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Abstract: Causal relationships are popular and common in modern data analytics with machine learning techniques. Graphical causal data 

models are one special attractive and dominant use in many day to day applications. Probabilistic graphical causal data models are also 

becoming common and their usage is inevitable in numerous artificial intelligence and machine learning applications. Causal decision trees 

are scalable, fast, automatic and budding data analytics models. Probabilistic causal decision trees are more attractive, convenient and very 

probable causal data models in medical diagnosis, research, business etc. In this paper two probabilistic causal decision trees are constructed. 

The first is constructed by taking one hypothetical dataset for easy understanding purpose and the second one is constructed by taking 

another Adult UCI machine learning dataset. Probabilistic causal decision tree created in this paper for adult dataset is exactly same with 

causal decision tree created earlier for adult dataset with other standard frameworks. These results show that the proposed probabilistic 

causal decision tree creation framework is correct, efficient and very useful for taking effective decisions in many real-life applications. 

 

Index terms: probabilistic causal decision trees, causal decision trees, graphical causal models, probability. 

I. INTRODUCTION 

The main goal of probabilistic causation is to find relationships between cause and effect by using probability tools. Examining the cause and 

effect relationships between predictor and target variables through probability is called probabilistic causation. In general, one variable may 

or may not cause another variable. In fact, many variables may cause a single variable. Causality can be either deterministic or probabilistic. 

A deterministically causes B means that if A occurs B should also occur. Probabilistic causality is defined as: X probabilist ically causes Y 

means that if X occurs then Y may occur or may not occur. X causes Y if and only if X increases the probability of Y in all possible 

situations. Probabilistic reasoning is one of the important forms of knowledge representation. Probability and logic combination are used in 

many domains to handle data uncertainty. Causality is categorized as absolute causality, conditional causality, and contributory causality. As 

of today, deep learning-based causality models are increasing in usage for effective decision making. Machine learning models including 

deep learning models could capture causal as well as probabilistic causal relationships. Uncovering cause and effect relationships in data 

would be very useful to provide good solutions in many areas such as medical field, physics, research, artificial intelligence, and machine 

learning. Efficient, smarter, intelligent, and robotic systems can be constructed through better understanding of cause and effect relationships. 

 

In linear causality happening of one thing makes happening of another. Effects that become causes are called domino causalities. Causality 

detection algorithms are needed in automation of artificial intelligence related tasks. 

The main research outcome in probabilistic causation is that causes raise the probabilities of their effects. Mathematization of combination of 

causal and probability theories play an important role in finding solutions to many problems.Causation is a quantitative measure. In general, 

the causal effect strength of one predictor variable is different from another predictor variable acting on the same target variable. 

Determination of causal strength or graded causation is needed in medical diagnosis, military, missile design, and physics etc. To find causal 

strength many mathematical frameworks were already developed. Formulas are available for finding positive causation, negative causation 

and no causation. Causal models combined with probabilities are very important when there is a need to make interventions. Increase in the 

dosage quantity of a specific tablet causes to increase or decrease the pain of patient is an example for cause and effect relationship. An 

increase in quality in teaching field definitely increases the pass percentage of the students in the class. Probabilistic causal models are 

specifically useful to analyse, understand and then explain various data generation processes. Deep learning methods combined with 

probabilistic causality becoming popular. 

 
II. RELATED WORK 

[1] Proposed an aided diagnostic method for probabilistic counter examples using possible notations and notations of the causality and 

responsibility. [2] Employed probabilistic causality analysis techniques and thoroughly studied and then evaluated performance of higher-
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level classes and lower level classes separately. They found significant different results against the performance details of upper and lower 

level classes. Finally, they came to the conclusion that lower level performance causality is not created any improved performance in higher 

level.[3] A Multivariate probabilistic causal analysis technique is used to create cyber security system with many causal variable-based 

alarms.  Then the system is analysed by applying various probabilistic causal events on the selected datasets. The obtained results are 

effective and accurate in terms of consistency.[4] Developed a graphical model algorithm with matrices of events called dynamic uncertain 

causality graph with probabilistic reasoning approach.  This algorithm is applied on generator system of a nuclear power plant for finding 

and diagnosing faults. Finally, causal logic between inference results and observation are displayed in the form of graphs.[5] Dynamic and 

uncertain causality graph is proposed for finding fault diagnosis of very large industrial systems. 

