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I.INTRODUCTION      
Let Y be a non empty set and I= [0,1]. A fuzzy set on Y is a mapping from Y in to I. The null fuzzy set 0 is the 

mapping from X in to I which assumes only the value is 0 and whole fuzzy sets 1 is a mapping from Y on to I which takes 

the values 1 only. The union (resp. intersection) of a family {Aα: α∈Λ}of fuzzy sets of X is defined by   to be the mapping 

sup 𝑃𝛼 (resp. inf 𝑃𝛼) . A fuzzy set P of Y is contained in a fuzzy set R of Y if P(y) ≤ Q(y) for each x≠y. A fuzzy point 𝑦𝛼  in Y 

is a fuzzy set defined by xβ (x)=𝛼 for y=x and y(x) =0 for x≠y, 𝛼 𝛼 ∈[0,1] and x∈ y .A fuzzy point 𝑦𝛼 is said to be quasi-

coincident with the fuzzy set P denoted by  𝑥𝛼𝑞P if and only if 𝛼+ P(y) > 1. A fuzzy set P is quasi coincident with a fuzzy 

set R denoted by PqQ if and only if there exists a point y∈Y such that P(y) + R(y) > 1 .P ≤ R if and only if (PqRc).A family 

𝜏 of fuzzy sets of y is called a fuzzy topology [2] on Y if 0,1 belongs to 𝜏 and 𝜏 is super closed with respect to arbitrary 

union and finite intersection .The members of 𝜏 are called fuzzy super open sets and their complement are fuzzy super 

closed sets. For any fuzzy set P of Y the closure of P (denoted by cl(P)) is the intersection   of all the fuzzy super closed 

super sets of P and the interior of P (denoted by int(P) )is the union of all fuzzy super open subsets of P. 

   Definition1.1 [5,10,11,12]: Let (Y, 𝜏) fuzzy topological space and P≤Y then 

1. Fuzzy Super closure scl(P)={yY:cl(U)P≠} 

2. Fuzzy Super interior sint(P) ={yY:cl(U)≤P≠} 
  Definition 1.2[5, 10,11,12]: A fuzzy set P of a fuzzy topological space (Y,) is called: 

(a) Fuzzy super closed if scl(P )  P. 
(b) Fuzzy super open if 1-P is fuzzy super closed sint(P)=P 
Remark 1.1[5, 10,11,12]: Every fuzzy closed set is fuzzy super closed but the converses may not be true. Remark 1.2[5, 

10,11,12]: Let P and Q are two fuzzy super closed sets in a fuzzy topological space (Y,), then P  Q is fuzzy super 

closed. 

Remark 1.3[5]: The intersection of two fuzzy super closed sets in a fuzzy topological space (Y,) may not be fuzzy 

super closed. 
Definition 1.3: A fuzzy set P of an fuzzy topological space (Y, ) is said to be :- 
(a) fuzzy regular super open if P = int(cl(P)) [7]. 
(b) fuzzy h-super closed if cl(P)O whenever PO and O is an fuzzy super open set.[14] 
(c) fuzzy h-super open if Pc is fuzzy g-closed.[14] 
(d) fuzzy rh-super closed if cl(P) O whenever PO and O is an fuzzy regular super open set.[16] 
(e) fuzzy rh-super open if Pc is  fuzzy mg-closed.[16] 
Remark 1.3: Every fuzzy super closed set is fuzzy h-super closed and every fuzzy h-super closed set is fuzzy  rh-super 

closed but the converse may not be true.[14,16] 
Definition 1.4: A mapping f : (Y,) (X,𝜇) is said to be : 
1. Fuzzy h-super continuous if the pre image of every fuzzy super closed set of X is fuzzy h-super closed in Y.[15]. 

2. Fuzzy rh-super continuous if the pre image of every fuzzy super closed set of X is fuzzy rh-super closed in Y. [17] 

Remark 1.4: Every fuzzy super continuous mapping is fuzzy h-super continuous and every fuzzy h-super continuous 

mapping is fuzzy rh-super continuous but the converse may not be true.[17] 
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Definition 1.5: A collection {𝐹𝛽:𝛽}.of fuzzy mg-super open sets in a fuzzy topological space (Y,) is called a fuzzy 

rh-super open cover of an fuzzy set P of Y if P {𝐹𝛽:𝛽}.[16] 

Definition 1.6: A fuzzy topological space (Y,) is said to be fuzzy rh - super compact if every fuzzy rh-super open cover 

of Y has a finite subcover.[16] 

