimum k for which G has a Hamiltonian-connected rainbow k-coloring is the rainbow Hamiltonian-connection number of G, denoted by $\operatorname{hrc}(G)$.

3. Join of Graphs

The graph $G_{i}+G_{j}$ is formed by adding all edges between the graphs G_{i} and G_{j}. The union of the disjoint edge sets of the graphs G_{i}, G_{j} and the complete bipartite graph $K_{p, q}$ is the edge set $G_{i}+G_{j}$.

Theorem 1.1

Let $G \in P_{m}+P_{n}, m<n$. Then $r d c\left(P_{m}+P_{n}\right)=m+n-1$.

Proof:

Suppose that $G=P_{m}+P_{n}$
Without loss of generality, we let $m<n$, To prove the theorem, it is enough if we prove G is Hamilton connected graph. Let $U=\left\{u_{1}, u_{2}, u_{3} \ldots \ldots u_{m}\right\}$ and $V=\left\{v_{1}, v_{2}, v_{3} \ldots \ldots v_{n}\right\}$ such that $V(G)=U \cup V$ and $|\mathrm{V}(\mathrm{G})|=m+n$. Then we have a rainbow detour connected between every pair of vertices. For example, the rainbow detour connection number from
$u_{1} \rightarrow v_{1}=u_{1} v_{5} u_{4} v_{4} u_{3} v_{3} v_{2} u_{2} v_{1}=8$

$$
v_{1} \rightarrow v_{2}=v_{1} u_{1} u_{2} u_{3} u_{4} v_{5} v_{4} v_{3} v_{2}=8
$$

Table 1.1 exhibits Hamilton-paths between all pairs of vertices of $P_{m}+P_{n}$
Table 1: Different cases which exhibits the Hamilton-path for all pairs of vertices of $P_{m}+P_{n}$

S. No.	Cases	- Hamilton-path
1	$\begin{aligned} u & =u_{i} \\ v & =v_{j} \end{aligned}$	$\left\{u=u_{i}, u_{i-1}, u_{i-2} \ldots u_{1}, v_{1}, v_{2} \ldots v_{j-1}, u_{i+1}, u_{i+2} \ldots u_{m}, v_{n}, v_{n-1} \ldots v_{j}=v\right\}$
2	$\begin{aligned} u & =u_{i} \\ v & =u_{j} \end{aligned}$	$\begin{aligned} & \left\{u=u_{i}, u_{i-1}, u_{i-2} \ldots u_{1}, v_{1}, v_{2} \ldots v_{i}, u_{i+1}, v_{i+1} \ldots u_{j-1}, v_{j-1}, v_{j}, v_{j+1} \ldots v_{n}\right\} \\ & \circ\left\{u_{m}, u_{m-1} \ldots u_{j}=v\right\} \end{aligned}$
3	$\begin{aligned} u & =v_{i} \\ v & =v_{j} \end{aligned}$	$\begin{aligned} & \left\{u=v_{i}, v_{i-1}, v_{i-2} \ldots v_{1}, u_{1}, u_{2} \ldots u_{i}, u_{i+1}, v_{i+1}, v_{i+2} \ldots v_{j-1}, u_{i+2}, u_{i+3} \ldots u_{m}\right\} \\ & \circ\left\{v_{n}, v_{n-1} \ldots v_{j}=v\right\} \end{aligned}$

Proposition 2.2.

For $n \geq 3$, the rainbow detour connection number of the wheel W_{n} is
$r d c\left(W_{n}\right)=n-1$.

Proof.

Suppose that W_{n} consists of an n-cycle $C_{n}: v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}=v_{1}$ and another vertex v joined to every vertex of C_{n}. Since $W_{n}=K_{4}$ it follows by Proposition 1.1 that $r d c\left(W_{n}\right)=3$. For $n \geq 3$, the wheel W_{n} is not complete and so $r d c\left(W_{n}\right)=n-1$.

Theorem

If H is a Hamiltonian-connected spanning subgraph of a graph G , then $\operatorname{hrc}(\mathrm{G})<\operatorname{hrc}(\mathrm{H})$.
Let G be a Hamiltonian-connected graph of order $n \geq 4$. Because every Hamiltonianconnected rainbow coloring of G is a rainbow colouring, there is no Hamiltonianconnected rainbow coloring of G using fewer than $n-1$ colors, and the edge coloring that assigns distinct colours to distinct edges of G is a Hamiltonian-connected rainbow colouring.

Conclusion

In this present study we obtained the rainbow detour and strong rainbow detour connection number of a graph. The rainbow detour coloring and other graph operations are under investigation.

Reference

[1] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008), 85-98.
[2]M. Krivelevich and R. Yuster, The rainbow connection of a graphs (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010), 185-191.
[3]H. Li, X. Li and S. Liu, The (strong) rainbow connection numbers of Cayley graphs on Abelian groups, Comput. Math. Appl. 62 (2011), 4082-4088.
[4]X. Li, Y. Mao and Y. Shi, The strong rainbow vertex-connection of graphs, Util. Math. 93 (2014), 213-223.
[5]X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013), 1-38.
[6] X. Li and Y. Sun, On the strong rainbow connection of a graph, Bull. Malays. Math. Sci. Soc. 36 (2013), 299-311.
[7] Y. Sun, Z. Jin and F. Li, On total rainbow k-connected graphs, Appl. Math. Comput. 311 (2017), 223-227.
[8] B. Wei, Hamiltonian paths and Hamiltonian connectivity in graphs, Discrete Math. (1993) 223-228.
[9] S. Prabhu, Y.S. Nisha, M. Cary, M. Arulperumjothi, X. Qi, On detour index of join of HC graphs, Ars Combin. (Accepted).
[10] X. Li, Y. Sun, Rainbow connection numbers of complementary graphs, Arxiv preprint arXiv:1011.4572v3 [math.CO] (2010).
[11] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360-367. doi:10.1002/net. 20339.
[12] X. Chen and X. Li, A solution to a conjecture on the rainbow connection number, Ars Combin. 104 (2012) 193-196.