 

[6] Probabilistic reasoning is a good tool for handling uncertainty with constraints and causal relations. In some applications probabilistic 

causality frameworks are combined with deep earning algorithms to create efficient and effective decision-making systems. Probabilistic 

based kernels are constructed for robust-decision making systems.[7] Naïve Bayesian classifier is extended with probabilistic causality 

framework and causality-based attribute weighting system is proposed.[8] A special probabilistic framework is designed for model reference 

and adaptive control called causal form of the randomized controller.[9] A state space reconstruction algorithm is created for causal 

discovery in coupled time series. [10] A new technique is proposed with uncertain causality representation and probabilistic reasoning for 

online fault diagnoses of large and complex industrial systems. [11] Causal techniques play an important role in risk-based applications. Two 

types of causal relationships are used in risky decision-making systems. The main goal of the first type of causal relationship is to find the 

tendency of one event to cause another.  The goal of second causal type is to find dominant cause among the many potential causes that 

affects the target variable. This paper explains how probabilistic causality is applied and tested on different types of risk analysis 

applications. 

 

[12] Probabilistic causality models are used to represent probability distributions in terms of selected variables to analyse real systems and 

then make good decisions. Now a days automation of tasks is very important and it requires reasoning to take correct decisions and then 

execute desired actions. For example, artificial intelligence-based program accepts symptoms of patients and then analyse those symptoms 

thoroughly in order to find correct disease of the patients.[13] Causal strength is measured by two popular methods – causal effect measure 

and difference measure. Some important causal strength measures finding methods are discussed and explained clearly.[14] Causal 

relationships are thoroughly analysed using mathematical and probabilities framework tools and also many causal concepts are explained in 

detailed.[15] Bayesian nets and causality are one of the fastest growing technology in artificial intelligence with many newly added 

causality-based algorithms.[16] Causality and responsibility are applied for skyline queries. 

 

[17] probabilistic causality is applied in multiple causation view.[18] Causal independence between sets of factors is explained in more 

detail.[19] Various types of causalities such as linear causality, domino causality, cyclic causality, spiralling causality, mutual causality, and 

relational causality are explained neatly.[20] Physical causalities are empirically studied rather than studying logical or conceptual 

causalities. All test cases that are used are only empirical test cases only. [21] Observed practically and said that time series parameters are 

very important in many fields including causal inference-based domains. The core assumption of probabilistic theory says that correlation 

between two variables is the indication of causal connection between variables. [22] Pointed out that health sciences are dependent not only 

on the physical mechanisms but also on the probabilistic dependences. 

 

 

III. MATHEMATICAL FORMULATION OF PROBABILISTIC CAUSAL DECISION TREES 

3.1 Conditional Probability based decision trees 

𝑃(𝑔𝑢𝑡𝑘𝑎 = 1/𝑐𝑎𝑛𝑐𝑒𝑟 = 1) =
𝑃(𝑔𝑢𝑡𝑘𝑎 = 1 ∩  𝐶𝑎𝑛𝑐𝑒𝑟 = 1)

𝑃(𝑐𝑎𝑛𝑐𝑒𝑟 = 1)
=

{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑤ℎ𝑜 ℎ𝑎𝑣𝑒 𝑔𝑢𝑡𝑘𝑎 ℎ𝑎𝑏𝑖𝑡}

{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠}
… … … … … (1) 

3.2 Causal Probability based decision trees 

𝑃(𝑔𝑢𝑡𝑘𝑎 = 1/𝑐𝑎𝑛𝑐𝑒𝑟 = 1) =
𝑃(𝑔𝑢𝑡𝑘𝑎 = 1 ∩  𝐶𝑎𝑛𝑐𝑒𝑟 = 1)

𝑃(𝑐𝑎𝑛𝑐𝑒𝑟 = 1)
−

𝑃(𝑔𝑢𝑡𝑘𝑎 = 0 ∩  𝐶𝑎𝑛𝑐𝑒𝑟 = 1)

𝑃(𝑐𝑎𝑛𝑐𝑒𝑟 = 1)

=
{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑔𝑢𝑡𝑘𝑎 ℎ𝑎𝑏𝑖𝑡}

{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠}

−
{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑔𝑢𝑡𝑘𝑎 ℎ𝑎𝑏𝑖𝑡} … … … … … (2)