Definition 1.7: An fuzzy set A of an fuzzy topological space (Y,) is said to be fuzzy rh- super compact relative to 

Y if every collection   {𝐹𝛽:𝛽} of  fuzzy rh-super open subsets of Y such that P {𝐹𝛽:𝛽} there exists a finite 

subset 0 such that A  {F𝛽j: j0}.[16]

Definition 1.8: A fuzzy topological space Y is fuzzy    rh-connected if there is no proper fuzzy set of Y which is both fuzzy 

rh-super open and fuzzy mg-closed.[17] 

II.FUZZY RH -SUPER IRRESOLUTE MAPPINGS 
Definition 2.1: A mapping f from a fuzzy topological space (Y,) to another fuzzy topological space (x,𝜇) is said to be 

fuzzy rh -super irresolute if the pre image of every fuzzy rh-super closed set of X is fuzzy rh -super closed in Y. 

Theorem 2.1: A mapping f : (Y,)( (X, 𝜇)is fuzzy rh -super irresolute if and only if the pre image of every fuzzy rh -
super open set in X is fuzzy rh -super open in Y. 

Proof: It is obvious because f -1(Uc) = (f -1(U))c, for every fuzzy set U of Y. 

Remark 2.1: Every fuzzy h-super closed set is fuzzy rh -super closed it is clear that every fuzzy rh -super irresolute 

mapping is fuzzy rh -super continuous but the converse may not be true. 

Definition 2.2: A mapping f : (Y,)( (X, 𝜇)is said to be   fuzzy regular super open if the image   of   every fuzzy regular 

super open set of X is fuzzy regular super open set in Y. 

Theorem 2.2: Let f f: (Y,)(X, 𝜇)is bijective fuzzy regular super open and fuzzy rh-super continuous then f is fuzzy rh - 

super irresolute. 
Proof: Let P be a fuzzy mg-super closed set in X and let f -1(P)  F where F is fuzzy regular super open set in Y. Then P  
f(F). Since f is fuzzy regular super open and P is fuzzy rh-super closed in X, cl(P)  f(F) and f - 1(cl(P))  F. Since f is fuzzy 
mg-super continuous and cl(P) is fuzzy super closed in X, cl(f -1(cl(P)))  F. And so cl(f -1(P))  F. Therefore f -1(P) is fuzzy 
rh-super closed in Y. Hence f is fuzzy rh -irresolute. 

Theorem 2.3: Let f : (Y,) (X, 𝜇)  and g: (X,  𝜇)(Z,) be two fuzzy rh -super irresolute mappings, then gof : 

(Y,)(Z, ) is fuzzy rh - super irresolute. 

Proof : Obvious. 

Theorem 2.4: Let f : (Y,)(X, 𝜇) is fuzzy rh -super irresolute mapping, and if Q is fuzzy rh- super compact relative to 

Y, then the image f(Q) is fuzzy rh - super compact relative to X. 
Proof : Let {Pi: i}be any collection of fuzzy rh-super open set of X such that f(Q)  {Pi: i}. Then Q {f -1(Pi): 
i}. By using the assumption, there exists a finite subset 0 of  such that Q  {f -1(Pi): i0}. Therefore, f(Q)  {Pi: 
i0}. Which shows that f(Q) is fuzzy rh- super compact relative to X 

Theorem 2.5: A fuzzy rh-super irresolute image of a fuzzy rh- super compact space is fuzzy rh-compact. 

Proof: Obvious. 

Theorem 2.6: If the product space (YxX, x𝜇) of two non- empty fuzzy topological spaces (Y,)and (X, 𝜇)is fuzzy rh - 

super compact, then each factor space is fuzzy rh- super compact. 

Proof: Obvious. 

Theorem: 2.7:Let f : (Y,) (X, 𝜇) is a fuzzy rh -super irresolute surjection and (Y,) is fuzzy rh - super connected, then 

(X, 𝜇) is fuzzy rh - super connected. 

Proof : Suppose Y is not fuzzy rh - connected then there exists a proper fuzzy set G of Y which is both fuzzy rh -super open 

and fuzzy rh -closed, therefore f -1(G) is a proper fuzzy set of X, which is both fuzzy rh -super open and fuzzy rh -closed, 

because f is fuzzy rh -super continuous surjection. Therefore X is not fuzzy rh - connected, which is a contradiction. Hence 

Y is fuzzy rh - super connected. 
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