{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠}
 

Probabilistic causal decision trees are constructed by using both conditional probability and causal probability and it has been observed that 

both output results are same and correct. Up to moderate data size datasets computation of causal probabilities and subsequently creation of 

probabilistic causal decision treesis not a problem but for very large datasets with curse of dimensionality it is a challenging task becausehigh 

computational complexities are incurred. Cause and effect relationships are needed for effective decision making and also for handling data 

uncertainty. Artificial intelligence algorithms are mainly based on probabilistic causal data models. 
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3.3 Probabilistic Causal Decision Tree for Patient Dataset 

Attribute Yes No 

Age > 30 1 0 

Smoking 1 0 

Drinking 1 0 

Gutka 1 0 

Cancer 1 0 

Table-1 Patient Dataset Attribute Values. 

 

Age Smoking Drinking Gutka Cancer Count 

0 0 0 0 0 4 

0 0 0 1 1 6 

0 0 1 0 0 5 

0 0 1 1 1 30 

0 1 0 0 0 10 

0 1 0 1 1 30 

0 1 1 0 1 30 

0 1 1 1 1 30 

1 0 0 0 0 4 

1 0 0 1 1 30 

1 0 1 0 1 20 

1 0 1 1 1 40 

1 1 0 0 1 10 

1 1 0 1 1 40 

1 1 1 0 1 30 

1 1 1 1 1 60 

Table-2 Patient Dataset for Probabilistic Causal Decision Trees 

Probabilistic causal decision tree is created by taking hypothetical patient dataset.  Patient dataset consists of four predictor attributes and one 

target attribute. Count attribute represents frequencies of each row. All attributes are binary attributes whose details are shown in the Table-1. 

Note that probabilistic causal decision tree is constructed for the given patient training dataset using correlations and conditional causal 

probabilities of predictor attributes against target attribute. If patients’ age > 30 is true then the value of the attribute is Yes (1); otherwise 

value of the attribute is false (0). If the patient has the habit of smoking then smoking attribute value is Yes (1); otherwise smoking attribute 

value is zero. Same is applicable for drinking and gutkapredictor attributes. 

 

Causal probability relationships between predictor attribute and target attribute is represented by using simple conditional probability.Causal 

probability of age attribute given that the randomly selected patient has cancer disease is represented and then computed using the standard 

formula as 

 

𝑃(𝑎𝑔𝑒 = 1/𝑐𝑎𝑛𝑐𝑒𝑟 = 1) =
𝑃(𝑎𝑔𝑒 = 1 ∩  𝐶𝑎𝑛𝑐𝑒𝑟 = 1)

𝑃(𝑐𝑎𝑛𝑐𝑒𝑟 = 1)
=

{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑤ℎ𝑜𝑠𝑒 𝑎𝑔𝑒 >  30}

{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠}
 

 
In a similar manner probabilities of other predictor attributes are computed. For example, 

𝑃(𝑠𝑚𝑜𝑘𝑖𝑛𝑔 = 1/𝑐𝑎𝑛𝑐𝑒𝑟 = 1) =
𝑃(𝑠𝑚𝑜𝑘𝑖𝑛𝑔 = 1 ∩  𝐶𝑎𝑛𝑐𝑒𝑟 = 1)

𝑃(𝑐𝑎𝑛𝑐𝑒𝑟 = 1)
=

{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑤ℎ𝑜 ℎ𝑎𝑣𝑒 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 ℎ𝑎𝑏𝑖𝑡}

{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑛𝑐𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠}
 

Initially correlation is computed for each input predictor attribute with the output attribute and also correlation threshold is specified. Then 

causal probabilities between predictor and target attribute are computed to only predictor attributes which satisfy correlation threshold. 

Finally, only the attribute whose causal probability is highest is selected for node split during probabilistic causal decision tree creation. In 

the beginning all tuples are put in the root node. In the presently selected patient dataset total number of tuples are 380. Computed 

correlations between input and output attributes are shown below:  

 

Age Smoking Drinking Gutka Correlation threshold 

0.232260 0.105095 0.228422 0.390163 0.390163 
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Correlations values of predictor attributes 

Age Smoking Drinking Gutka 

0 0 0 0.747899 

Causality values of predictor attributes 

Gutka predictor attribute has the highest correlation threshold value = 0.390163 and selected correlation threshold value is 0.390163. So, 

Only Gutkapredictor attribute satisfies the correlation threshold. So, causal probability is computed to only for Gutka attribute and by default 

causal probabilities values of all the remaining attributes is zero. In general, causal probabilities are computed for all predictor attributes 

whose correlation value is greater than the selected correlation threshold.Causal probability of cancer patients due to Gutka consumption = 

P(Gutka=1/Cancer=1) = 267/357 = 0.747899 

Age Smoking Drinking Cancer Count 

0 0 0 1 6 

0 0 1 1 30 

0 1 0 1 30 

0 1 1 1 30 

1 0 0 1 30 

1 0 1 1 40 

1 1 0 1 40 

1 1 1 1 60 

Table-3 dataset with Gutka = 1 (left sub group) 

Initially Gutka attribute is taken as the root node attribute. All the tuples of the training dataset are stored in the Gutka root node attribute 

because Gutka attribute is selected as the root node attribute. All tuples in the root node are divided into left sub group and right sub group 

based on the values of Gutka = 1 and Gutka = 0. Gutka = 1 forms the left sub group and Gutka = 0 forms the right sub group. 

 

Age Smoking Drinking Cancer Count 

0 0 0 0 4 

0 0 1 0 5 

0 1 0 0 10 

0 1 1 1 30 

1 0 0 0 4 

1 0 1 1 20 

1 1 0 1 10 

1 1 1 1 30 

Table-4 dataset with Gutka = 0 (right sub group) 

In Table-3 all tuples belong to the same class label. So, it is converted into leaf node further causal probabilities are not computed. In the next 

level,correlations and causal probabilities are computed for all the remaining predictor attributes against cancer target attribute as shown in 

Table-4. 

 

Age Smoking Drinking Correlation threshold 

0.400338 0.303718 0.626240 0.607044 

Correlations values of predictor attributes 

 

Age Smoking Drinking 

0 0 0.888888 

Causality values of predictor attributes 

 
Out of three predictor attributes, only drinking attribute satisfies correlation threshold. So, causal probability is computed to only drinking 

attribute and causal probabilities of other attributes are set to zero. Hence, drinking attribute is taken as the node split attribute for the right 

partition of data shown in Table-4. Left sub group is created for drinking =1 and right sub group is create for drinking = 0. 
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Age Smoking Cancer Count 

0 0 0 5 

0 1 1 30 

1 0 1 20 

1 1 1 30 

Table-5 left partition for drinking = 1 

 

Age Smoking Cancer Count 

0 0 0 4 

0 1 0 10 

1 0 0 4 

1 1 1 10 

Table-6 right partition for drinking = 0 

 

Similar procedure is applied for finding split attributes in the next respective higher levels of probability causal decision tree construction. 

The final probabilistic causal decision tree is shown in Figure-2 with post pruned version after its creation. 

 

 

Total tuples = 380 

Correlation threshold = 0.390163 

                                                                                              Causality value = 0.747899 

 

                                                                 Yes              No 

                                                                                                                      Tuples = 113   

                                                                                                                      Correlation threshold=0.607044 

                                                                                                                      Causality value = 0.888888 

 

                                                                                          Yes              No 

 

 

Total tuples = 28 

threshold 0.370719 

Causality value 0.75 

 

                                                                  Yes                   No 

 

 

 

 

 

                                 Yes                           No 

 

 

 

Figure-1 Probabilistic Causal Decision Tree for Patient Dataset. 
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3.4 Causal Decision Tree for Adult UCI machine learning dataset 

The Adult data set 

Attributes Yes No Comment 

Age < 30 14,515 34,327 Young 

Age > 60 3,606 45,236 Old 

Private 33,906 14,936 private company employee 

Self-emp 5,557 43,285 self-employment 

Gov 6,549 42,293 government employer 

Education-num > 12 12,110 36,732 bachelor or higher 

Education-num < 9 6408 42,434 education years 

Prof 23,874 24,968 professional occupation 

White 41,762 7,080 Race 

Male 32,650 16,192 Gender 

Hours > 50 5,435 43,407 weekly working hours 

Hours < 30 6,151 42,691 weekly working hours 

US 43,832 5,010 Nationality 

> 50k 11,687 37,155 annual income, outcome 

Table-7 Adult UCI machine learning dataset attributes details. 

Adult dataset consists of 13 predictor attributes and 1 target attribute. Initially correlations of all predictor attributes with respect to target 

attribute are computed and correlation threshold is selected. Causal probabilities are computed to only those predictor attributes whose 

correlation is greater than the selected correlation threshold. Then the one predictor attributes whose causal probability is the highest is 

selected as the best split attribute of the probabilistic causal decision tree and then tuples in the current node are partitioned into left partition 

and right partition based on the values of the split attribute. Similar procedure is applied at each level of the probabilist ic causal decision tree. 

Final probabilistic causal decision tree is shown in Figure-2. 

 

Attributes Yes No 

Age < 30 1 0 

Age > 60 1 0 

Private 1 0 

Self-emp 1 0 

Gov 1 0 

Education-num > 12 1 0 

Education-num < 9 1 0 

Prof 1 0 

White 1 0 

Male 1 0 

Hours > 50 1 0 

Hours < 30 1 0 

US 1 0 

> 50k 1 0 

Table-8 Attribute binary values of the Adult dataset 

Probabilistic Causal Decision Tree Construction for Adult dataset 

Initially correlations and probabilistic causal values are computed and shown in the following: 

correlation threshold value is = 0.2837 

Attributes Correlation Causal probability 

Age < 30 0.2837 0.06466 

Age > 60 0.0023 0 

Private 0.1178 0 

Self-emp 0.0979 0 

Gov 0.0559 0 

Education-num > 12 0.2383 0 
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Education-num < 9 0.0789 0 

Prof 0.1829 0 

White 0.0823 0 

Male 0.2161 0 

Hours > 50 0.1389 0 

Hours < 30 0.1479 0 

US 0.0391 0 

 

Causal probability is computed to only for age < 30 attribute because whose correlation is greater than or equal to the correlation threshold. 

In case if more than one attribute satisfies correlation threshold then causal probability is computed for all those attributes and then highest 

causal probability node is selected as the split node attribute and then tuples are partitioned according to the values of the split attribute. 

 

𝑃(𝑎𝑔𝑒 < 30 = 1/𝑖𝑛𝑐𝑜𝑚𝑒 > 50𝑘 = 1) =
𝑃(𝑎𝑔𝑒 < 30 = 1 ∩   𝑖𝑛𝑐𝑜𝑚𝑒 > 50𝑘 = 1)

𝑃(𝑐𝑎𝑛𝑐𝑒𝑟 = 1)

=
{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑎𝑔𝑒 < 30 = 1 𝑎𝑛𝑑 𝑡ℎ𝑒𝑖𝑟 𝑖𝑛𝑐𝑜𝑚𝑒 > 50𝑘 ≥ 1}

{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 𝑤ℎ𝑜𝑠𝑒 𝑖𝑛𝑐𝑜𝑚𝑒 > 50𝑘 = 1}
 

𝑃(𝑝𝑟𝑖𝑣𝑎𝑡𝑒 = 1/𝑖𝑛𝑐𝑜𝑚𝑒 > 50𝑘 = 1) =
𝑃(𝑝𝑟𝑖𝑣𝑎𝑡𝑒 = 1 ∩   𝑖𝑛𝑐𝑜𝑚𝑒 > 50𝑘 = 1)

𝑃(𝑐𝑎𝑛𝑐𝑒𝑟 = 1)

=
{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 = 1 𝑎𝑛𝑑 𝑡ℎ𝑒𝑖𝑟 𝑖𝑛𝑐𝑜𝑚𝑒 > 50𝑘 ≥ 1}

{𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 𝑤ℎ𝑜𝑠𝑒 𝑖𝑛𝑐𝑜𝑚𝑒 > 50𝑘 = 1}
 

 
So, age < 30 is selected as a root node and split attribute of the probability causal decision tree and then all tuples are stored in the root node. 

Now tuples are divided into two partitions, left partition with age < 30 is true and right partition with age < 30 is false. Similar procedure is 

applied in the next levels of the probability causal decision tree creation. The final probability causal decision tree for the adult dataset is in 

Figure-2. 
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Figure-2 Probabilistic Causal Decision Tree for the Adult UCI machine learning dataset 

Conclusion 

Probabilistic causal decision trees are constructed for two training datasets. Both conditional probability and probabilistic causality are used 

during decision tree creation procedure and final output results are compared. Both methods have produced the same results. In the feature, 

comparisons will be performed by using many possible mathematical causality formulae and new formulas will be traced out for the same. 
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